
SED 1199 Transcript 

EPISODE 1199 

 

[INTRODUCTION] 

 

[00:00:00] JM:​ Video calling over the internet has experienced explosive growth in the last 

decade. In 2010, surveys estimated that around 1 in 5 Americans had tried online video calling 

for any reason. By May of 2020, that number had nearly tripped. A significant factor in the 

growth of video calling has been an open source project called WebRTC, or web real-time 

communication. WebRTC makes it possible to capture and stream audio or video data 

between browsers without the use of plug-ins or third-party software.   

 

Daily is a developer platform that builds on WebRTC to provide real-time video APIs for 

developers. Developers can easily add video call widgets to their code which come with a set 

of default configurations for functions such as bandwidth management and cross-browser 

support. Daily also offers a set of front-end libraries and rest APIs for developers who want to 

build a customized experience.  

 

Kwindla Hultman Kramer is a co-founder at Daily, and he's joined today by Wesley Faulkner 

who handles developer relations. They join the show to talk about the growth in demand for 

video calling services, building a developer friendly video calling API and what's next for video 

calling applications. 

 

[INTERVIEW]  

 

[00:01:15] JM:​ Guys, welcome to the show. 

 

[00:01:17] WF:​ Thanks for having us. 

 

[00:01:18] KHK:​ We're big fans.  

 

© 2021 Software Engineering Daily 1 



SED 1199 Transcript 

[00:01:20] JM:​ Great to hear it. So you both work on Daily. Daily is a video streaming API, what 

is the purpose of a video streaming API? 

 

[00:01:27] KHK:​ We try to make it really easy to add video to any website or app. You can 

embed a video call into a web UX using our APIs, for example, with just a few lines of code. 

 

[00:01:37] JM:​ And why is that useful? What are some applications? 

 

[00:01:41] KHK:​ We have a pretty broad range of customers, telehealth, online learning. 

There's a lot of growth in virtual classroom experiences of all kinds. Some social and gaming 

applications where people have audio and video side channels associated with gameplay. We 

also have a lot of customers who are doing really interesting work around the future of remote 

and distributed team collaboration. So for example, folks on this podcast might be interested in 

GitDuck, which embeds video into your programming IDE. Or a tool like Tandem, another of 

our customers that has an always-on virtual desktop for remote teams.  

 

[00:02:19] WF:​ Pitch is also a really good use case, in which it's collaboration for video slides 

or presentations. So being able to collaborate in real-time with specific slides on a deck. So 

there's less confusions, less back and forth to make just work generally more efficient. 

 

[00:02:38] JM:​ So we can start with just the simple case of two people being connected over a 

video streaming call. Tell me about what's going on under the hood when a call is initialized 

between two people. 

 

[00:02:50] KHK:​ We're built on top of an open standard called WebRTC, which is embedded in 

all the major web browsers now and which are there are several open source implementations 

of. So initially your client hits our HTTP servers to do a basic account and config check. And 

then if the client is allowed to join the video call, it opens up a WebSocket connection to one of 

our media server clusters, which are deployed all over the world to be as close to users as 

possible. Then over that WebSocket connection we negotiate how the client is going to send 

audio and video packets. There's a lot of complexity to that negotiation. We can definitely dig 

© 2021 Software Engineering Daily 2 



SED 1199 Transcript 

into it. But the short version is that if all goes well, the client starts sending and receiving audio, 

video and data packets over UDP as encrypted RTP streams. 

 

[00:03:36] JM:​ So at a higher level, the main thing to know is that it's a WebRTC connection 

initialized between these two users, right?  

 

[00:03:45] KHK:​ That's right. It's always WebRTC under the hood. The WebRTC primitives are 

fairly low-level. So we try to abstract as much as possible of the complexity of WebRTC. All the 

corner cases that are involved with making a call work everywhere in the world on any device 

and also all the complexities that are involved in scaling, scaling the size of calls and scaling 

across geography and scaling in terms of volume. 

 

[00:04:12] JM:​ What are some of those corner cases? 

 

[00:04:15] KHK:​ There's lots of different ways it can be hard to route packets, for example. 

