Machine Learning Deployments with Diego Oppenheimer

Machine learning models allow our applications to perform highly accurate inferences. A model can be used to classify a picture as a cat, or to predict what movie I might want to watch. But before a machine learning model can be used to make these inferences, the model must be trained and deployed.

In the training process, a machine learning model consumes a data set and learns from it. The training process can consume significant resources. After the training process is over, you have a trained model that you need to get into production. This is known as the “deployment” step.

Deployment can be a hard problem. You are taking a program from a training environment to a production environment. A lot can change between these two environments. In production, your model is running on a different machine–which can lead to compatibility issues. If your model serves a high volume of requests, it might need to scale up. In production, you also need caching, and monitoring, and logging.

Large companies like Netflix, Uber, and Facebook have built their own internal systems to control the pipeline of getting a model from training into production. Companies who are newer to machine learning can struggle with this deployment process, and these companies usually don’t have the resources to build their own machine learning platform like Netflix.

Diego Oppenheiner is the CEO of Algorithmia, a company that has built a system for automating machine learning deployments. This is the second cool product that Algorithmia has built, the first being the algorithm marketplace that we covered in an episode a few years ago.

In today’s show, Diego describes the challenges of deploying a machine learning model into production, and how that product was a natural complement to the algorithms marketplace. Full disclosure: Algorithmia is a sponsor of Software Engineering Daily.

Transcript

Transcript provided by We Edit Podcasts. Software Engineering Daily listeners can go to weeditpodcasts.com/sed to get 20% off the first two months of audio editing and transcription services. Thanks to We Edit Podcasts for partnering with SE Daily. Please click here to view this show’s transcript.


Software Weekly

Software Weekly

Subscribe to Software Weekly, a curated weekly newsletter featuring the best and newest from the software engineering community.