
SED 1207 Transcript 

EPISODE 1207 

 

[INTRODUCTION] 

 

[00:00:00] JM: In the past several years Kubernetes has become the de facto standard for 

orchestrating containerized stateless applications. Tools such as stateful sets and persistent 

volumes have helped developers build stateful applications on Kubernetes. But this can quickly 

become difficult to manage as in application scales. Tasks such as machine learning, 

distributed AI and big data analytics often require a distributed application to maintain some 

sort of state across services. Kubedirector is an open source controller that helps streamline 

the deployment and management of complex, stateful, scale out application clusters on 

Kubernetes. Kubedirector provides an application agnostic deployment pattern and enables 

developers to run non-cloud stateful applications on Kubernetes without modifying the code. 

Kubedirector is part of a larger project called BlueK8s, which aims to bring enterprise-level 

capabilities for distributed stateful applications to Kubernetes.  

 

Kartik Mathur is an engineer at HPE Developer, an open source initiative within 

Hewlett-Packard Enterprise. HPE is an enterprise contributor to the Kubedirector open source 

community. Kartik previously worked as a senior software engineer at BlueData, which created 

the Kubedirector project before its acquisition by HPE. Kartik joins the show today to talk 

about why state is important for big data and machine learning applications. How Kubedirector 

can help manage the complexity of stateful applications and what's next for the BlueK8s 

project as a whole.  

 

[INTERVIEW] 

 

[00:01:25] JM: Kartik, welcome to the show. 

 

[00:01:28] KM: Hey. Thanks, Jeff. 

 

© 2021 Software Engineering Daily 1 



SED 1207 Transcript 

[00:01:30] JM: We've done many shows on Kubernetes and Kubernetes applications. Can you 

define the difference between a stateless and a stateful application?  

 

[00:01:39] KM: Right. So let's dig into an example, right? A stateless is your typical like web 

server, which does not carry and any state in itself, right? Like a good analogy would be 

stateless would be like a cattle, right? You can replace one with another. While a stateful is 

more of a pet, right? Having its own character. So it's carrying a state in itself the services or 

what's running inside.  

 

[00:02:06] JM: And what are the difficulties of managing stateful applications? 

 

[00:02:10] KM: The difficulty is for a stateful application there are interdependencies between 

the services. If you take an example of Kubernetes in a microservices architecture, if the 

applications or the services are stateful, they are interdependent. So the pod migration and 

stuff becomes extremely complicated because they are stateful, they're carrying states. So you 

cannot just replace if a host goes down. So that's kind of – It really complicates the 

orchestration. 

 

[00:02:40] JM: What are the potential solutions for that? 

 

[00:02:44] KM: For the stateful. So one of the solution that we are proposing here is using this 

operator called Kubedirector, right? So an operator is like the Kubernetes way of deploying 

applications. So in a typical world an application developer would have to write an operator for 

their application. What we are proposing is like a generic operator called Kubedirector. And 

with Kubedirector we are trying to take care of these stateful sort of applications using some of 

the hooks that we provide and some of the metadata, which gives you state of the cluster to 

handle state for application. And what we are saying is this is like a generic operator. So any 

applications built on top of Kubedirector can be stateful and it can utilize those hooks. Without 

Kubedirector, you would have to write your own sort of operator for your application and kind 

of duplicate the work across application.  

 

© 2021 Software Engineering Daily 2 



SED 1207 Transcript 

[00:03:42] JM: So let's say I’m running an application like a large multiplayer game. What kinds 

of problems could I experience if my game is not properly architected in a stateful fashion?  

 

[00:03:56] KM: Yeah. So for example, the biggest one would be failures, right? Or if you lose 

connectivity between services running on different sort of pods. So in that case, it becomes 

extremely hard for the game to continue to function if your services or pods are going down. If 

they are stateless, then Kubernetes out of the box just bring up the pod on another host. But in 

the stateful, if it is backed by some state, it becomes extremely complicated to handle those 

scenarios. 

 

[00:04:27] JM: Now let's say I was trying to address this problem with Kubedirector. How 

would the failures be managed in a way that could be recovered from?  

