SED 1274 Transcript

EPISODE 1274

[INTRODUCTION]

[00:00:00] CQ: Hello, I'm Corey Quinn, Chief Cloud Economist at The Duckbill Group. | also
host two podcasts myself; The AWS Morning Brief and Screaming in the Cloud, as well as write
the perennially snarky Last Week in AWS newsletter, and I'm taking over hosting duties for
Software Engineering Daily this week to take you on a tour of the cloud. Today, we're going to
talk a little bit about Azure. And when looking for someone to talk authoritatively about Azure,

you would be hard pressed to do better than Troy hunt.

[00:00:34] JM: A few announcements before we get started. One, if you like Clubhouse,
subscribe to the Club for Software Daily on Clubhouse. It's just Software Daily. And we'll be
doing some interesting Clubhouse sessions within the next few weeks. And two, if you're looking
for a job, we are hiring a variety of roles. We're looking for a social media manager. We're
looking for a graphic designer. And we're looking for writers. If you are interested in contributing
content to Software Engineering Daily, or even if you're a podcaster, and you're curious about
how to get involved, we are looking for people with interesting backgrounds who can contribute
to Software Engineering Daily. Again, mostly we're looking for social media help and design
help. But if you're a writer or a podcaster, we'd also love to hear from you. You can send me an
email with your resume, jeff@softwareengineeringdaily.com. That's

jeff@softwareengineeringdaily.com.

[INTERVIEW]

[00:01:37] CQ: Troy, thank you for joining me.

[00:01:39] TH: Hey, thank you very much for having me.

[00:01:42] CQ: You do an awful lot of things. | think the thing that everyone is most familiar with
is the Have | Been Pwned data breach repository, which sends us some of the email that we'd
like to receive the least. But you're also a Microsoft MVP, and a Microsoft Regional Director,

which in true cloud naming fashion, sounds like you work there. Except you don't.

© 2021 Software Engineering Daily 1

SED 1274 Transcript

[00:02:04] TH: | don’t work there. | don't direct anything. | don't have a region. Any more

questions, it is a little bit of a confusing title.

[00:02:12] CQ: How did you become the person that you are, for lack of a better term? You're
well known in the data breach reporting space. You're sort of at the forefront of a lot of infosec
discussions these days. But it's easy to fall into the trap of assuming that people have just

sprung fully formed from the forehead of some gods somewhere. What's your origin story?
g

[00:02:31] TH: Look, to be honest, it's a bit of trial and error and a little bit of falling into the pit
of success. | think it would be reasonable to say in some ways. Look, my background as a
software developer, | started building software for the web back in the early days in 95. | still got
my HTML for Dummies book on the shelf behind me, which is where it all started for me. And
then | went through a very sort of traditional, | guess a traditional role for those of us in the tech
era, went through .com times, which of course was a bit non-traditional in many different ways.
But then | went to work for Pfizer Pharmaceuticals. Now, of course, these days, everyone knows
who Pfizer is, because they're making a vaccine. Back then | used to say, “Hey, if you don't

know who Pfizer is. You know what Viagra is? Yeah, that's us.”

So | spent 14 years at Pfizer, originally, as a software developer. In fact, | was building classic
ASP, and then .net. And then | went into an architecture role, which was basically the thing you
do if you want your career to progress, rather than the thing you do, because you actually want
to do it. And in Pfizer world, what that meant for me is | looked after the Asia Pacific region, and
anything that we built software-wise in that region was something that | got involved in. And this
was now around the late noughties, | want to say, 2009-ish kind of era. And | really wanted to
drive us more towards modern compute paradigms. | know that’s a bit of a broad term, but |
really wanted to get us not just out of the on-prem-centric world, but | wanted to get us out of the
like virtual machine, run your own VPS environment. We'd have instances of IS up on someone
else's hosting. | wouldn't even call it cloud yet. And we'd have an instance of a database. And
these would be machines that required TLC. And | wanted to move us to cloud, but | wanted to

move us to cloud paradigms in cloud.

© 2021 Software Engineering Daily 2

SED 1274 Transcript

And | really remember that | think the point where it really clicked for me is we had a new
solution being built, and the vendor was like, “Alright, we want a virtual machine for it. And this is
just a website, right?” I'm like, “Well, why?” “Well, because that's what we always do.” | would

really like to push us down a PaaS route. | was very, very enthusiastic about PaaS.

And Have | Been Pwned was born pretty much in equal parts to be. Data breach service is
predictable, but also to demonstrate as Azure. And | just wanted to go and build something on
Azure, because | was now an architect. | wasn't getting to build stuff. And frankly | kind of miss
that. So | was like, “I'm going to build something on Azure. And I'm going to demonstrate how
this platform works. And | will use cloud paradigms such as an app service instance in Azure.” |
don't have my virtual machine. | just literally have a hosting service. So we use the database
service. | will use something really, really way out there. | will use a table stories to put my data

in rather than putting everything in a great big relational database.

And it's funny, like we're approaching eight years on now. And some of this is actually starting to
feel, “Oh, and in fact, a bunch of what | have replaced with newer cloud paradigms. But that was
the thing that drove me at the time. And through that those efforts, | managed to then drive a

bunch of Pfizer onto Azure and onto our platform as a service as well.

[00:05:45] CAQ: It's hard to find customers who are doing interesting things with Azure that aren't
exactly the opposite of what you just talked about. The idea of, “Yeah, I'm going to build this
virtual machine, just an extension of my data center.” It looks an awful lot like what | would build
in a physical facility, except now I'm not going to trip over a power cable and knock everything
down. | can pay people to do that at scale for me. It seems that the people | know who are
really, other than doing toy problems on top of Azure, are mostly the large blue chip companies
that tend to move slowly, because they have this risk aversion toward sizable sums of revenue,
“Yeah, we're going to throw it all away and build it from scratch again, because why not?”

doesn't seem to be something that large banks and insurance companies tend to buy us for.