We're all behind some kind of firewall these days. Maybe firewall is overstating it a little bit 

sometimes. But if you're on a home internet connection behind typical a cable modem, you 

don't actually have a public IP address. So the WebRTC machinery has to figure out how to 

get those packets through that cable router from you and back to you. If you're at work, you're 

probably behind a different kind of infrastructure frontend. If you're on a mobile device, you 

have a pretty different network configuration for cellular data. WebRTC is really good at 

handling those but there are lots of little details and we can handle lots of those details. For 

example, we can route through our servers if a peer-to-peer connection isn't possible to set 

up. We can also switch the whole call over to route through our servers if there's something 

like recording going on we’re having a centralized server involved is useful. Or as a call scales, 

we can do a lot of server-side work to improve the quality of the call for everybody on the call. 

So we have a lot of flexibility with how we actually set up the call and we try to optimize the 

calls in real time for lots of different configurations. 

 

[00:05:28] WF:​ There's also bandwidth management to determine the scale if it's 

high-resolution, low-resolutions, if it's higher quality, lower quality. A lot of those knobs need to 

© 2021 Software Engineering Daily 3 



SED 1199 Transcript 

be tweaked depending on the use case. And so if you really want to over index on audio, you 

might want to do some bandwidth management to make sure that that portion of the stream is 

more intact. If there's going to be degradation, it's more on the video side than the audio side. 

So depending on the use case, it can vary if the person's on a slow connection, fast 

connection or even a mobile device. 

 

[00:06:01] KHK:​ That's a really great point. I mean from a zoomed-out perspective, our two big 

engineering challenges or the unique work we do at Daily always comes back to two things. 

The fact that video in particular is a very high-bandwidth use case, and real-time video calls 

and other real-time video experiences can't ever buffer. So we have to deliver every packet 

within a couple hundred milliseconds at worst for the call experience to be good. So we're 

always thinking about volume and throughput of these UDP traffic streams. 

 

[00:06:37] JM:​ So we start with the example of just the two-person video stream initialization. 

What about a call that scales up to hundreds of people? What is different about that? 

 

[00:06:49] KHK:​ WebRTC architecturally is always peer-to-peer. You're always negotiating two 

endpoints of a connection. And so for a one-on-one call ideally, you actually do try to send the 

packets, the audio and video packets directly from participant A to participant B. As a call 

scales, you can't do that anymore because you would end up having a mesh network 

configuration where you're trying to push and pull way too much bandwidth. So you have to 

route through a central server. And that's the big thing that changes in terms of call logic. But 

it's also a really nice thing because we have a lot of things, as Wesley was saying, that we can 

do on the server. We can decrease the bandwidth selectively for each leg of the call as it goes 

through the server. 

 

[00:07:36] WF:​ One thing to note is that if it was truly peer-to-peer, that means that every client 

would be sending both the video and audio stream to every single other client, which would 

dramatically increase the amount of processing power each one would have to do to both 

support all those streams and also to decode all of those streams. But by using a server in the 

© 2021 Software Engineering Daily 4 



SED 1199 Transcript 

middle to handle those, you're able to combine them into one stream to send to each individual 

client, which makes things a lot more bandwidth friendly and usable. 

 

[00:08:09] KHK:​ The growth of larger call experiences of all kinds was the biggest single thing 

that happened for our users in 2020. We went into 2020 with the vast majority of the session 

minutes we hosted being calls of fewer than 10 people. And by the end of 2020 the majority of 

our session minutes were calls with 30, 40, 50, 100 people in them. So the whole market 

scrambled to try to build great tools for things like virtual conferences and large online classes 

for obvious reasons because 2020 forced a whole lot of changes in where people were working 

from and how they were working.  

 

So the Holy Grail now for a lot of us who are working on WebRTC-based platforms is to scale 

really well for these larger and hybrid experiences. We have a number of customers who are 

building things like a fitness application where the instructor, say, a yoga class where the 

instructor wants to be able to teach 500 people at once, but you want to join the yoga class 

and feel like you're joining that class with your friends. So 500 people in that session get the 

instructor's video, but each person in that session also just gets video from three or four or five 

of their friends. So it's a really interesting kind of hybrid scaling problem. 