 

[00:04:39] KM: Right. So what Kubedirector does, it gives you, A, some life cycle hooks. And 

second, it maintains metadata or the entire cluster view inside every pod on Kubernetes and it 

is constantly reacting to the change. So as your cluster is evolving or things are very 

dynamically changing, this metadata is constantly updated inside the pods. And then we have 

some lifecycle hooks which tells you for a given pod what has happened. Some pod has 

rebooted or somebody is trying to scale out the cluster or somebody's trying to shrink the 

cluster. So how do you – Using those hooks, then you can reconfigure your service. That's kind 

of how we're trying to solve it. 

 

[00:05:27] JM: Let's take this from a top-down view and just cover a little bit about what a 

custom controller actually is before we discuss what Kubedirector is doing. Can you explain 

what a custom controller does? 

 

[00:05:40] KM: Yeah. So custom controller is a design pattern, which is becoming extremely 

popular in Kubernetes world. On a very high-level it is just constantly watching at a given 

resource, right? And as the resource is changing, it gives you then some hooks so that you can 

react to the change. For an application specific custom controller, all that intelligence is baked 

as part of the custom controller or the whole thing is called as an operator. With Kubedirector, 

© 2021 Software Engineering Daily 3 



SED 1207 Transcript 

we have sort of taken care of all the boilerplate things for you, right? This is one custom 

controller and then you can build applications on top of this and we abstract a lot of the things. 

 

[00:06:27] JM: Tell me a little bit more about the life cycle of what happens with Kubedirector. 

So if I’m trying to build an application with Kubedirector, how is the custom controller 

functioning? 

 

[00:06:42] KM: Right. So with Kubedirectory what we are proposing is – So with custom 

controller there is a thing called custom resource, right? So custom controller basically extends 

the API extensions of the Kubernetes. Basically it makes your new resource native to 

Kubernetes and then it watches and then it reacts to the change. And then you also get the 

APIs to query what's happening with your resource. So with Kubedirector we are proposing a 

generic kind of a custom resource. So every application will be utilizing or piggybacking on this 

custom resource. So if you just do a get on this custom resource, you’ll get all the applications 

built using Kubedirector.  

 

[00:07:29] JM: And can you say more about what else I would do with those resources? Okay. 

So let's say I’ve got a Kubedirector instance and I have set it up and I’ve got a custom 

resource. What am I doing with those custom resources? 

 

[00:07:47] KM: So this custom resource, basically all the expressiveness for a given 

application is captured in this custom resource. So like what is the hierarchy for your 

application? We divided something called as roles, right? So in a complex application there are 

a bunch of roles. And then every role can have one or more kind of pod running within it. So 

the structure of all your application is kind of in this custom resource way that Kubedirector 

defines while the application logic is kind of injected by Kubedirector. So when you kind of built 

an application using this custom resource, you tell it, “What is the orchestration package for 

it?” And that is injected by Kubedirector when the pod comes up. And that kind of do the 

actual orchestration or configuration of the services inside.  

 

© 2021 Software Engineering Daily 4 



SED 1207 Transcript 

[00:08:40] JM: Can you generalize to the types of applications that Kubedirector would help 

solve a problem for? 

 

[00:08:49] KM: So we are trying to solve the problem of sort of a legacy kind of application. 

But in theory, anything that could be containerized you could convert it into a Kubedirector 

way. So basically you follow the custom resource or you follow the examples from the catalog 

how to define your application. What role should it be? What role has what services and what 

is the cardinality for every role? And then basically you also give the configuration layer to 

every role, which configures once the pod comes up. So in short, the answer is uh anything 

that could be containerized you could create a Kubedirector application out of it.And we have – 

Sorry to cut you. But we have tried this for most of the legacy application that we had in our 

catalog prior to Kubedirector like big data applications, Hadoop, Spark or database systems. 

And now we are moving with the machine learning sort of application with Jupyter Notebook or 

training cluster or deployment clusters.  

 

[00:09:53] JM: And what has been your experience using Kubedirector for those big data 

projects? 

 

[00:10:00] KM: Initially it was sort of very kind of limiting in terms of what for a stateful 

application to correctly configure it to even handle day two operations. But with Kubedirector, 

as things are evolving, we are continuing to add new features and new hooks. And with those 

we are expanding our catalogue of applications. So I think we have kind of stabilized a lot of 

these legacy applications with the features that we already have along with the new features 

that we are constantly adding to support legacy as well as microservices kind of applications. 

 

[00:10:42] JM: You work at HPE. Why did it make sense for Kubedirector to come out of HPE?  

