
SED 1454 Transcript

EPISODE 1454

[INTRODUCTION] 

[00:00:00] JM: Loft is a platform for Kubernetes self-service and multitenancy. Loft allows you to 

control Kubernetes clusters with added multitenancy and self-service capabilities to get more value out 

of Kubernetes beyond simply cluster management. It allows for cost optimization, more efficient 

provisioning and other features. Lukas Gentele joins the show to talk about Kubernetes multitenancy 

and the engineering behind Loft.

If you're interested in sponsoring Software Engineering Daily, reach out to us at 

sponsor@softwareengineeringdaily.com. We'd love to hear from you and bring your message to our 

audience. We reach over 250,000 developers per month.

[INTERVIEW]

[00:00:39] JM: Lucas, welcome to the show.

[00:00:41] LG: Thanks so much for having me, Jeff. It's a pleasure being on here.

[00:00:43] JM: Yeah, it's great to have you. Now, we're talking today about your work with Loft, and 

I've done many shows on managed Kubernetes systems. And it's always interesting to see new ones 

come around. Tell me about the gap in the market for managed Kubernetes that was available, despite 

the fact that there are so many options already.

[00:01:12] LG: Yeah, of course. I mean, there's a whole bunch of providers out there that help you set 

up and manage Kubernetes clusters, obviously, OpenShift, Red Hat, and then Rancher, and a whole 

bunch of others come to mind in that space. So yeah, very valid question. Why do I need another 

Kubernetes management tool? I guess. I think the way I look at it is we start with a kind of end in terms 

of functionality, and we don't cover a lot of things that they actually cover. So it's not like Rancher or 

Loft, it's typically Rancher plus Loft. The way that I think about it is these tools to help you spin up 

clusters, set up monitoring, logging day two operations in different cloud platforms, we don't do any of 

that, right? With Loft, you cannot even spin up Kubernetes cluster in AWS, that's not what we do.

© 2022 Software Engineering Daily 1



SED 1454 Transcript

What we help you do is when you have these clusters set up, and you’re already managing them with 

any of these tools, or you're just using the plain EKS or GKE by the cloud provider directly, what we 

help you to do is make these clusters accessible in a self-service fashion, and shareable across your 

entire organization. So let's say you have 500 or even 5,000 engineers, and then need access to 

Kubernetes, we help you get them self-service access to these shared development clusters.

[00:02:41] JM: Got you. So what is required to build that kind of permissioning and sharing system for 

clusters?

[00:02:52] LG: Yeah, a whole bunch of things. I think, we're touching like this Kubernetes multitenancy 

topic, how do you host multiple different tenants and tenant workloads in the same Kubernetes cluster? 

That's a really tough challenge. Because inherently, Kubernetes is a system that – I mean, of course, 

Kubernetes has our back and things like that. But it's typically designed as a single tenant system. It's 

really hard to share Kubernetes cluster, and we automate everything around that. So we're really 

putting these guardrails in place for folks. But at the same time, we also help you do it in a very 

pleasant way for engineers.

I think one of the biggest advantages that you have with Loft is that your users have a great experience 

when they're using the system. So they can just even create namespaces in a self-service fashion in 

Kubernetes. They can even create virtual Kubernetes clusters. So you don't want to spin up 5,000 

Kubernetes clusters for 5,000 engineers. But for each individual engineer, that would be kind of ideal. 

Actually, what would be even more ideal is if each engineer had the permission to create 10 

Kubernetes clusters, but who wants to manage that and who can afford that, it's really tough.

What we let them do is spin up virtual Kubernetes clusters or simple namespaces. And inside these 

namespace, they can do whatever they want. And inside these virtual Kubernetes clusters, they feel 

like they own the entire Kubernetes cluster and have full access, they feel like an admin. It’s kind of like 

a feeling like being in a VM. You’re admin inside, but in the outside system, you’re still are restricted to 

this to this virtual layer that you created.

[00:04:40] JM: Why isn't this kind of functionality already provided by the larger infrastructure providers

like the OpenShifts or the Ranchers?