You're sort of a shining example of using closed cloud native principles in a context where,
within Azure, it seems that there aren't a whole lot of notable case studies of similar folks doing
similar things. Do you feel like you're doing this alone? Or am | just completely looking in the

wrong place?

© 2021 Software Engineering Daily 3

SED 1274 Transcript

[00:06:45] TH: It's probably not the right question to ask me only insofar as because | travel in
circles, which are very Microsoft-centric. In a year, | do see other organizations doing various
things with Azure. But | also think if we sort of scroll back and we look at what drove me in that
direction and what might cause other organizations to take a more traditional approach, there

are a bunch of things working in my favor.

So one of the things working in my favor was | didn't have any money. Because | didn't have
any money, like | had to be really, really cost conscious. So | made decisions that were best
supported by new cloud paradigms that were available very, very cheaply, but required you to
write for that paradigm. So let's say table storage. Table storage was the single best decision |
made in the architecture Have | Been Pwned. And it's a very, very cheap, so far, in my
experience, infinitely scalable resource that is also very responsive. It does a lot of other things
terribly. If | wanted to join across tables, it's an absolute nightmare to do that. It's just for all

intents and purposes impractical.

Now the challenge | think that many traditional organizations have is they've got these
embedded processes and embedded expertise and they’re to reuse that across modern cloud
paradigms. And this goes back to the example before where this vendor just wanted to have a
virtual machine. And they wanted to put things on a SQL server running on a virtual machine.
And we would always sort of joke about. And it's funny, | haven't thought of it for quite a while
now. But it was always that old thing of, “Oh, if you want to store data, you will need a SQL
server database.” It's like that's a very, very powerful piece of equipment. Are you sure? Maybe
it should even just be like literally a text file on a file systems somewhere depending on what
your needs are. It’s like it's a bit of the old if all you have is a hammer, everything else looks like

a nail.
So I think the sort of incumbent organizations with incumbent software and incumbent skill sets
and thinking had a lot of trouble implementing these new paradigms. And | had the benefit of

just having a clean slate and frankly, the benefit of having curiosity as well.

[00:08:57] CQ: | hear you. As far as looking at something like a SQL server where it's great, |

need something that's incredibly powerful. I'm going to pay a license on a per core basis. And

© 2021 Software Engineering Daily 4

SED 1274 Transcript

that's great. And then you have on the other side of the world where my preferred database is,
of course, Amazon's Route 53, in which | misused DNS txt records and use it as a key value
store in exactly the wrong way. Now, sure, we all have our ridiculous peccadilloes around those
things. But it's an upgrade from my old approach of storing a SQLite file in S3, checking it out by
every function that was running it, making whatever changes it needed, and then putting it back
where it came from. Professional advice, never try this, because it ends exactly as poorly as you

would expect as soon as you're introduced to concurrency.

You've been around for a while, but one of the things that really, | think, put you on the map was
the early days of the Ashley Madison breach, where | believe that was the big watershed event
for you, or am | misremembering the breaches? Lord knows there have been so many, where

suddenly you were subject to massive spiky traffic.

[00:09:57] TH: Look, it's interesting, because when | look back, there's no sort of single one
incident for me which defines it. Look, if anything, it was probably January 2019, with the
Collection #1 data, which we might come back to a bit later. But | think the thing with Ashley
Madison was, yes, there were large volumes of traffic. But frankly, the all the memories of
Ashley Madison were more about the subject matter, and the sensitivity, and the outcomes of

that breach, the outcomes, in some cases being suicides. That's what really sticks in my mind.

I think traffic-wise, it's funny, actually, when it happened, this is a great sort of cloud advocacy
piece here. | was snowboarding with my kids. And I'm like down on the snow like — Yeah, we do
actually have snow in Australia for listeners. | was down at the snow in August 2015, enjoying
the time with the kids, and this whole thing broke. And | just remember like sitting on the chair,
going up the chairlift, taking my gloves off, pulling out my iPhone, and using RDP into a server
to then spin up new instances of cloud. And | was like, “How freaking cool is this?” I'm on a
chairlift in the snow, like literally spinning up the cloud in order to respond to, what at the time, |
think probably was unprecedented traffic. But it's like, “That's cool. | can just spin up more

instances. And it's all good.”

[00:11:13] CQ: Yeah, it's easy. Just throw more hardware at the problem. It goes away.

© 2021 Software Engineering Daily 5

SED 1274 Transcript

[00:11:17] TH: Yeah, exactly. And this is mostly good, mostly. Here's where I'm starting to
hesitate. Because what | found with Ashley Madison, and in fact, what's driven some of the
architectural design decisions subsequently, is as an enamored as | was with the whole PaaS
model, PaaS is still logical units of compute of a fixed size and a fixed cost. And you're just
adding these logical units. And in my mind | was like you're just adding blocks. It's like I'm
adding more blocks to the puzzle. And every block is the same size. Just a question of how
many blocks? How much of the block am | using? Do | need more blocks. And in fact, the
experiences that | was having was particularly with things like auto scale, like | was only getting
more blocks when the capacity the other blocks ran out. And that meant when the capacity ran

out.

[00:11:58] CQ: Yeah. Auto scaling is great. It gives you exact capacity you need 20 minutes

after you need it.

[00:12:03] TH: There’s a bang on, bang on. And this is why so much of the really critical stuff is
subsequently rolled over to functions and serverless. It's like, well, just take my money. Like take
as much as you need. Give me as much as | need. And have me no longer think about the

whole concept of these blocks.