 

[00:10:47] KM: Yeah, that's a great question. At HPE, currently I’m part of a group called 

Ezmeral, right? So this Exmeral of today, if we go a little bit of history, basically two startups 

that came together, which HPE acquired. One is BlueData and the second one is MapR. And 

this platform that I work for, Ezmeral, was part of the BlueData platform. And BlueData was a 

© 2021 Software Engineering Daily 5 



SED 1207 Transcript 

container orchestration sort of a platform. So basically we are applying the same knowledge 

that we kind of gained with our experience at BlueData and try to port it on top of Kubernetes 

on Exmeral container platform. And that's how Kubedirector came into picture so that we 

could apply whatever our learnings was to orchestrate these containerized application on top 

of Kubernetes. And that's when we started this project and thought of giving it back to the 

community and open sourced it. 

 

[00:11:48] JM: So you gave the example of these big data projects. There have been other 

efforts to run Hadoop or Spark on Kubernetes. How does Kubedirector's functionality compare 

to just the normal versions of Hadoop or Spark running on Kubernetes? 

 

[00:12:06] KM: Right. So if you want to run Hadoop or Spark you either have to write an 

operator, like I said before, for whatever application or for Spark or for Hadoop. With 

Kubedirector we are saying that you don't have to write an operator. You can utilize 

Kubedirector. Follow you know the custom resource and then define your application, the 

Hadoop entire eco system, which could be really complex because it has so many 

interdependent services.  

 

So once you define in the Kubedirector way of expressing an application, you get all the 

benefits of Kubedirector without writing an operator. In Hadoop, there are so many services. 

Usually there are different operators for different services, and you can have so many operators 

to manage, which could be a headache in itself. So what we are saying that you don't need so 

many operators. You can just utilize Kubedirector as one operator and build applications on 

top of that. And it also gives you a very kind of consistent model because your every 

application is basically of a type Kubedirector app. So your client could be pretty lean.  

 

[00:13:22] JM: Yeah, that makes a lot of sense. Now can you talk through the engineering of 

Kubedirector? What were some of the most difficult engineering problems in building it? 

 

[00:13:33] KM: So when we were starting Kubedirector, the whole operator concept itself was 

pretty new. The operator SDK, which is the SDK required to build an operator was still in its 

© 2021 Software Engineering Daily 6 



SED 1207 Transcript 

early phase. So we had to go through that learning. And then a lot of the ideas that we had 

how to translate that on Kubernetes in an operator way, that was sort of challenging. And we 

are not there yet, but we are constantly evolving. And as we are getting more and more 

contribution, I think we are kind of stabilizing things. It's still not 1.0. So we are still I would say 

in our early phase. But there are a lot of difficult problems that we have solved and there are a 

lot of difficult things that still needs to be solved.  

 

So like in a dynamic kind of an enterprise environment, you have a lot of these interdependent 

applications. So we talked about in an application you have different services which are 

dependent on each other. You could also have like different applications dependent on each 

other or connected to each other. So we added features in Kubedirector to make that happen 

so that if application A depends on something that application B is doing, how to tie them 

together. And then getting more applications in the mix to build sort of a pipeline, and that's 

what we utilize to build sort of a machine learning pipeline, which we are constantly evolving by 

adding new and new Kubedirector applications. 

 

[00:15:03] JM: And so just to emphasize, what is the value that you've gotten out of using 

Kubedirector for that machine learning pipeline? 

 

[00:15:11] KM: One thing is like either you write operators or you bring a Helm chart in that it 

will become a very heterogeneous sort of environment. With Kubedirector, your applications 

are all of one type. So it's easier to tie them together and to write lines to that. Also if you have 

different operators, it becomes a huge overhead in terms of the resources also to have so 

many operational parts running and also to keep up with these open source operators. So with 

Kubedirector, there is only one operator, but your applications can kind of asynchronously 

change and grow and evolve. So I think this really expedites the process of getting more and 

more things in the mix. 

 

[00:15:59] JM: And what programming language was used to build Kubedirector? 

 

© 2021 Software Engineering Daily 7 



SED 1207 Transcript 

[00:16:04] KM: So it is Go lang. I think most of the operators are built in Go lang. The initial 

days, Go lang was the only way to write an operator. I think now they have kind of extended 

that to other languages. But Kubedirector is written in Go lang. 

 

[00:16:18] JM: Gotcha. And Kubedirector is part of a broader open source initiative called 

BlueK8s. Can you elaborate on this initiative and the goals and the current progress?  