© 2022 Software Engineering Daily 2



SED 1454 Transcript

[00:04:52] LG: There's essentially just two main approaches to create virtual clusters out there at the 

moment. One is what the multitenancy, our working group and Kubernetes is working on. They're 

working on a standard for this. But it's not ready for I think the end user at this point. I know some firms 

and many of the main contributors are using it internally, but it's very tailored to their needs. What we're

trying to do with the VCluster, our virtual cluster distribution is a general solution that can be easily 

adopted by pretty much any company. And we're pretty much the only project out there that makes this 

work, and VCluster is a certified Kubernetes distribution. So all the conformance tests, et cetera, that 

CNCF has out there, we're passing them, so you won't be able to tell the difference between a virtual 

cluster and a real Kubernetes cluster.

I assume, though, that providers like Rancher, et cetera, will in the future integrate either what the 

multitenancy group is doing, or what we're doing with the VCluster. Obviously, we're hoping that more 

providers will go for the VCluster route, and the approach that we're taking. But I'm pretty sure, manage

providers will look into virtual clusters as well, eventually, but I don't think any of them is there yet.

[00:06:11] JM: I'd like to get into the engineering of Loft. So as you've mentioned, it's useful for defining

these virtual clusters for smaller teams or individuals within a company to spin up their own Kubernetes 

resources. Can you describe what's going on under the hood in more detail?

[00:06:38] LG: Yeah, so essentially, the way it works is we typically talk to a platform team, a central 

team within the organization that offers Loft kind of like as a product within the company, and makes 

that offering. They take our product and our platform, and we kind of describe it as a platform for 

platform builders or platform for platform engineers. They're building on top of Loft, they're adding 

things, we're very customizable for their particular needs within the organization, and we have to be 

because we addressing anything from like a post series B funded startup, all the way up to Fortune 50 

financial institutions and large manufacturers. We need to be very, very flexible.

So what happens is, we integrate with a whole bunch of different other solutions. For example, 

regarding authentication, we're integrating with all the standards out there, LDAP, Open ID Connect, 

you can hook up pretty much anything, whether you're on Active Directory, or you're using Octa. It’s 

pretty straightforward to hook up single sign onto Loft. And then what you really do, as a platform team, 

you define members of this Active Directory Group, for example, should get access to those five 

clusters, and they have the restriction of, they can only create five namespaces, and three virtual 

© 2022 Software Engineering Daily 3



SED 1454 Transcript

clusters. And altogether, each one of these members in this Active Directory Group can use 20 

gigabytes of memory, and then Loft is enforcing these things.

Another interesting thing that Loft actually add to this is cost optimization. Because a big part of this is 

when you're nailing the developer experience, when you're nailing self-service, when it's very smooth 

for hundreds or even thousands of engineers to start using this internal platform that you're building for 

your engineering teams, they will spin up a lot of things, and they will deploy a lot of workloads. And the

big question comes up is how do we control cost and how do we limit cost? Of course, you can limit 

engineers in terms of CPU and memory. But one of the biggest issues that companies have is figure 

out, can we delete this? Is this idle? Is anyone still using this? It's really tough to make those decisions. 

So we have a feature in the product as well that's highly customizable, but what it does effectively, it 

monitors traffic to these virtual clusters, or to these namespaces that the engineers are creating. And 

when they're not being used, we put them to sleep automatically. That means, engineer stops working 

at 8 PM at night, and 30 minutes later, or so whatever you configure, that virtual cluster or namespace 

goes to sleep, doesn't cost any resources, no CPU and memory cost at all. But the entire state, 

everything that the engineer has created inside of there, still preserved. And when they're starting to 

work again at 8 AM in the morning, the next day, things spin up again, and it means throughout the 

entire night, lots of hours through the entire weekend is typically 70% to 80% of time that people are 

actually not coding. All of the time, things are not costing any money to the organization, and also 

allows your engineers to have like 10 virtual clusters in parallel, preserve the state, and then they don't 

have to reset them and throw them away. Because only the one that they're actually working with right 

now is going to run, the other ones are going to automatically go to sleep. It’s a very, very interesting 

kind of feature that we are on top of, the self-service provisioning part.

[00:10:30] JM: So is that to say that these are only useful for test clusters? Because if these are 

clusters that you want to make fall asleep when the developer is now working on, I mean, that wouldn't 

be really useful for production clusters, right?