[00:12:19] CQ: | love the concept behind serverless, where functionally what you're doing is
paying per request more or less. And it's a very tiny fraction of a penny per each request. But it
also leads to interesting economics insofar as it's not just, generally speaking, less expensive
than traditional approaches. But it also ties your model of economics back to whatever your
usage pattern looks like. So instead of being able to say, “Oh, it's going to cost me a fixed,”
whatever your data center [inaudible 00:12:43] bill would have been once upon a time.
Instead, it's, “Oh, every thousand users on the site is going to cost me X-dollars or X-cents,” or
whatever it is that it works out to. And at least for me, from my perspective, that's always turned

into something as a lot more predictable as a function of growth or as a function of traffic.

Now, some more traditional finance folks get very concerned because they want to be able to
predict to the dollars and cents. And, well, it's great that you saved us some money. But can you
just go ahead and build a data center, because we know what that's going to cost? It'll be fine.

Feels like that is not exactly a growth industry at the time of cloud these days.

© 2021 Software Engineering Daily 6

SED 1274 Transcript

[00:13:16] TH: No. It almost feels like a perverse incentive, doesn'tit? | know that accountants
are necessatry in life just like lawyers. | these people have to be there. But they sure make life
difficult sometimes. And that the challenge even back in the PaaS days where we'd say, “Look,
we're going to get this instance of PaaS. It's going to be on a on a logical app service. We can
actually have many, many instances of PaaS on this logical app service. And when we get to
capacity, we can just add more instances.” And they're like, “Well, what do you put in the
spreadsheet?” “Well, we don't know, because we're not there yet. If we're really successful,

there'll be more.” And they would struggle and struggle and struggle with this concept.

In fact, | remember it got so difficult at Pfizer that one of the guys on my team was literally
paying the Azure bill off his own credit card, which was around about $75 a month. So it wasn't
crazy. But it was so difficult to actually get costs reimbursed. We were saving something like 20

grand a year, and he had to wear the $75 a month on his own card.

[00:14:11] CQ: | think professional advice if you're listening to this, don't do that. Don't finance
your company. Money should really flow one direction. It's for them to you. But | digress. Please

continue.

[00:14:20] TH: You know what? I'm having flashbacks in recent times. Because | have an API
key that's $3.50 a month, which is just — Like | basically just pegged it at what does it cost to get
a latte at my local coffee shop. And the idea is to be just enough to keep the bad guys out. And
the amount of trouble | hear from people just trying to get their $3.50 a month reimburses have

gone like — This is why I'm independent. Part of the reason I'm independent.

[00:14:43] CQ: I'm right there with you. It's one of those, “Okay, you have a hard cap of $100,”
or whatever it is before you need to get two levels of approval in various companies. But then
you look around and you can call a meeting with how many people multiplied by their average
hourly rate means you spent how many tens of thousands of dollars today? It's cutting off one's

nose to spite one’s face.

© 2021 Software Engineering Daily 7

SED 1274 Transcript

[00:15:00] TH: | get these emails from people, and I'm just so tempted to go like, “You idiots.
What are you doing?” And then it's like, “This person was me before. Like | have sympathy for

you, mate. I'm really sorry, you're in this position.” But too bad, figure it out.

I think sort of going back to that serverless piece as well. One of the other interesting incentives
it creates is when you have such a direct correlation between the performance of the code that
you write and the cost that you incur. In my case, it's still just me sitting here running for it and
paying for it myself as well. That makes things really interesting because you really, really start
to critically analyze things not just from a performance for user experience perspective, but from
a performance for cost perspective. And | just love that direct correlation between how efficient

you can be and what cost you in terms of paying for the service.

[00:15:51] CQ: You were involved in Microsoft's ecosystem for a very long time by modern
cloud standards. Not to age you prematurely. And that means that you saw it back in the days
when it was still called Microsoft Cloud, if memory serves. It was the very early stumbling steps
that the entire industry was more or less making toward this idea of cloud computing. What was
that like? How did you see that evolve? And what did they get right? What did they miss?

[00:16:16] TH: So a fun story. | only recently had to retire an article of clothing that was still
branded Windows Azure. Now I'm going to say what this article of clothing. And just everyone
keep in mind, this means something different in Australia to what it does everywhere else. So |
have, or | had, Windows Azure thongs. Now depending on where you are, you might call them

flip flops, or other things that you —

[00:16:37] CQ: | was going to ask as my next point of disambiguation there.

[00:16:40] TH: You might call them flip flops or sandals or something. You put them on your
feet. But yeah, | actually had Windows Azure thongs. And every time I'd see them, | think back
to, “Remember when it was Windows Azure?”

My very early memories there, and we sort of come a little bit full circle here in terms of the
enterprise and their adoption of cloud, is that the very early offerings of Azure we're not

consistent with the existing offerings that we were used to from a web hosting perspective from

© 2021 Software Engineering Daily 8

SED 1274 Transcript

Microsoft. And what | mean by that is that we've had ISS for a long time, and you could create
websites, and you could create your classic ASP, or later your ASP.node apps, and you could
push them into the website, and they would run. And when we got those first offerings, and I'm
scratching my head, I'm trying to remember exactly what it was called. But it was not like lift and
shift sort of stuff. You couldn't just take your apps and run it there. You literally had to go, “Okay,
I'm going to create a brand new app.” However, | guess you could reuse some HTML and some
JavaScript. But basically, you're rewriting a bunch of server-side code, A. And then B, you're

working with a paradigm, which is completely unfamiliar to absolutely everybody.

So that was a barrier for us at Pfizer. We were literally just investing more in shared hosting.
Literally buy our own VPS and slice it up and put all our things on it. So that was keeping us
from moving. And Microsoft really had to get to the point where they're like, “Okay, well, this
thing that we've actually been making work for the last couple of decades, we're going to now
offer this on the cloud.” And that became the Azure App Service. And finally, we actually had the
ability to move over something that would work equally on our VPS environments as it was on

our new cloud paradigm environments.