 

[00:16:30] KM: Right. So like I said, we are still in the early phase, and Kubedirector is sort of 

the first project like a serious attempt to eventually take it to some level or even incubate it in 

CNCF. So in that umbrella of project, Kubedirector is the first project and we are doing some 

work on other machine learning specific operators which we might think of open sourcing in 

future. So it's still a work in progress and it's a little early to share more details on that right 

now. 

 

[00:17:03] JM: Gotcha. So this is part of an open source push within HPE. What's the rationale 

behind the open source involvement within HPE? 

 

[00:17:16] KM: Right. So HPE, especially uh the unit that I work for, Ezmeral, we use so many 

open source projects and we have always thought that HPE being a large organization, it's 

kind of our responsibility as well to give it back to the community because we have been a 

huge consumer so there is a strong push from management as well as from engineering teams 

to do open source contribution along with having our own open source initiative. And 

Kubedirector, when BlueData became part of HPE, was already there. From HPE we are 

getting kind of more urgency and energy to take it to maintain it so that HPE can extend its 

open source footprint. 

 

[00:18:04] JM: What kinds of limitations have you found with Kubedirector? Are there any 

problems that you'd like to solve that it hasn't been able to solve quite yet? 

 

[00:18:13] KM: Yeah. There are quite a few actually. So with Kubedirector what we are saying 

is we are trying to hit the sweet spot. We are not saying that just use Kubedirector and don't 

© 2021 Software Engineering Daily 8 



SED 1207 Transcript 

use any other operator. It would not have everything that a native operator for an application 

would have. But with Kubedirector, you could kind of simplify a lot of things. So we are trying 

to hit kind of the sweet spot rather than going to one of the extreme. So I would say like one 

extreme is a very kind of a limiting Helm chart sort of thing which is very static or writing a 

whole full-blown operator for an application. With Kubedirector, for a lot of application, you 

don't need either of the two. So that's kind of the middle ground as a good starting point to 

build a Kubedirector applications.  

 

Also in terms of learning, right? Once you have built few Kubedirector application to onboard 

new application, it's not very hard for a team or for an enterprise. In terms of what remains to 

be done, well, there are plenty, right? I come from BlueData where we had our own container 

platform and there are a lot of features which we had outside of Kubernetes in our own 

container platform that are not there along with a lot of these things that we would like to 

tighten up or fix. Like we're still trying to find a solution for encrypting secrets, applying 

placement constraints or policies for role. Also in the security is a huge kind of aspect that we 

are trying to tighten up. So getting some service mesh so that applications can use it. So we 

are working on all those things right now.  

 

[00:19:52] JM: So it's 2021. Give me your perspective on the Kubernetes ecosystem as a 

whole. What are the uh problems that remain unsolved in the Kubernetes ecosystem?  

 

[00:20:05] KM: Right. So Kubernetes, I think although it has gained a lot of popularity, it's still a 

very, very complex thing for the consumer. It's an intimidating task to switch or migrate your 

legacy application on Kubernetes. And Kubedirector is an effort in that direction to sort of 

abstract a lot of these complicated things that Kubernetes exposes. So Kubernetes basically 

gives you a lot of hooks, and with proper understanding you can do a lot. But I think there is 

still a huge gap for a consumer versus what Kubernetes exposes. And I think that's where the 

world will move in next maybe a year or two to simplify things, right? There are so many things 

available and there are so many overlapping things available. Understanding of things I think 

will take some time. 

 

© 2021 Software Engineering Daily 9 



SED 1207 Transcript 

[00:21:05] JM: Now as far as HPE, you have lots of I guess clients that have been around for a 

long time before Kubernetes. And how are these legacy clients adopting Kubernetes. How 

aggressively are they adopting it?  

 

[00:21:22] KM: Yeah. So I think it is becoming kind of a de facto container platform for a lot of 

the customers. So we are definitely sensing that. And that's when kind of we also embrace 

Kubernetes, because we already had our own container platform. And there was a long debate 

internally whether to take or fully stand behind Kubernetes or continue to support our platform. 

And I think it's now established that most of the customers are either thinking about 

Kubernetes today or in long term will be going in that direction. So a lot of customers have 

already started POCs or trying things out internally in their data centers and some customers 

are even thinking of productionalizing their workload on Kubernetes. So I think we are definitely 

seeing it becoming a mainstream in the data center container orchestration platform. 