[00:10:47] LG: Yeah, absolutely. In production, you’re going to have different like auto scalers, and 

things that you really configure for each individual micro service, and you want to make sure they're 

highly available, but then they're scaled elastically. That's what you want to do in production. In pre-

production, so when you're thinking of all these development, and CI/CD workloads and things like that,

a lot of that needs a much – you don't want to set up all of this auto scaling and things like that, right 

© 2022 Software Engineering Daily 4



SED 1454 Transcript

from the start. That's not typically how each developer starts out with a new project. You want 

something that does it on autopilot, and does it more rougher. But that's completely fine in pre-

production. That's kind of our main use case at this point. We see that some customers are exploring 

virtual clusters in production as well, because they do have security and isolation benefits there and 

help you with, for example, hosting customer workloads in multitenant clusters.

But our core product is currently targeted towards preproduction workloads. The best use case I can 

give for this is people may be very familiar with review applications. You create a pull request, your 

CI/CD tests run through, and you have an instance of your product being deployed to some demo URL,

so that a QA tester, or even a potential end user or someone can hands on test the application. If you 

have that review app spun up, and you have that pull request created, how long does it take to actually 

someone takes a look at this? Maybe a week? Maybe three weeks? That review instance is going to be

up and running for all that time, right? Sleep mode is going to put it to sleep automatically, and then 

wakes it up as soon as someone hits that link in your GitHub or GitLab. And then fires up that 

namespace or virtual cluster again, so that you can actually access the application, a second later. 

That's very, very powerful that automated mode. But yeah, I completely agree like in production, you 

want to have like different auto scaling systems. You're not going to use sleep mode on production.

[00:12:57] JM: So the open source project that this functionality is based on is VCluster, correct?

[00:13:05] LG: VCluster, yeah, is the core for spinning up virtual clusters. It’s a certified Kubernetes 

distro. So it's like a distribution just like, I guess mini cube is a distribution, EKS, GKE, everybody 

creates their flavors. Rancher has their Rancher Kubernetes Engine, RKE, and we have VCluster, 

that's the only certified distribution for virtual clusters. So clusters that run inside of other cluster, that’s 

why we’re the only distribution that was able to do this and that's completely open source.

[00:13:37] JM: Hasn't there been other efforts at having virtualized Kubernetes clusters inside of 

another Kubernetes cluster?

[00:13:49] LG: Yeah, I think the biggest difference from what we're doing with VCluster and what other 

people have tried in the beginning, exploring this like kind of nested cluster approach is related to spin 

up these clusters with very minimal privileges. So what happens is, you're essentially just creating a 

single pod, single deployment and a service that you can connect to. So you have API server of 

© 2022 Software Engineering Daily 5



SED 1454 Transcript

Kubernetes, and a minimal control plane inside a container, and then you have our VCluster sinker in 

another container and they talk to each other. And then you talk to that virtualized API server.

The big difference to other solutions is how to actually – when I create containers with my virtual 

cluster, where they run, that is the biggest difference. There have been previous approaches where 

when you start a container in your virtual Kubernetes cluster, that container runs inside that API control 

container, and then you have a whole bunch of like issues regarding performance, having to run Docker

inside or making the Docker host on the node available to that particular container and that's all really 

tough. What we try to do is create virtual clusters with minimal privileges and minimal changes to your 

underlying cluster. And that's why VCluster is the only solution that works pretty much out of the box in 

all kinds of Kubernetes platforms, right?

So what are you having a localhost mini cube cluster, or you have a full-blown, highly-secure, air-

gapped cluster running in AWS. I’m very confident VCluster is going to work either way. It works in 

pretty much any Kubernetes cluster. Of course, there's some minimal requirements to it. We don't 

require you to make any changes to the underlying nodes, to the underlying cluster configuration. We 

don't even require a central control plane that the admin needs to deploy. If you today, already have 

access to an isolated namespace inside Kubernetes, you're not cluster admin, but you're able to spin 

up your application, then you're typically able to spin up a virtual cluster as well. That's the beauty of 

virtual clusters and our VCluster implementation of it.

[00:16:10] JM: What was your motivation for building Loft?

[00:16:15] LG: Yeah, that's very interesting. So we actually started out with a project called 

DeafSpace. That's an open source developer tool for Kubernetes. You can find DeafSpace to this age. 

It's available, the source code is available on GitHub. It’s Apache 2 licensed. It’s a client only tool that 

you download, and that essentially replaces your Docker Compose. It's like Docker Compose, but for 

Kubernetes. It allows you to run a single command to stand up a microservices application that consists

of 10 microservices, pulling them in from different Git repositories. And then establishing that hot 

reloading and fast debugging development workflow, with these microservices integration, testing them 

debugging them.