[00:18:17] CQ: It sounds almost like you were stumbling over a lock-in story, which was not
around technical capability so much as it was the patterns of the people who were in place
working on these environments, when the only environment you've ever been exposed to looks
like a traditional data center running a three-tiered application. It's very challenging to move

beyond that as individuals and far more so as a group. How did you get there?

[00:18:39] TH: Well, and | mean, this is, | think, sort of a fascinating side of cloud. And it's very
easy for us — In fact, a fascinating sort of technology in general. It's very easy for us to get very,
very focused on the tech itself. So what does this tech do? What are the upsides? What are the
downsides? And in doing so, | feel that we often miss what are the human aspects of
implementing this. And what | mean by that for us at Pfizer is no one understood it. We didn't
have anyone in the organization that understood it. The vendors, which we would use didn't
understand it. So as good as the technology might have been from a pure tech perspective, if
we don't have people that can work with this and understand it, yeah, A, that's a big barrier. B, if
we start pushing them down that direction, we were starting to outsource everything to vendors.

That's another podcast there. We had problems with that. Do we want to be paying our vendors

© 2021 Software Engineering Daily 9

SED 1274 Transcript

to learn something new on our dime, and then also be paying them to actually build software on
the new thing as well? And then for the folks internally, it's like what is the right balance between
actually delivering working software and sending them off to learn something completely

unfamiliar?

And look, | think even now, that's still a problem. But | suspect that particularly as we've moved
away from more monolithic sort of structures to more augmented hybrid things made of many
parts and many different skill sets required to do it, and maybe it's not as much of a problem

now, but particularly going back really a decade and a half, that was a big challenge for us.

[00:20:08] CQ: It feels like the hardest part of shifting organizations, the technology is there,
whether we want to admit that or not. But the challenge, of course, is throwing away this, |
guess, “legacy”, 40 years of revenue generating things and effectively giving a lot of that over to
a cloud provider. Given the experiences that you've had, and the companies you've talked to,
and the types of environments you've been in, how do you, | guess, make the case or seen the
case made to go ahead and actively trust the third-party vendor to run the thing, which is really
what cloud has always been about? We've been lying and say, “Oh. No third-party vendor could
take me down.” Well, never mind the fact that you have a single power outage, a power line
coming into the building. But now it's more explicit, because when you're running it in someone

else's cloud environment, it's very clear that your uptime is in many respects in their hands.

[00:20:59] TH: | think you sort of touched on something really interesting there, which is around
the narrative. So what is the discussion we should be having about cloud? And one of my early
recollections was | would get asked, “Is the cloud secure?” And this is a very, very Boolean
question. Someone's looking for a yes or a no. And what I'd always sort of say to people is it's
differently secure. There are aspects of cloud, which | believe are going to be much more
secure than our traditional approach. One of those aspects is that if we go and put things in
Microsoft's App Service, it’s going to be run by very, very dedicated professionals. And there are
a lot of them, and they ever see each other's work. And they have all sorts of levels of
experience and processes that we just simply don't have even as one of the world's largest
companies, because, hey, we make Viagra. Like we don't make cloud. This is the difference in
our MOs.

© 2021 Software Engineering Daily 10

SED 1274 Transcript

And when it comes to things like tripping over the power cable, | mean, that's another great
example. When we talk about availability, there are differences in availability. You are at the
mercy, if you like, of the cloud provider in terms of what they do on their end and what
availability they managed to achieve. But if you're not, and you are running the whole thing on-
prem, tripping over the power cable? Are there power failures? And then are they redundant
power supply failures? And is there outage on internet connect — Like there's all these other

things that can go wrong?

And the discussion we got to have is to look at these two things next to each other and ask the
question of how are they different? And then collectively, is this something which tips the risk or
the ROI into one side or the other? As opposed to this sort of massively simplified Boolean

question of, “Should we go to cloud or not go to cloud? Or is it secure or not secure?”

[00:22:41] CQ: Well, the security point is really a great place to take this conversation, given
that you are, at least today, most broadly notable for the Have | Been Pwned service. It's
integrated into one password and a bunch of other services as well. It winds up effectively telling
you whatever email address you have given it. It has been shown up somewhere on a list of
breached credentials, which is really been a great story, for one, stop reusing passwords, folks.
And two, making sure that you're aware at least when these things happen. Do you find that the
security story where we're now going to effectively trust one of these third parties, in your case,

Azure, outweighs the security benefits of more or less running it yourself?

[00:23:21] TH: | think the security story, again, is just a different story, as opposed to there
being a clear tip of the balance one way or the other. But here's where | think cloud has created
a lot of risk. And it's not that Microsoft or Amazon or anyone else has weak implementations.
And let's say for argument's sake, people are continually breaking through the security of S3
storage and pulling all of your data out. That's not the problem. The problem is, is that all of
these organizations have made it so cheap and so easy to put huge amounts of information in

the cloud that anyone can do it. And it has never been cheaper and easier to screw it up.
This is why we had a few years ago, there like so many MongoDB instances, which were
publicly accessible without a password. We've had a lot of S3 buckets. We've had a lot of other

modern cloud paradigms that have had vulnerabilities, not because of — I'm going to rephrase it.

© 2021 Software Engineering Daily 11

SED 1274 Transcript

It’s not vulnerabilities. They've had data exposures, not because of vulnerabilities in the product
or in the hosting provider, but because any idiot can now get themselves cloud. | say that very,

very bluntly.

[00:24:31] CQ: It’s a single place to look for — When you're looking for exploits, it’s a single
giant target that has an awful lot of surface area. And you can start iterating through and
enumerating these things. And it's a different story as opposed to dealing with how everyone's
bespoke on-premises NAS or SAN has been configured. This is, well, you know where the

starting point is, the ending point is and you can iterate through incredibly rapidly.