 

[00:22:20] JM: Those clients, are they having trouble migrating to Kubernetes or figuring out 

how and when to adopt it? 

 

[00:22:28] KM: Yes, definitely. So migration path is extremely, extremely intimidating especially 

for large kind of customers, some of huge banks that we have. It's non-trivial to whatever they 

have been doing. There are a lot of legacy applications plus all the work that have been done 

to port it on Kubernetes. So it's a challenging thing, but I think they have already started 

planning in that direction. And that's why projects like Kubedirector kind of helps them 

because it simplifies a lot of things. Also, like for our legacy customers who have used the 

BlueData platform, the experience that they get when they build the Kubedirector application. 

Because a lot of the naming conventions and how things are done, we have kind of retained 

the same. It's really helpful for them to map it for what was happening with the application 

when it was not running on Kubernetes versus if they build the same application using 

Kubedirector on Kubernetes. They get similar experience. So that's why we are getting kind of 

good feedback there. 

 

© 2021 Software Engineering Daily 10 



SED 1207 Transcript 

[00:23:34] JM: Gotcha. And what else have you learned from working with those large legacy 

enterprises about what they're doing and the struggles that they're having in terms of 

modernizing? 

 

[00:23:48] KM: So I think there are struggles at every level, right? So when you have to bring 

something like Kubernetes in the mix, there are so many uh different sort of personas that gets 

involved. There is your infrastructure hardcore data center sort of team. There are data 

scientists. There are software engineers. So it's basically re-architecting a lot of things. And 

without Kubedirector, if you have to convert a legacy application into microservices based 

architecture, I think that's a huge undertaking. With Kubedirector, what we are saying is your 

legacy application can be containerized, but you don't have to really make it like exactly like 

how a microservices system should be. So in a Kubedirector-based cluster pod, we still 

encourage running multiple services and we give some hooks for those services to be talking 

to each other. 

 

[00:24:53] JM: So coming back to Kubedirector, how does Kubedirector compare to other 

custom controller implementations that you've seen in the ecosystem? 

 

[00:25:05] KM: So Kubedirector, like it is one of the custom controller, right? But in the 

ecosystem, one custom controller is tied to an application specific customer resource. With 

Kubedirector custom controller, since it is more generic, we cannot add application specific 

intelligence as part of that. And that's where our challenge is. Like how to make it so that it 

remains sort of generic while also the application can inject its own sort of intelligence. And to 

keep providing that hooks is kind of a very challenging piece for us to have it like as a base, as 

a generic base for all the applications. 

 

[00:25:50] JM: Gotcha. So you've had to keep it very abstract. 

 

[00:25:54] KM: Very abstract, correct. So even the custom resource, right? So many times it's 

like we feel that if just we add this particular flag it would drastically simplify things for a given 

application. But does that flag make sense for another type of application? If it doesn't, then 

© 2021 Software Engineering Daily 11 



SED 1207 Transcript 

we usually don't do it. And then that's where we have to brainstorm more. How to solve those 

kinds of problems? So that's why with Kubedirector, what we are saying is you cannot replace 

or full-fledge at all the operators in your data center, but a lot could be replaced. 

 

[00:26:36] JM: Kubedirector has a number of hooks for day two operations. Can you explain 

what those hooks for day two operations are? 

 

[00:26:45] KM: Right. So in Kubedirector, the application level intelligence is injected inside the 

pod once the application pod comes up, right? So Kubedirector on top of that also gives you 

some data hooks, like if the cluster is scaling out, if a new part is being added, right? In a 

stateless kind of an environment, it doesn't really mean for the existing running services. But in 

a stateful world, if a new pod is added, there is a possibility that a service running in some 

other pod needs to be reconfigured or needs to know about that. So in those scenarios, 

Kubedirector calls these lifecycle hooks that, “Okay, a new pod of this type is being added,” 

and then the application developer can write their orchestration code based on what's 

happening there. Similarly if you're scaling down, there are features where you can connect 

multiple applications together. So if there is any change in those application or given 

application, they can be made aware of those change and then they can reconfigure 

themselves accordingly. Those are the life cycle hooks. And I think they're really powerful in 

giving this kind of solving the day two problem. 

 

[00:28:04] JM: And there's also this continuous validation of resources. So my app, once it's 

been deployed and it's going to get continuously validated by Kubedirector. It's going to be 

continually watched. And the resource definition is going to be continually enforced. Can you 

talk more about the continuous validation of resources and what role that plays? 