But instead of doing that with Docker, like Docker compose those locally, we do it with a Kubernetes 

cluster that may run locally or remote. That's kind of how we started out by building that project. We 

© 2022 Software Engineering Daily 6



SED 1454 Transcript

originally built that project in my previous company, when we were still doing custom programming 

services and consulting work in the Kubernetes space. We built a tool essentially for ourselves, and it 

got pretty popular, and we thought about, “Interesting.” If people are starting to use remote clusters, 

let's say they start using local clusters, they're going to run in a whole bunch of issues, because not 

everybody is a Kubernetes expert, right?

But if you're using remote clusters, it gets very expensive really quickly if you're handing out individual 

clusters to everybody, and you have central admins managing all these hundreds of clusters. And then 

we are thinking, “Okay, what's the right approach to share clusters and make these operations around 

self-servicing?” A lot of users that start using these new cloud native development tools like DeafSpace 

is, and there's a whole bunch of others, there's like Scaffold from Google. There’s another great one. 

And there's like hundreds of other tools popping up that you can use to really do Kubernetes native 

development, moving from the direct Java execution or from the Docker Compose workflow towards a 

more Kubernetes, more cloud native workflow. If you do that, you do have that challenge around 

managing that access and self-servicing all these users, and that's essentially when we started working

on this company, and we wanted to really solve this problem.

[00:18:38] JM: So another project that you're working on within Loft is jsPolicy, which is a policy 

engine. Is a policy engine necessary for making the Loft product that you've been describing so far?

[00:18:55] LG: Yeah, so policy is definitely an important part and admission control in general. 

Obviously, if you're looking at the policy space, workspace, open policy agent as the most established 

solution out there, the most advanced project out there, that we’re the earliest one in the space and it 

took quite a few years for the number two to appear, which is Kedano, and with jsPolicy, we created a 

third one now. It's definitely important to have policies in place. A lot of our customers that use Loft are 

using a policy agent, because the guardrails that we're putting in place are sufficient for a lot of things, 

but there are more complicated things that you want to ensure on top of that, that you can only do with 

admission control, and you need a framework to do that with.

So we've gotten a lot of questions around integrating open policy agent into Loft, but we've also – asd 

when we were speaking to customers, and we talked to over 100 companies that have started using 

our tooling at this point, we saw that there are some issues around writing these policies, maintaining 

these policies. And then quite frankly, just operating of policies, because it's such a large system, and if

you're just wanting some few additional guardrails in place, in your pre-prod environments, you may 

© 2022 Software Engineering Daily 7



SED 1454 Transcript

want something more lightweight and easier to maintain, easier to set up, easy to get started with. 

That's essentially why we started working on jsPolicy.

The idea was, essentially, “Hey, why are people using Ricoh, which is the language that old policy 

agent is using to define policies, when they could use a more popular and understandable language, 

like JavaScript?” I think one thing that we kind of leaned to as an example was actually NGINX’s kind of

history. NGINX had this extension module where you could write Lua code to extend custom 

functionality, custom routing, and things like that in NGINX. I was actually using that several years 

before, and it was a little bit of pain, because like Lua is obviously not the most common language and 

feels a little antiquated and inflexible this these days.

So they actually integrated JavaScript at some point and made it possible instead of using Lua to use 

JavaScript. There's like V8, which is Google's JavaScript execution engine, which runs in your Google 

Chrome and lots of other browsers and pretty much in a lot of environments that execute JavaScript. 

So it's very easy to run that. It's obviously battle tested, and highly optimized because they use in the 

browser, and when NGINX use JavaScript, and I was playing around with that, I'm like, “Oh, my gosh, 

the experience is so much better.” So, we were thinking, “Hey, can’t we do the same in a policy space? 

Can’t we create a project that is more lightweight?” JavaScript has an easy getting started path, but 

also makes it easier to maintain, and share policies, because there's already existing tooling and 

ecosystem in place, right?

You have like NPM, as a package manager. You have npm JS as a central repository, a lot of 

companies already have their internal NPM registry is where they can share packages with. So it 

makes it much, much easier to share policies when you're thinking about testing policies. There's so 

many testing, rock solid unit and integration testing tools in the JavaScript and extending to the 

TypeScript ecosystem as well. And then you get static typing as well. That's actually perfect to look 

something like this with JavaScript.