 

[00:09:24] JM:​ So you've described these two modes, the peer-to-peer network mode and the 

media server mode. Can you describe these two modes in more detail? 

 

[00:09:34] KHK:​ Sure. For peer-to-peer, we're taking each client's network information, their 

local IP address, the IP address of their public-facing firewall and some port numbers that are 

available and we're trying to send packets through all of the options that we enumerate from 

the pairwise combination of all of the network information on each side. And we, in theory, 

should always be able to get packets sort of through the firewall on both sides and send 

packets directly. That works really well in about 85% of cases. In the 15% of cases where it 

fails, we end up routing the packets through our servers in a really simple way. So it still seems 

like a peer-to-peer connection, but we're bouncing the packets off of a server where we host in 

the cloud somewhere.  

© 2021 Software Engineering Daily 5 



SED 1199 Transcript 

 

As the calls get bigger, we can't connect every peer to every other peer. So dynamically during 

the call we switch modes and we set up a new single peer, sort of super peer connection to 

one of our media servers, and everybody in the call starts sending audio and video through 

that server and getting all of their audio and video from that server. And so it goes from a mesh 

topology to a star topology during the call. And from a very low-level perspective, it's still all 

the same building blocks. It's still all the same core WebRTC primitives. If you've looked at the 

WebRTC kind of JavaScript objects, it's an RTC peer connection an RTP sender at an RTP 

receiver, but the server is doing a ton of invisible work behind the scenes to try to manage the 

bandwidth to and from each person who's connected to it. 

 

[00:11:11] JM:​ Can we zoom-in on that media server a little bit more and tell me more about 

what the server is doing to handle all these concurrent video streams that have to be sent out 

in this star architecture? 

 

[00:11:25] KHK:​ We built on top of a really lovely open source toolkit for WebRTC servers 

called mediasoup. And mediasoup is a set of primitives for processing and forwarding media 

and data packets of the kind that WebRTC implementation send from a client. So that server 

has a stateful WebSocket connection that's doing call state management and distributing client 

state so that everybody in the call knows what else everybody in the call is trying to do. And 

then it has a lot of machinery for statelessly processing UDP packets that are just flowing into 

the server and need to go somewhere. And these packets come in encrypted. So the server 

has to decrypt each stream. Figure out how many different places need to get which of the 

packets and then send the packets along.  

 

One of the big building blocks for bandwidth management is called Simulcast. So by default in 

a call, we send three layers, three different qualities of encoding up from each client. We send 

a really low bandwidth, low resolution layer, a kind of middle bandwidth, middle resolution 

layer, and then a really high quality layer. So one of the things the media server does is it peels 

off Simulcast layers when it forwards a video stream. So you might be on a cellphone with not 

much bandwidth available. The media server is going to send you the lowest quality video layer 

© 2021 Software Engineering Daily 6 



SED 1199 Transcript 

that I'm sending. On the other hand, somebody on a really great network connection with 

enough CPU to decode lots of videos coming in at once at high quality is going to get the 

highest quality bandwidth layer for me.  

 

So a lot of what the media server is doing is trying to figure out what is the available bandwidth 

to each client and from each client sending control signals and managing the state to peel off 

the right simulcast layers is the way we talk about it internally. Then there's a bunch of other 

stuff that server can do that are kind of additional features that lots of people use in video calls. 

So the server could record some or all of the tracks. The server can transcode in real-time and 

send out to another service for live broadcast. We partner with the folks at Mux that you've had 

on the podcast for live broadcast to very large audiences of a call. We try to use those servers 

to add features that help developers build new things into their apps as well as to make sure 

the calls always work really well. 

 

[00:13:49] WF:​ If you're looking this up on your own, it'd be helpful to know that this is called 

an SFU, which stands for selective forwarding unit, and that's one of the terminologies instead 

of P2P, which was the previous case that we talked to when it's more of a peer-to-peer 

connection.  

 

[00:14:08] JM:​ Got you. So the media server, it's trying to be aware of available bandwidth. So 

is there a notion of a bit rate ladder like where you can have the server send lower bit rate 

connections to people who have poor connection speeds?  