 

[00:28:29] KM: That's sort of the operator design pattern, right? The reconciler pattern where 

you give a given spec and the reconciler basically tries to keep you to that spec. So if there is 

any change, it reacts and try to bring you back to the spec. Along with that there are also 

validation web hooks that are in place. So while defining your custom resource, you can define 

that I want this to be of type that or this. So Kubernetes inherently gives a lot of validation out 

© 2021 Software Engineering Daily 12 



SED 1207 Transcript 

of the box. But on top of that, if you want to add more validation, we have these validation web 

hooks using which you can add more validation logic for a given application.  

 

[00:29:17] JM: Are there any bugs that you've had to overcome with Kubedirector around like 

crash loops and problems with not being able to adhere to the recovery state properly?  

 

[00:29:35] KM: If you're looking for some specific examples, I can't think of any. But those kind 

of things are kind of common outside of Kubedirector in the Kubernetes world itself where your 

pod goes into crash loopback states. Sometimes if your – Or your cluster is air gapped, you 

cannot pull those images that your application is asking for, and those kinds of things. Yeah, 

those are the ones I can think of right now. 

 

[00:30:04] JM: Gotcha. So if we zoom out again and think about the Kubernetes ecosystem as 

a whole, do you think people are going to be managing Kubernetes clusters in five or ten years, 

or do you think there'll be some higher level abstraction that they'll be managing things with or 

relying on a cloud provider to have a managed Kubernetes piece?  

 

[00:30:28] KM: Right. Yeah, I think that's a great point. So it's a huge undertaking to manage a 

Kubernetes cluster. And I definitely feel that in a large organization there won't be just one, but 

multiple Kubernetes clusters of different versions. So it will definitely be very hard to manage 

them individually. So definitely there should be some abstraction or some layer on top of that. 

And as we are seeing, definitely one of the cloud providers would come up with a service like 

that. Or what we are doing at HPE with the Ezmeral platform where we deploy the Kubernetes 

cluster and manage it and you can have as many Kubernetes cluster as you want. So there will 

be this abstraction or this management control plane. Similar to what we had for containers, 

there will be one for Kubernetes itself, and the HPE Ezmeral container platform is sort of in that 

space.  

 

[00:31:30] JM: Are there other projects within HPE that you'd like to see around Kubernetes 

evolve? 

 

© 2021 Software Engineering Daily 13 



SED 1207 Transcript 

[00:31:39] KM: There are a lot of promising projects. There is a project by SPIFFE and SPIRE I 

think that's already incubated in CNCF. It's one of the most popular one. I definitely see that 

picking up more and more. We might even integrate once we take the identity based 

authentication approach for Kubedirector applications to integrate that project. But that is one 

project that I definitely see getting more momentum in coming days. Along with that, the other 

work that is being done in the machine learning space where we are working on writing 

operators for model management, model monitoring. I think those would also be – Once they 

are incubated, they will be popular.  

 

[00:32:25] JM: And what are the other open source projects outside of HPE that you're excited 

about? 

 

[00:32:32] KM: Well, there are a lot. So currently at HPE, I’m part of the team which is building 

ML op solution. So there are a lot of promising projects in the ML space that are coming that 

are building solutions on top of Kubernetes. One of the very popular one is obviously Kubflow, 

and that has an entire ecosystem of projects around it. To me, it is very similar to what Hadoop 

was. So in that space itself there is Seldon, Argo, there is Airflow. I think all of those would be 

very popular and would be used extensively as the world is moving more in the ML direction. 

 

[00:33:13] JM: What do you find so exciting about Kubeflow?  

 

[00:33:17] KM: Kubeflow, basically it gives you an end-to-end sort of kind of a solution for a 

data scientist. Agreed that it is extremely complex, but the problem it is trying to solve itself is 

pretty complex. And as it is getting more and more projects, it solves the problem right from 

getting your Jupyter Notebook to run your training algorithms to deploying using Seldon and 

also it has hooks to do security to do RBACs. I think it's a pretty solid solution and we 

definitely have it in our ML ops ecosystem.  

 

[00:33:58] JM: Do you see Kubedirector playing a wider role in the Kubernetes ecosystem? 

You've touched on a few other projects in the ecosystem, but in what way do you see 

Kubedirector playing a role in the ecosystem as a whole? 