Although jsPolicy in itself, written in Go Lang, obviously, like everything in the Kubernetes space seems

to be, but the actual policies that you're writing, are written in JavaScript, and that's kind of what 

jsPolicy does. And jsPolicy is integrated in Loft, so it's for customers pretty much a no brainer to get 

started with adding policies. But of course, we still play very nicely with open policy agent, and if people

are already having hundreds of policies in Opa, there is no need for them to rewrite everything in 

jsPolicy. It’s just going to work out of the box in Loft as well.

© 2022 Software Engineering Daily 8



SED 1454 Transcript

[00:23:29] JM: Very cool. So can you talk more about what the setup involves for a user who's 

deploying the self-service namespaces, the ability to spin up these virtual namespaces across like a 

large enterprise?

[00:23:48] LG: Yeah, so the setup complexity really varies depending on how complicated you need it, 

how big your enterprise is, and how distributed for example, your teams are. In the very easiest case, 

let's say you're not even an enterprise, or let's say you're a startup, or you are an enterprise that just 

wants to run a POC with one of their R&D teams. The easiest setup is to just deploy Loft to a single 

cluster, and then make that very same cluster available to engineers. So you're running Loft alongside 

the workloads that your engineers are going to spin up. So you have a namespace that one is Loft, and 

then you have all these other namespaces that users are creating. And then you have virtual clusters 

potentially inside of these user created namespaces.

We do have a really nice CLI to deploy Loft, that you literally download. It’s like a single binary, you put 

it in your path and then you run Loft start, and all you need is a Kubernetes cluster. You have a cube 

context. So if you can run you know cube CTL get namespaces or cube CTL get pods, any of these 

commands, then you’re good to go. You run off start, it's going to investigate your cluster. So it's going 

to see, “Hey, is this a remote cluster? Is this a local cluster? Is it running in GKE? Does support load 

balancers?” It does a couple of these like preflight checks, and then it configures the values for hand 

deployment.

Of course, you can also deploy Loft directly via Helm, but it's usually easier to go through that Loft start 

command and beginning, because it helps you determine the right values to set things up, then deploys

the application, and then starts port forwarding. So you can immediately access the UI, login via the 

Loft CLI and get started. And then the next thing for you would be hooking up the domain, and then 

hooking up your authentication system, and then give other users access to the system, and let them 

explore it. And then more advanced scenarios, you typically don't want to have – you want to treat Loft 

more like a production service, Loft itself. So you want to separate it from these workloads. You 

typically don't want to have like, if you're a large enterprise, and you have like thousands of engineers 

that need access to Kubernetes and to Loft, then you typically run Loft as a production service, and you

want it to always be available, and you want to have monitoring and logging for it in place, and these 

workloads that engineers are spinning up, these femoral virtual clusters for CI/CD, these Deaf 

namespaces and engineers are debugging with, those things should run in separate clusters.

© 2022 Software Engineering Daily 9



SED 1454 Transcript

And then you deploy off this production service, and you're connecting 5, or 10, or 20 different other 

Kubernetes clusters, which are then supposed to be available for your engineers. In the most advanced

setups, we also support geographically distributed teams with a feature called Direct Cluster Endpoint. 

That feature is part of our enterprise offering. And what it essentially solves is latency issues for 

distributed teams. So, imagine you have an engineering team in the US and you have another 

engineering team in India, right? And you spin up a Kubernetes cluster to host your teams in the US 

and you spin up another Kubernetes cluster in India, for your teams in India, right? But Loft, itself, also 

needs to run somewhere, right?

So let's say Loft also runs in the US in your production cluster there, what would happen for your 

engineers in India, because Loft is kind of like an API gateway in a way. So when the engineers in India

want to talk to their cluster in India, the request first goes to Loft, which is in the US and then goes back

to the Kubernetes cluster, it says in India. Obviously, that's a round trip around the world and not, you 

know, very efficient, a lot of latency. So what Direct Cluster Endpoint allows you to do is when you 

enable this feature, we synchronize certain things into all of these connected clusters that you are 

managing with Loft, and that you make accessible for your engineers, and it connects your engineer 

directly with the cluster without having that round trip.