[00:24:53] TH: Well, it does make it very easy. And, again, it's sort of like all these things about
cloud, which we love so much from a software development perspective can make it a
nightmare security-wise. It does have high availability. It does have high bandwidth. And a lot of
the time it is publicly-facing as well. So, well, that makes things easy, doesn't it? Like it makes it
easy to stand stuff up and build wonderful products. It makes it easy to expose it with insufficient

security configurations as well.

[00:25:20] CQ: There is, of course, the argument to be made as well, that one problem you
don't have to worry about, if you go into the whole shared responsibility model of how clouds
talk about security. Things like physical security are not a concern. There have been notable
breaches where data has been stolen from physical data centers by someone driving a truck
through a wall. | know it happened at least once in Chicago, for example. They grab a rack into

the back of the truck and peel out of there.

| get the sense that when you're dealing with a tier-one public cloud provider, that's not really a
threat vector anymore. | trust that Amazon and Microsoft and Google are not going to let hard
drives out of the facility once they have entered that facility without rendering them down into
pieces. | don't have to worry about people buying my old database drive on eBay and then

doing a recovery on it.
[00:26:06] TH: | don't think any of those things are realistic concerns with any of the major cloud
providers. | do think they're realistic concerns, especially with organizations running their own

intro. But | do wonder how often that actually makes an appearance in the conversation people

© 2021 Software Engineering Daily 12

SED 1274 Transcript

have around if it's time to go to the cloud or not. And even going to the cloud, we say that in a
very general sense as though it's some sort of bully in position. And, of course, it's much more

nuanced.

[00:26:33] CQ: Oh, yes, hybrid cloud is always a story of people who started moving to the
cloud and got stuck halfway along the way, or it's taking a lot longer than they thought. And at

some point, they had to call it something else.

[00:26:42] TH: Well, | think the premise of hybrid in so far is we don't have to do everything in
one go. We can do bits and pieces. And we can do just the things that make sense is great. |
think things like the recent Hafnium situation with Exchange. Keeping in mind, | don’t work for
Microsoft. | think that was a great advertisement for Office 365. I'm sure that didn't quite work it
out that way. But there must have been someone who sat there and went, “Oh, well, there's
probably going to be an upside to this. We might roll some more people over to cloud.” But
that's a great example of where we can take one part of an organization and we can move

something like exchange to the cloud, and perhaps keep a whole bunch of the other stuff local.

[00:27:21] CQ: Yeah, the idea of what workload makes sense to migrate versus which are
going to take a little bit longer. You did mention again that you don't work for Microsoft. So I'm
going to lean into that particular aspect. One of the things that | find that is a little odd to me is
everyone talks about, “Oh, AWS is number one. And Azure is number two,” when we look at the
Gartner surveys and the rest. That's great. It's fun to hear that in the abstract. But then | look
into my customer accounts, | look at what | see out there, and very few companies that I've
spoken to have ever had a serious conversation of, “Well, time to go to the cloud. Do we go to
Azure? Or do we go to AWS?” | do see some of those debates happening between GCP and
AWS much more frequently. But Azure has been one of those things that seems like it's a little
bit different than that.

[00:28:07] TH: Look, it's a good question. And | think maybe the observation here is that the
different cloud offerings in some cases are quite well aligned. And other cases tend to be much
more bespoke. | guess one thing that does separate Microsoft from the other players is that they
have such an incumbent audience that's running their operating systems internally within the

organization, obviously, especially on desktops, but as well as their server environments.

© 2021 Software Engineering Daily 13

SED 1274 Transcript

[00:28:30] CQ: Oh, they have a terrific ecosystem.

[00:28:32] TH: Yeah. Well, that's certainly got many decades of having done this, and that that's
an advantage that they have over some of the other providers. So there's, | guess, somewhat of
a more native fit there. But then we look at things like modern app services. And there's much
less incumbent use that's tied to a stack there. Overcoming, of course, that sort of natural
tendency to check everything on a SQL Server database that | think inevitably this is where
things do differentiate a bit. And just by virtue of the fact that when you go into most
organizations, you will log on to a Windows PC and authenticate to an active directory controller
somewhere gives Microsoft a foothold for parts of the service, which | don't think Amazon and

GCP even necessarily want to compete on.

[00:29:18] CQ: Different areas and different strengths. | mean, | use this line from time to time,
and people think that I'm trying to be intentionally insulting, and | assure you, I'm not. But one of
the big benefits that Microsoft has in a time of cloud is that they have 40 years of experience
apologizing to businesses for software failures. And you need that in cloud, because it's
computers. It's what they do. They break. There's no way around that. And they're very good at
articulating the value of, “Well, everything just fell on the floor, but it's okay,” to executive
stakeholders who are not themselves very often deep in the technical weeds. And | don't think

that that is a strength that is appreciated enough in the common discourse.

[00:29:59] TH: Yes. | mean, | think the way you put it in terms of having decades of experience
photos and people, it was very interesting. But, again, when you do look at availability, and you
do look at outages, and frankly, across all the major providers, it is rare enough that when it
happens, obviously, it's high impact. But when it happens, it's suddenly a major, major story,
“Look. How massive is it?” Let's even take someone like Netflix. Like how massive of a story is
that when Netflix is out particularly in these modern times when everyone's at home? So it
would be interesting to look at what sort of availability levels do we get now compared to, let's

say, pre-cloud days?