 

[00:14:29] WF:​ That's right. So in I think the HLS world, you would call it a bitrate ladder. In our 

world we call it, depending on exactly how we're doing it, Simulcast or scalable video codecs. 

That's definitely a big part of what the media server, the selective forwarding unit server does. 

It figures out how much bandwidth is available downstream to each client and it sends a lower 

bit rate if it possibly can to the clients that need a lower bit rate.  

 

Today the way to do that across kind of all the major browsers is called Simulcast, and we 

send through the media server multiple separate encoding layers. So they're all encoded 

© 2021 Software Engineering Daily 7 



SED 1199 Transcript 

separately, although we can reuse some of the CPU on the encoding side in that encoding 

pipeline. So it's not too bad. The future is the next generation of video codex called SVC or 

scalable video codecs. So as we move from h.264 to h.265 and from VP8 to VP9, we'll have 

more ways to save bandwidth and CPU, because these new generation of codecs were 

designed from the ground up to be really efficient in terms of how you can do a bitrate ladder 

kind of operation on them in real-time. 

 

[00:15:43] JM:​ You also mentioned a partnership with Mux, which is a video API. I'm interested 

in that, because Mux is a company I would think of almost as a competitor to Daily. How do 

you utilize Mux? Talk a little bit more about that. 

 

[00:15:58] KHK:​ It turns out that Daily and Mux are almost perfectly complementary, because 

even though we both focus on video and we both try really hard to build great APIs that make 

scalable video easy from a developer perspective, Mux focuses on broadcast distribution to 

large audiences using a technology stack built on HLS. We focus on real-time sub-200 

millisecond interactive video experiences built on the WebRTC standards. Those are different 

enough use cases that there's a pretty bright line between them and the easiest way to think 

about it is latency. If you need 200 millisecond latency, the kind of latency that's important if 

you're talking to someone, you really need WebRTC.  

 

On the other hand, if you can tolerate a few seconds of latency, then HLS is a really nice 

technology stack because it scales incredibly well both from a volume and a cost perspective. 

So the canonical customer for us has 30-person in a video call. The canonical customer for 

Mux has 10,000 people watching a live stream. 

 

[00:17:11] JM:​ Gotcha. So there's a certain scalability point where you need to switch over to 

that kind of infrastructure. 

 

[00:17:18] KHK:​ That's right. Both from kind of a reliability an engineering perspective and 

from a cost perspective. HLS, the standard MUX, the MUX folks are the best in the world at is 

built on top of HTTP’s standard infrastructure primitives. So for example, you can pull HLS 

© 2021 Software Engineering Daily 8 



SED 1199 Transcript 

video from a CDN and that gives you lots of great engineering work that's been done over 40 

years to make HTTP work great everywhere in the world at very low cost. We can't use CDNs. 

It's a slight oversimplification. But it's fair to say we're 100% UDP, not TCP. So HTTP and TCP 

are not available to us because they're too high latency. So we have to build this pretty 

complicated custom engineering tech stack to route UDP packets in real-time everywhere in 

the world at very low latency.  

 

[00:18:16] JM:​ Let's talk a little bit more about infrastructure. What cloud providers do you 

guys use? 

 

[00:18:21] KHK:​ We're mostly AWS, and we sort of have two parts of our world. One is a pretty 

standard HTTP and REST API serving infrastructure. We use things like Elastic Beanstalk and 

Aurora MySQL. It's straightforward in the sense that lots of people have solved those problems 

before us and so we try to live on top of known best practices. We do a few billion requests a 

month. So it's not small, but it is really, really standard. Then we have the completely custom 

architecture for our WebSocket and UDP media stuff that's completely unique to doing 

WebRTC at scale. And there are no kind of out of the box solutions for that. There are no 

services for that. In fact, that's what we are. We're a service for that. So we do things like least 

path routing to figure out which of our global clusters a client should connect to. We have lots 

and lots of custom code built on top of the open source mediasoup framework to manage lots 

of different kinds of calls and lots of different kinds of user experiences and do the bandwidth 

management we talked about earlier. And all of that is it's always a work in progress. We're 

always rolling out new data centers. We're always improving the logic inside our media servers. 