© 2021 Software Engineering Daily 14 



SED 1207 Transcript 

 

[00:34:14] KM: I think Kubedirector shines because of its simplicity. I mentioned Kubflow. So a 

lot of things that Kubeflow, we attempted to solve similar problem by building Kubedirector 

applications. And we were successful to some extent. So I definitely feel the simplicity of 

Kubedirector will be appreciated once people are serious about Kubernetes with complex set 

of legacy as well as these new microservices-based application. With Kubedirector, you can 

really streamline your security by having a consistent RBAC control, by having a consistent 

layer of custom resources and all the infrastructure pieces that you would need for any 

operator or any application like encryption of your secrets, policy for your scaling. I think if it is 

handled by one piece, then I think it would be really powerful. 

 

[00:35:15] JM: And how big is the team working on Kubedirector right now? 

 

[00:35:20] KM: So since it's an open source initiative, we do see contributions from different 

teams. Also, there are some contributions from outside of the team. So there are like at least 

five, six engineers, which are spending majority of their time either building Kubedirector 

applications or enhancing Kubedirector infrastructure. But we are kind of pushing for getting 

more and more contributions internally and also from the open source community.  

 

[00:35:54] JM: How do you see the project evolving in the next year or so? 

 

[00:35:59] KM: I think the project is gaining momentum since we started adding the machine 

learning-based applications with Jupyter, with MLflow, with Feature Store. I think it would be 

very popular for people trying to deploy machine learning-based solution on Kubernetes. 

Especially, to be able to understand everything that Kubeflow provides on day one is extremely 

intimidating. So Kubedirector I think will be very handy in the machine learning space because 

of the catalog of applications it already brings plus the new application that you can easily 

onboard. Along with it abstracts all the infrastructure, Kubernetes infrastructure sort of things 

for you. So I think that's where Kubedirector would be ending.  

 

© 2021 Software Engineering Daily 15 



SED 1207 Transcript 

[00:36:52] JM: So just to be clear, the value to that machine learning community is that 

Kubedirector is going to help with the recovery and resilience of stateful machine learning 

applications. 

 

[00:37:09] KM: Yes, and also to onboard new applications. If you have any legacy application 

that your machine learning application needs to talk to, I think Kubedirector gives you 

necessary features and hooks to make that happen and to build a pipeline and to build a very 

dynamic sort of system, which is constantly evolving. So it could act as a central piece for 

those applications or those pipelines. 

 

[00:37:37] JM: Do you see any other outstanding problems in the intersection of the machine 

learning space and the Kubernetes space?  

 

[00:37:46] KM: So in the machine learning and Kubernetes, like I think the whole area around 

monitoring of your model and management of your model. So people have sort of written 

frameworks to do it, but to deploy them on Kubernetes is not there yet. So I think that 

migration would have to happen. So that is the intersection, I think, where on Kubernetes you 

do have monitoring for your resources and for every other thing. But what's happening to your 

model? Those kind of monitoring I think will be happening in next few years.  

 

[00:38:28] JM: Fascinating. Do you yourself spend any time building machine learning 

applications? 

 

[00:38:35] KM: Yes, I do. If I’m not able to contribute, at least I am very active reviewing the PR 

or going through the issue list that open source community is adding and then brainstorming. 

It's really exciting for me to brainstorm the problems that we could solve using Kubedirector. 

So definitely I’m very active. 

 

[00:38:59] JM: Well, Kartik, I’d love to close off by getting your thoughts on the future. Do you 

have any perspective on how infrastructure is changing or machine learning applications or 

Kubernetes? Any insights on the future that we haven't covered quite yet? 

© 2021 Software Engineering Daily 16 



SED 1207 Transcript 

 

[00:39:15] KM: I think we touched on a lot of things, and this is an extremely – I think it's a new 

kind of stream of science that will evolve because everything will have some sort of a machine 

learning aspect. If you look at last decade, I think it was all about storing and managing your 

data and data crunching, data processing. I think going forward, how to make use of that will 

be what the machine learning would be doing for, I think, all aspects of software. 

 

[00:39:51] JM: Okay. Well, Kartik, thanks for coming on the show. It's a real pleasure talking to 

you. 

 

[00:39:54] KM: Thanks a lot, Jeff. 

 

[END] 

 

© 2021 Software Engineering Daily 17 