[00:30:39] CQ: | think on some level, there's also a bit of a transformation. If you go to Google

to search for something, and the site doesn't load, or your Netflix stream suddenly stops

© 2021 Software Engineering Daily 14

SED 1274 Transcript

streaming. | don't know about you, but my default assumption there is, “Oh, my WiFi went out.”
And | assume it's going to be a problem on my end on something either in the WiFi or what's
going on with my ISP, as opposed to the other side of things where it's, “Oh, no, no. It's fine.
Everything you're doing is great. But Netflix is down, or Google is down.” These things
effectively never happen anymore. That took a strange, | guess, pivot in some ways. But for
better or worse, it feels like we talk about utility computing. A lot of the services have gained that
aspect of utilities where whenever | flip a light switch or turn on a faucet, | don't wonder what's
going to happen next. It's expected if it ever doesn't happen. Well, wow! Something massive just
shifted.

[00:31:32] TH: Well, firstly, we're in Australia. So it's always our Internet. That's always the

problem down here.

[00:31:36] CQ: Yes. Insert joke of Telstra here.

[00:31:39] TH: Oh gee! Let's not go down that rabbit hole. But | think that whole sort of utility
view of cloud as well. | mean, this was — If we think back — yeah, let's think back maybe a
decade and a half. This was the value proposition. This is going to be a commodity that we turn
on and we use as much as we want. And just like a commaodity, such as electricity. | think we're
sort of now at this point, as you mentioned, where the expectation of always having availability
is now so high that suddenly we get a bit of a shock if it's not there. It's not the natural
assumption to blame the cloud if something isn't available. You start wondering if the PC is still

plugged in.

[00:32:19] CQ: Yeah. On some level, the failure mode is not, in some respects, running out of
capacity. It's “Huh. Wow. Okay. It's scaled up as | told it to, and it served all the traffic. And that's
awesome.” Especially in the serverless world where you have things like functions that just fire
off and scale infinitely, except there is a constraint, and that constraint is budget in many cases.
And one thing | will say that Azure your gets very right, that AWS gets hilariously wrong, is there
free tiers actually legitimately free. There are no stories that | have seen on Azure just saying,
“Oh, you're on a free tier as someone who's just learning how this stuff works. And, oh, here's a

surprise $7,000 bill.” But that happens almost monthly on an AWS basis that makes it into

© 2021 Software Engineering Daily 15

SED 1274 Transcript

public, never mind the private conversations. If I'm sitting in my dorm room trying to learn how

this stuff works for the first time, | don't want to accidentally have just bought beliefs.

[00:33:09] TH: But this is what concerns the accountants. So, | mean, we had that discussion a
bit earlier on about accountants want to sort of see fixed cost and predictability and all the rest
of it. And they see these stories. And this is what | think in many cases draw us and to say,
“Look, we need predictability.” And the real tragedy out of that is that you lose the opportunity to
realize so much of the benefits. | don't want to see people getting surprised bills. And | think that
there are a whole bunch of particularly UX-centric paradigms that we can use to avoid those
surprises. But | really want to see people only using what they need. | mean that's fantastic for

everything from the bottom line to the environment.

[00:33:47] CQ: Oh, it absolutely is. | think this is one of those areas that transcends whatever
cloud provider we're talking about at any given moment. The myth is that you pay only for what
you use. But in practice, you're paying for what you forget to turn off. Very often, one of our
cloud economists exploration voyages into a customer account, it's, “Okay, you have this extra
petabyte of this giant cluster sitting here in the developer environment. What happened?” Well,
it turned out the developer who spun that up or copy that data off no longer works at the
company. And cool. Yeah, there's no garbage collection in cloud accounts for better or worse.

These things will retire after you do. Left to their own devices.

[00:34:26] TH: Yeah, I'm sure there have been a few surprise bills there. Which then, of course,
brings us back to the discussion about this is one of the reasons organizations with their
procurement departments make this stuff so hard to try and get more control over things like

this?

[00:34:41] CQ: Oh, yes. And there's a security element to this too. If you aren't aware that these
things exist in your environment, but you're certainly paying for them, who's updating them?
Who's validating that their security posture and data accesses are still within bounds of what
they should be? And on some level, with at least the reason that | focus on, the economic side,
instead of the security side, is that no one calls me at three in the morning freaking out about a
cloud bill most of the time. That is strictly a business hours problem, whereas security is the

exact opposite of that. And, frankly, | enjoy getting a good night's sleep. Though, now that | have

© 2021 Software Engineering Daily 16

SED 1274 Transcript

a seven month old, | used to enjoy having a good night's sleep. Now | just lie there and wait for

the next screaming from one side to the other.

[00:35:22] TH: | hear you. | hear you. I've been there. Understand.

[00:35:25] CQ: Now, it's a hard problem to solve for. | don't know what the right answers are. |
do think that Azure was something that was, to be direct, a little bit of a joke five or six years
ago. | don't think it is nearly as laughable now as it was then, especially when we start looking at
the broader Microsoft ecosystem. | think that done right, the future of cloud is really Microsoft's
to lose. With GitHub being the de facto answer for everyone who keeps their code and VSCode
being what people are learning to write within for the first time, it really seems that they're just a
deploy to Azure button click away from effectively owning the future. But they need to shore up
some of their platform fundamentals first. And if they wait too long, the opportunity passes. The
bias of timing is super critical here. But | am very bullish on the future of Microsoft and cloud.
And for someone who grew up hating Microsoft from the open source side of the world, they've

turned new corner, definitely. It feels ridiculous to hold that against them now 20 years later.

[00:36:25] TH: Did you use to spell Microsoft with the dollar sign?

[00:36:27] CQ: | was never quite that far gone just because it seemed like — That's a little too
edgy in my parents’ basement style. | prefer to be a little bit more eloquent, as far as crapping
on large companies, especially these days, where crapping on large companies seems to be my

stock and trade.