Those are mostly on AWS as well. And we mostly use ECS to kind of manage our containers. 

But for us, even something like ECS is not super helpful. In fact we sort of talk regularly about 

whether we should just be on top of kind of just bare EC2 instead of ECS with our container 

architecture. Because there are no – For example, there are no good out-of-the-box 

auto-scaling algorithms that we can just plug in. We have to write all the auto scaling stuff 

ourselves because our workloads are so unique. We have to write all the deployment and 

connection draining stuff ourselves because, for example, we might have a video call hosted 

on one of our instances that's going to last another 10 or 12 hours. We can't take that instance 

© 2021 Software Engineering Daily 9 



SED 1199 Transcript 

down after connection draining for a couple of minutes, which is the assumption built into the 

most of the container architectures. So there's a lot of super interesting DevOps work, I think, 

that we spend a lot of time on in addition to the sort of algorithm and C++ level packet routing 

kind of stuff.  

 

[00:20:39] JM:​ Could you use Fargate containers? 

 

[00:20:41] KHK:​ It's a really good question. So we built a little Fargate prototype at one point. 

It's worth understanding the evolution of all of the platform tools because they really are great 

and they evolve so in such interesting ways. Fargate doesn't help us that much because, 

again, the assumptions that the Fargate folks had in mind when they built Fargate out were 

serving HTTP requests, and totally understandably because the world revolves around HTTP. 

Our HTTP is a solved problem for us. Like we could migrate some of our HTTP infrastructure to 

Fargate, but there aren't really advantages over Elastic Beanstalk for us, vis-a-vis Fargate. And 

Fargate doesn't really have any of the kind of routing and scaling stuff that we do custom for 

UDP and websocket traffic built in. So I think Fargate is super interesting as a direction things 

are going. It's not yet anywhere close to being able to help us. 

 

[00:21:36] JM:​ So you mentioned there's a lot of lower level C++ work you have to do. Tell me 

more about the C++ stuff, then we can talk about other programming languages. 

 

[00:21:45] KHK:​ Oh yeah, sure. So some stuff has to be fast. We decrypt the incoming UDP 

packets, the RTP media streams, and we need to look at those packets and figure out what 

they are and where they should go and then we switch them to a different routing plane, 

virtually speaking, inside our server code, and then we re-encrypt them and send them out. So 

that code is tricky from a logic perspective and it has to run very, very fast with no blocking 

and no hiccups no garbage collection. So mediasoup is written in C++. We had a bunch of 

C++ code before we started using mediasoup three years ago now. So we've just sort of 

combined our work with the really great open source stuff that the mediasoup maintainers are 

doing, and that's all C++.  

 

© 2021 Software Engineering Daily 10 



SED 1199 Transcript 

We are starting to do a bunch of stuff in Rust as well. And Rust is interesting to us from a few 

perspectives. It's a language that we think we can make things as fast as C++ in, but it's 

newer. So it's cleaner from a lot of perspectives and it has some really nice memory safety 

design stuff baked in. And then the other reason we like Rust is WebAssembly is a first class 

part of the Rust ecosystem. Compiling to WebAssembly is something people who are using 

Rust are doing a lot. The Rust core team cares a lot about compiling to WebAssembly. And 

WebAssembly is a way we can write code that runs across devices. It can run in the browser, 

which is a super important part of the WebRTC world. It can run on android. It can run on iOS. 

It can run in our servers. And maybe someday, some of the WebAssembly work that people 

like Cloudflare and Fastly are doing would let us deploy some of our code on top of those 

platforms as well.  

 

[00:23:37] JM:​ And so what other languages do you use? 

 

[00:23:39] KHK:​ We use C++, JavaScript, and relatively recently, but increasingly, Rust. And 

then internally just for various kind of big data analytics types of things we use Python.  

 

[00:23:53] JM:​ What do you use JavaScript for? 