So your engineers in India, if they are working with the cluster in India, they would directly work with it 

and all the information about these users and their permissions would be kept in sync between the 

main Loft instance and that cluster in India. So the cluster in India can do the authentication, 

authorization, and all these guardrails that are in place. It can do these themselves without having to 

contact the central instance, which obviously reduces latency and also has a benefit regarding 

resilience of the entire system, because you really have like a very distributed setup for Loft. Even if 

one of your connected customers goes down, one of your central instance goes down, you'll still be 

able to use your existing cluster in India, for example. That's very, very powerful as well. That's the 

most advanced kind of set up for Loft.

But in the easiest case, it's really just downloading the binary, running Loft start, opening the UI, playing

around with it. You can even test Loft in a mini cube cluster, on a local host cluster. Obviously, you 

can't make it accessible for your fellow engineers. But it's a good way to kind of get started with things. 

We do have a feature called user impersonation. So even if you spin it up on your local laptop, in a 

local host Kubernetes cluster to test around with, you could create a demo user to test the permissions 

© 2022 Software Engineering Daily 10



SED 1454 Transcript

and the guardrails and then set some things up for that user, create the self-service experience, that 

these guardrails in place, and then impersonate the user and test that experience for that particular 

user. It's very powerful to kind of have this initial exploration with Loft.

[00:29:58] JM: What's your process for debugging Loft, given that there's a lot of edge cases that can 

arise when you're doing something as complicated as spinning up virtual namespaces?

[00:30:14] LG: Yeah, I think first and foremost, we're super accessible to our customers. So what we 

typically do with a lot of our customers is with all enterprise customers that allow that from their 

company policy, is we set up things like Select Connect, we are available to them to essentially debug 

issues with them. The cluster at this point is a very stable solution. So we don't get a lot of issues 

around virtual clusters not working. But if there are edge cases where there are maybe issues with 

scheduling workloads inside the virtual cluster, or you have things like – recently we had things like 

people want to use volume snapshots or pod disruption budgets, and VCluster was not quite supporting

them yet, in a way that these users needed, they can just open issues on GitHub as well, even if they're

just using the open source VCluster distribution.

We also have a public Slack channel. We’re very, very accessible on that end. In terms of debugging, it

can be tough sometimes when customers run into or users of the open source solution run into issues. 

Because Kubernetes in itself is so hard to debug a lot of times. When someone tells us, “Hey, we're 

trying to spin up this and the virtual cluster is not starting”, I would probably say, like, 70% of the time, it 

has not even to do anything with VCluster itself, rather, it has to do with the underlying Kubernetes 

cluster. Your volume can't be bound. You don't have dynamic provisioning for persistent volume set up.

It's really hard for users at this point to have that level of deep knowledge in Kubernetes to see, “Hey, 

why is this not working?” I think are some solutions in the space that kind of address that observability 

part and debugging your clusters and seeing what is not set up in a correct way. I think those solutions 

definitely deserve a lot of attention and credit in the future, because I see that as a – from our customer 

base, definitely, it's a challenging problem for a lot of folks.

Of course, we're pretty deep down in Kubernetes. So, if issues arise in our own development workflow, 

we're usually very quick at seeing what's going wrong here. But then, if you have a third party involved, 

we need to ask for a lot of logs and a lot of information about the cluster setup, before we can even 

make a guess about what could go wrong, just because Kubernetes has so many moving pieces. So 

yeah, debugging anything as Kubernetes is a challenge.

© 2022 Software Engineering Daily 11



SED 1454 Transcript

[00:32:47] JM: Is it important to instrument these clusters with observability agents and have good 

monitoring around them? Or are they mostly treated as indispensable and therefore not worth 

observing?

[00:33:04] LG: Yeah, I think there’s like two different levels. I think the typical, like production level, 

monitoring, alerting, and things like that, that can get critical as well in pre-production. When they're 

really switching over to cloud native development workflows, and they start using Kubernetes, in that 

day to day operations when they're building applications, it's very important not to block them, right? 

Because obviously, you want your engineers to be as productive as possible. So these clusters need to

be up and running. It's kind of like, imagine it like Cloud IDE, right? If you switched everything over to 

Cloud IDEs, and then your Cloud IDE is down for the day, nobody can program for a day, pretty much. I

mean, sure, they can set things up locally, again. But it will probably cost them like two or three hours 

or like half the day is gone by setting everything up locally, again.