[00:36:42] TH: | think what's sort of interesting there with the GitHub observation as well is that
the entire ecosystem around cloud has expanded so much. | mean, if | get back even to those
early days of Have | Been Pwned, it was very much around, “Look, there is platform as a
service. And you can put your things here.” You build them all locally and you publish them up
very often in a fairly manual process. But now there is so much other stuff surrounding it. And if
I'm honest, there are all these terms that | see popping up as, “Oh, well. | was sleeping when
that — How did | miss that thing?” There is so much periphery around the process of building

and deploying and managing software over and above the software itself. | mean, | find that

© 2021 Software Engineering Daily 17

SED 1274 Transcript

both fascinating. If I'm honest, a little bit scary, because | start to realize I'm missing a bunch of
stuff.

[00:37:31] CQ: Yeah, and that's the problem too, is watching the surface area expanded
everything. Where we talk about, “Oh, only =" What is it? 20% of application workloads have
moved into the cloud. Well, we kind of have a lot. That percentage has gotten relatively large,
especially in light of how big that pie has gotten. And it feels like everything is exploding out
geometrically. Who can say that they're an expert on all things cloud or in all things one

provider?

[00:37:58] TH: Normally, very self-ingratiating people. | would say it. Hey, maybe that's an age
or experience thing as well. | find myself being much more comfortable these days for saying, “I
don't know. | don't know —". To be honest, even the way I'm deploying at the moment at GitHub
into Azure, I'm pretty sure I'm not doing it the right way. And I'm okay saying that. But this is sort
of part of the learning experience too. And what | still find really good fun even now is people will
work it out. I'm in my mid-40s. | still really enjoy being able to sit down and learn something
completely new that | just haven't seen before. And there're so many opportunities to do that. So

| could look at it as overwhelming. | could say, “Hey, what a cool time, right?”

[00:38:41] CQ: You say that you're convinced you're not doing the deployment right from

GitHub to Azure. | don't think I've ever met anyone who has said that, “Oh, yeah, the way that
we take our code and deploy it is spot on great.” Everyone says what you just said. Where I'm
sure I'm not doing it right, but it kind of gets there in one piece the way | intended to. So knock

on wood and hope it doesn't break. May | ask what you're doing?

[00:39:05] TH: Sure. So there're different services within Azure that I'm using. But if you pick,
say, the App Service, which is what runs the haveibeenpwned.com website, when you first learn
that front page, it's using the Kudu service that runs on the app service environment to grab
check-ins in GitHub, pull the code, compile it, deploy it, and it deploys it to a staging

environment. And then it automatically swaps slots between staging and production.

Now that is like literally doing the compilation on the app service environment. This is something

that | could be using — | think | can use GitHub pipelines or Azure. | don’t even know what the

© 2021 Software Engineering Daily 18

SED 1274 Transcript

proper name is. It's where | am at the moment. | could be doing it in an external environment
and then pushing in that compiled code. And then if we go on — I’'m even trying to remember
how I'm deploying functions. | think it's the same way. I'd have to go back and check my

configuration, because | don't think I've ever deployed that for like a year or something.

| know that — And I’'m like literally airing on my dirty laundry here. But | know I'm at a point at the
moment where it's like | would have to think very carefully before doing a deployment of a lot of
things, which | really don't want. Because | want to have this sort of laissez faire attitude of
being able to, “Y'all, | just run deployments whenever. Everything should be stable and
predictable and repeatable.” But | think the reality of it is, particularly when you're a one man
band in this case, as time goes by, you end up a little bit scared to actually touch the working

things.

[00:40:34] CQ: Oh, my stars. Yes, the things that are working. And once you've haven't touched
it for three to six months, forget it. Completely forget it. It may as well have been written by
someone else. Like, before this recording, | spent an hour or two working on some old legacy
code to extend it in some interesting ways. And oh my God! Previous me was the worst

developer on the planet.

[00:40:53] TH: Well, | think, at least in my situation here with Have | Been Pwned, it's like what
happens if it stops working for a while? It doesn't really matter. Like it will come back up. There's
sort of bits of it I'm a little bit more worried about things like the pwned password service, where
there's just like thousands and thousands of services out there doing password checks on like
login or registration. If that went down, I'd be a little bit more upset about it. But, then again, so
what am | going to do? Like refund the free money that they're paying in order to use the

service? So, look, | just do my best. And it usually works.

[00:41:29] CQ: For better or worse, it seems to have worked out for you folks. For what it's
worth, I've never tried to pull up Have | Been Pwned and found it down. And | think that that's
something that also gets as people lose sight of it, where if a customer doesn't try to hit your
site, or a user has been trying to access your site during a period where you've taken an

outage. Where you really down? It's one of those questions for the ages.

© 2021 Software Engineering Daily 19

SED 1274 Transcript

[00:41:52] TH: Look, there's also — | keep coming back to like these middle ground positions,
which sounds a little bit evasive at times. But it's not always up or down. There are some times
where there are bits that just don't work as well. So one of the things that's worked exceptionally
well for me is CloudFlare. So it's very hard to talk about cloud and not include the role that
CloudFlare has played with Have | Been Pwned. So when | talk about something like pwned
passwords, in fact, | was just pulling the stats here before. So this is the k-anonymity-based
model that allows you to see if a password is appeared in a database without actually sending
the password. So if | look at, say — | had what | think is probably the biggest day yet the other
day. We had 36.85 million requests in a day to that service, which is really, really cool. I'm

getting close to a billion a month at the moment actually.