 

[00:23:55] KHK:​ Our client-side libraries that our customers use to embed video and audio in 

web browsers are all JavaScript. And then we have a whole lot of core library code that gets 

loaded up in the web browser that's written in JavaScript as well. Some of that's getting 

migrated to Rust and WebAssembly, but we have a really large amount of JavaScript code. So 

that migrating that code is going to take some time. 

 

[00:24:21] JM:​ And so you start to do some analytics? What are you looking at in terms of the 

data set that you accumulate? 

 

[00:24:28] KHK:​ Yeah. We say internally that we have two things that everything else we do 

flows up into or that guide our priorities, and one is developer time to value and the other is 

called quality and reliability. For developer time to value, we mean can you get up and running 

© 2021 Software Engineering Daily 11 



SED 1199 Transcript 

with our APIs really quickly with very few surprises and do really sophisticated things? And that 

implicates every part of our stack from API design of our Rest APIs to API design and library 

architecture for our client-side libraries that you load up in the web browser through to our 

docs and our sample code. And then for call quality and reliability, because every call has to 

just work great or we're not doing our job, we collect data, completely anonymized metrics 

data from every single client in every single call. So we have a way to look. We can slice and 

dice it in all sorts of different cohorts, but we have a way to look at when calls didn't work as 

well as we hoped they did and to try to figure out why. And that turns out to be useful from two 

really big angles. One is we can support our customers really well.  

 

So if a customer pings us and says, “Hey, somebody who uses my app had a bad call.” We 

can actually dig in with them to that call. And because they know who was on that call even 

though the date is anonymized, they can figure out what happened with each client. The other 

thing we can do is analyze across all of that data to try to understand patterns. So maybe a 

bunch of people in Germany on a particular mobile provider had a tough month. Error rates on 

calls went from .5% to 3% or something like that. Then we can dig in more and try to 

understand why. Was it a bug in our code? Was it something we can figure out and then work 

around in that geography? Was it an android system update that changed something that 

wasn't expected to break calls but did break some calls?  

 

So we do a combination of really hands-on deep dives into individual call metrics records and 

we also do the big data analytics across kind of all of the calls we do. And I think we'll do that 

forever and ever because it's just a never-ending and really interesting set of kind of knobs we 

can turn to make call quality and call reliability asymptotically approaching 100% awesome. 

 

[00:26:50] WF:​ And of course we also have a portion of this data like a reduced set that's 

available for every customer through the dashboard and control panel. So make sure that if 

they want to get immediate feedback on a call that just happened that that data is available for 

them, we have different retention policies depending on the level. But all tiers have access to 

this data for every call. So they don't nearly need to rely on us for every single call or for the 

© 2021 Software Engineering Daily 12 



SED 1199 Transcript 

analytics. But if they need a deep dive or some help with understanding the data, we're always 

available to help them too. 

 

[00:27:24] KHK:​ That's a really great point. I mean one of the things we try to do is make it 

possible for developers to build great stuff without knowing any of the details about video. But 

we also want to make it possible for people to get better and better at supporting video-centric 

use cases. So in a sense, we're a kind of application monitoring or observability service for our 

customers as well as a set of APIs that they build features with if we're doing our job right. 

 

As Wesley said, the dashboard is a big focus for us. We put a lot of work into rolling out the 

kind of call quality and analytics data in a gooey fashion accessible in the dashboard last year. 

That was sort of a big push for us and we're really happy with how it came out. And now we 

have another 100 features we want to add to it. 

 

[00:28:10] WF:​ And the fidelity is the same no matter if you're on the free tier or the highest 

cost tier. It's just the retention is different depending on what level you're on. 

 

[00:28:19] KHK:​ Yeah. We want all our customers to have access to great data. 

 

[00:28:24] JM:​ The monitoring challenge here is really interesting because you've got all these 

different users who are using the API and you've got high-bandwidth connections on each of 

these users. What kinds of telemetry data do you collect and how do you make sure the 

service is running at high quality? 