So switching to a Cloud IDE, it's really important that Cloud IDE is always available and your 

repositories always spin up, and the same thing counts for what we're doing with Loft, right? These 

clusters, and the workloads and the virtual clusters and namespaces you're spinning up, are inherently 

ephemeral. But they become mission critical in a way. The underlying infrastructure hosting these 

ephemeral workloads, there should be monitoring, alerting, and observability in place for your IT teams 

that actually need to ensure they have like a service contract in the end with your developers, because 

your developers switched over to Kubernetes, switched on their local Docker-based workflow to remote

EKS cluster and expect these EKS clusters to be available.

One of the advantages is though, if you, let's say, since these applications should be spun up in a 

replicable fashion like really repeatable, so should be able to stand up your stack with a single 

command in a minute or two, right? If worst case, we've seen that recently read an AWS data zone 

goes down, and then that cluster is not available anymore, it should be very easy in Loft to just let the 

user access a second Kubernetes cluster that is running in a different AWS availability zone, or in a 

different region, so that your engineers can just spin up their workloads there again. I think that is the 

benefit of hosting ephemeral workloads versus being responsible for hosting actual production 

workloads. But yeah, similar thoughts around resilience, that you have in production as well. What 

happens if this zone goes down? We need to shift workloads over to this app or so, potentially.

© 2022 Software Engineering Daily 12



SED 1454 Transcript

[00:36:01] JM: There are these ephemeral environments for CI/CD and testing. But are there any 

production level use cases for ephemeral environments? Maybe like just rapid scalability of some kind 

of machine learning job or something like that?

[00:36:21] LG: Yeah, that's actually a very, very interesting question. So if you're thinking about virtual 

clusters in itself, what you can effectively do – so you can do two things in virtual clusters and 

production. And we've seen both explored by customers at this point. One is, you have these large, 

multitenant clusters, with lots of different workloads, and they're getting really complicated to manage, 

and they're really, like the API server is under fire. You’re having a lot of custom resources in 

Kubernetes. There are a lot of requests to the API server all the time, the controller manager is under 

high pressure. SED may even become a bottleneck, right? Everything is super critical.

What you can do with virtual clusters is you can create boundaries, and you can create that additional 

layer on top to kind of make the underlying cluster less under pressure, because 90% of the requests 

that happen inside the virtual cluster, remain inside the virtual cluster, is kind of like a VM on a physical 

machine, right? Certain things are shared, but other things are totally encapsulated. What happens with

the VCluster is it has its own API server and its own data store. It could be SED, it be Escalated, or 

MySQL, but it's separate from the underlying clusters at SED and underlying cluster at API server.

So if you can reduce, if you can take away 90% of the requests on the underlying cluster, the 

underlying cluster can be much dumber. And it means it can scale much further out, than it could 

without that kind of like – we’re effectively sharding that cluster in these mini virtual clusters running on 

top of it, and they can get bigger as well over time. But they're going to be much, much smaller than the

real underlying thing. I think that is one interesting part. And then the second part is what we already 

see people planning to publicly launch and put in production this year. We have two customers already 

working on this, is hosting customers, and let's say you are you have a managed service, you’re 

hosting an instance of your product for each one of your customers. You have two options of 

Kubernetes. Either you create separate Kubernetes clusters for each customer, which is really 

expensive, hard to manage, right? But obviously great from a security standpoint. Your customers 

entirely isolate it into separate Kubernetes clusters. You can change the version of Kubernetes 

independently, do upgrades independently. If something fails, it only fails for that particular cluster on 

that particular customer. But again, super expensive, really hard to manage.

© 2022 Software Engineering Daily 13



SED 1454 Transcript

If you have a multitenant cluster instead, then you typically use namespaces in Kubernetes, much, 

much cheaper, much, much more flexible, it's easy to onboard new customers, much, much quicker. 

But you have the challenge that when you're upgrading this cluster thing that's like super critical, you 

have 80 customers running in this cluster, or a thousand customers. And then when you're upgrading 

things, you're upgrading it for everybody. Really challenging. And it's really hard to isolate these 

customers from each other. If you're putting the VCluster as a layer in between and Loft helps you 

obviously to do that, then it's much safer to operate these different customers and the application you 

spin up for them, because they're running in a separate virtual cluster. Each one of these virtual cluster 

has its own API server.