Now, of the 36.85 million requests, CloudFlare served 36.81 million from cache. Now, might
there have been an outage at the origin server at the time? Possibly. But we've managed to
reduce the risk of anyone actually experiencing an outage by literally distributing around
hundreds of edge nodes of CloudFlare around the world, which is great. And now in just the
same way, the front page of Have | Been Pwned is really heavily cased at CloudFlare. So even
if we have a situation where, let's say, the domain search feature at the moment still runs on the
app service, and particularly for larger domains, it can become quite slow, it can cause the app
service to scale, it can lead to timeouts and unavailability of that particular service. But the front
page, it's sort of the same app service, gets cached at CloudFlare. And then when you literally
type your email address in and that search box and click search, that goes to a functions API.
So it doesn't hit the app service. So they can be bits of the service that are slow, or even out

completely. And there are other bits of the service that are just performing beautifully.

[00:43:49] CQ: It's a distributed systems problem for better or worse, a small toy site for lack of
a better term, because this architecturally, one person feels it. It feels similar in some aspects, at
least spiritually to a toy site. Even in these relatively small scale environments, it turns into a
distributed systems problem, where increasingly it's not a question of is the site down? But
rather, how down is it at any given point in time? CloudFlare’s various edge locations across the
world, a couple 100 of those. it's a near certainty that at any given point, at least one of them
might probably be having a problem of some sort. But how can you see it? How can you know?
And this is, | think, where the whole observability world starts to look at these things and pop-up

with a bunch of vendor-provided solutions.

© 2021 Software Engineering Daily 20

SED 1274 Transcript

[00:44:33] TH: Well, the question then, of course, is that that scenario that you've painted
earlier on where something's not responding, and you immediately sort of blame your own
internet connection, that then, of course, makes things very nuanced, where we now moved
from the point where we had a very small number of closely physically related dependencies,
and things that could go wrong. To now, we have got stuff all over the place. There are a lot of
different places that stuff can start to get wrong. And we get higher availability and all sorts of
other funky things that come with that as well. But when we get to the point of like trying to
figure out where is the problem now, that does make for much more interesting troubleshooting

than what | did in the past.

[00:45:15] CQ: | will say that for better or worse finding how — Find out where the issue is when
you have five or six functions talking to one another and you wire these things together has
always been, | guess, the big sticking point for me, tracing claims to be able to solve this. But at
the same time, instrumenting applications for distributed tracing is often a bit of a heavy lift. It

turns every outage a murder mystery though. So there is that

[00:45:38] TH: | had one just last week, someone who is using one of the services, which has
an auth layer around it. Said, “Look, the querying an email address.” So there're some
enterprisey services where you can query an email address by hash prefix using a k-anonymity
model. And they said, “When we're querying this very occasionally with the correct API key,
we're getting back 403.” And I'm like, “Oh gee! Where do | even begin with this? Does it happen
all the time? Does it happen close to —” And I'm thinking, “Is at CloudFlare? Is it Azure? Is it their
app services? Is it the function? Is it the underlying data?” And we kind of went round around
over a period of weeks because it was extremely rare. Until we got to the point where they went,
“Oh, we found the problem. It’s our code.” Troubleshooting this stuff is now becoming so much
more complex that even when it’s at their end, it can actually be quite difficult to get to the

bottom of it.
[00:46:36] CQ: It's one of those areas where, for better or worse, it feels like if you're holding

still in technology, that events can easily outpace you. As someone who started off working in

the hands-on keyboard sysadmin style role, what's your impression of how Azure has

© 2021 Software Engineering Daily 21

SED 1274 Transcript

progressed? Does that person still have a clear path forward? Or is it time for some serious

upscaling?

[00:46:57] TH: | think the constant challenge with Azure and probably with the other cloud
platforms as well, is that there is constantly so much new stuff. So | used to joke. | mean,
sometimes | do a conference talk. Back in the days when we used to stand in front of people
and talk, and | do a bunch of live demos, and | pull up the Azure dashboard. And I'd literally look
up at the big screen. I'm like, “Ah, that wasn't there yesterday. | wonder what that is? That's

something new.”

And | think the challenge that we've got here is that there's so much constant innovation with
new paradigms that are wonderful and are doing cool stuff. But you end up with it's almost like
this mental weight of, “Geez! Look at all the stuff here that | don't know, that | don't understand.
What does that do? Could that do things better than what I'm doing at the moment? Am |
missing out by not using this new thing?” | think that that's just an inescapable challenge. And
frankly, for me, | just gotten to the point where | was, “Ah! It all works pretty well at the moment.”
If I have to go in and learn something new, then I'll do that. But | just need to accept that | simply

cannot stay on top of all of the new things.
[00:47:59] CQ: The idea of just-in-time-learning. On some level, it's important to be open to the
idea of learning new things and not the easy grudge of, “Oh, I'm going to just crap all over

anything that doesn't tie directly into my view of the future.”

[00:48:11] TH: And that brings us back to that original sort of enterprisey position of, “We would

like the VPS, because this is what we understand. Please give me my server now.”
[00:48:20] CQ: And it's even harder to fight that tide when you have 5000 engineers working at
a shop who would all have to be upscaled. But if they all know how to work with this in the

legacy paradigm, it's hard to say no sometimes.

[00:48:31] TH: That's true.

© 2021 Software Engineering Daily 22

SED 1274 Transcript

[00:48:32] CQ: Thank you so much for taking the time to suffer my slings, arrows and strange
Azure questions. If people want to hear more about what you're up to and how you're thinking

about these things, where can they find you?

[00:48:41] TH: Troyhun.com, or Twitter @troyhunt. Pretty much everything starts from one of
those places.

[00:48:46] CQ: Excellent. | will of course toss links to that in the show notes. This ends today's
tour of the cloud. If you enjoyed this podcast, follow me on twitter @quinnypig. And, of course,
head on over to lastweekinaws.com and subscribe to hear more from me on my podcasts, The
AWS Morning Brief and Screaming in the Cloud, and of course the snarky Last Week in AWS

newsletter.

[END]

© 2021 Software Engineering Daily 23