So even if they would get full access to the API server by exploiting some bug in your application, that 

would still not reach the underlying cluster. If you're upgrading a virtual cluster, and something fails, it 

only affects that one particular virtual cluster and that one customer, rather than everybody. So you're 

kind of getting the best of both worlds. You have the benefit of this isolation and better security, and 

better encapsulation and separation of things. But at the same time, you're effectively running in the 

same Kubernetes cluster, in the same underlying infrastructure, and that can save a lot of cost and 

create like this dynamic environment that you may be looking for dynamically scaling up and down your

customers and really be very resource efficient. I think those are super interesting use cases in 

production.

Another interesting use case, you've seen a bit as well, and we're using it for our own product for this 

as well, is sales demos, right? So let's say a sales team just needs to spin up an instance of your 

application and demo it to the customer, maybe you want to give them access as a trial account or 

something like that. That's usually a pain and a burden on the engineering team to set it up for sales. 

With Loft, it's pretty straightforward. We have these virtual cluster and namespace templates. So you 

define a template, you pre equip it with data, you put your application in there, and then your sales 

team can effectively – you can put a nice UI for them on top of it as well. But you can also give them 

direct access to Loft and they do two clicks, the application spins up, they hit a URL, and they're ready 

to give that demo. That's a very interesting use case as well. I would call the production in a way, I 

guess it's a little bit production, but it's not as critical as your customer workloads. But I'm sure there's 

like hundreds of other cases that we haven't even explored. But those are the ones that we've kind of 

seen in our customer base so far. But again, we're just getting started. We’re on this for a little bit over 

a year, and there's so much more to do. We're just getting started in the space.

© 2022 Software Engineering Daily 14



SED 1454 Transcript

[00:42:12] JM: What's your vision for the future of the company?

[00:42:17] LG: I mean, obviously, it's exciting to build a quickly growing startup that is really put to use, 

product that is put to use by customers. I think we really want to be the leader for Kubernetes 

multitenancy, so we want to be one of the leading solutions in when it's about sharing clusters and 

sharing workloads, and making sure they're securely isolated. I think we're in a good path to become a 

leader in that space. And obviously, I see VCluster, as becoming the standard for spinning up virtual 

clusters in any Kubernetes environment.

Again, we talked about this at the beginning of the conversation, there are potentially so many other 

vendors that could integrate VCluster as an open source project into their products, and I would really 

be super excited to see that happening. I think being the leader for these two topics, multitenancy and 

virtual clusters, I think that's what we're out to do, really increasing that level of developer experience 

and self-service. A requirement for that is that multitenancy, and this level of virtualization is solved in a 

way and we want to be the essential building block for this.

[00:43:33] JM: Well, is there anything else you'd like to discuss that we haven't explored about Loft?

[00:43:40] LG: I think we talked about a whole bunch of different topics. I think we covered a lot of 

ground today. Maybe one thing that's interesting, and kind of upcoming, is we're actually launching a 

plugin system for VCluster to make it more extensible, and more flexible and customizable. So if you’re 

having use cases, and if you're trying the VCluster today, and you're saying, “Hey, what we said earlier,

volume snapshots are not covered in the future.” Again, we're trying to be a vendor that supports 

VCluster to become a standard solution, but we don't necessarily need to be the one that implements 

every use case of the plugin system.

If we don't support anything today, obviously, you can raise a PR and see if we want to incorporate it in 

the core. But if we can, or it's like something that maybe too far on the edge or too specific to your 

customer resource definitions, et cetera, then you'll be able to use that plugin system to create a plugin 

for VCluster. That's going to be the next level of extensibility for this virtualization layer. I think creating 

that standardized interface for extending for the virtual cluster should do and how it should behave and 

how it should launch workloads, that's something I'm super excited about. I can't wait to launch this, 

and yeah, that's going to come up in just a week or two.

© 2022 Software Engineering Daily 15



SED 1454 Transcript

[00:45:06] JM: Cool. Well, congratulations on all the development and I look forward to seeing the 

continued success of Loft.

[00:45:14] LG: Definitely. Thank you so much for having me on the show, Jeff. I hope to meet you in 

person one day, maybe at the Cube Con. Not sure if you're going to be there. I know things are kind of 

in the air right now with COVID Obviously being constantly changing the situation. But thank you so 

much for having me. It was a great pleasure chatting with you today.

[00:45:29] JM: Yeah, thank you so much.

[END]

© 2022 Software Engineering Daily 16