 

[00:28:44] KHK:​ Yeah, it's a really great question. So we collect a bunch of stuff from our 

servers. It's pretty traditional observability stuff from our servers, but focused on UDP traffic as 

much as on HTTP traffic. So kind of real-time traffic flows through our servers and all of the 

kind of indicators of any kind of CPU pressure or slowdown in packet rate that we can kind of 

hook into. And then from the clients, we send up – We log events and we log metrics like frame 

rate, overall bandwidth used, packet loss on the UDP streams, a bunch of timing and jitter stuff 

and we bundle those metrics up and we send a little blob of them to our infrastructure every 15 

© 2021 Software Engineering Daily 13 



SED 1199 Transcript 

seconds. And that's the basic building block for how we can analyze not just what happened 

on our servers but what happened on the clients. Our goal, always a kind of receding goal as 

we get better and better at everything, but our goal is to have complete end-to-end visibility 

into what happened from each client through our servers through to the other clients that were 

receiving all of the audio and video from that first client and correlating all of that data. 

Correlating between clients, correlating between the clients and our servers with timestamps 

and session IDs. And, again, we have to anonymize all this because we take privacy really, 

really, really, really seriously.  

 

So there’s a logging volume challenge, a privacy requirement. And then how do we use that 

data effectively? Because it's a huge huge volume of data. And the way we use it effectively is, 

A, we put it in the dashboards for customers like Wesley said. And B, we work with our 

customers anytime they ping us about a call they have concerns about and do a really 

hands-on deep dive with them if they want to. And then C, we do the sort of big data analytics 

machine learning type stuff to look for patterns, patterns that we should know about. 

 

[00:30:38] WF:​ And because we are an API, there's more data that can be collected on the 

implementation side. So if you're a big company using ingesting our API to help with your own 

implementation, that client side could take more data if needed to help them with their 

troubleshooting on their side that they can retain and they can control. So we don't prevent 

that if that's needed for more of a diagnostic side. So you can build on top of our tools to get 

more insights, but we do the base level just to make sure that we don't invade privacy or make 

sure we capture any data that shouldn't be captured. 

 

[00:31:14] KHK:​ I think one of the things that happens when you build good telemetry systems 

is you learn a bunch more about the questions you should be asking kind of iteratively and 

sometimes even accidentally. But big data's super fun. I mean I think anybody who's even got 

a personal website and does like curiosity queries like, “How long did it take for iPhone 

versions to update across my user base?” knows that it's just really addictive to dig into 

high-quality big datasets. So we can do things like, say, “Did the frame rate drop when 

customers upgraded from Chrome 86 to 87? If it did, we want to understand why and we want 

© 2021 Software Engineering Daily 14 



SED 1199 Transcript 

to tweak the defaults that we try to set perfectly and make our developers never have to worry 

about,” because every browser release changes something. And worst case, browser releases 

break something fundamental at the WebRTC layer and we work around that for our 

customers. But best case, there's like a small quality change that we can leverage made 

possible by a new browser update. Then we can put a little flag in our code. We can change 

some small thing about how we handle something that becomes possible with an improved 

API in a new browser. Again, invisible to most of our customers, we can improve the call 

quality experience. And we could spend all day just looking at the data we have. So we try to 

balance, figuring stuff out based on the data and talking to customers to learn what our 

customers’ pain points are. 

 

[00:32:47] JM:​ What has been a particularly challenging moment as the company has grown? 

 

[00:32:53] KHK:​ I think everything about real-time video is challenging and sometimes 

stressful. Daily's co-founder, Nina, says sometimes late at night that if she'd thought in 

advance about how hard it is to run a system that has several nines of uptime, she might have 

done something different with her life because our system can just never go down. We try 

really hard to never have maintenance windows. Even 30 seconds of downtime means some of 

our customers get disrupted with a feature that's critical for most of our customers, video call. 

And that's really, really a challenge we always try to try to live up to, like uptime and reliability 

of our core services.  

 

The other thing that's challenging is real-time video at scale broadly accessible built into lots of 

different kinds of applications kind of by default available in your browser is new. We started 

Daily in 2016 and we started Daily because we love the engineering challenges around video. 

We've been working on video a long time and we thought that the newly available open 

standard of WebRTC was going to be an inflection point in the growth of video and video being 

kind of embedded everywhere and just super, super common, and we're really excited about 

contributing to that, trying to build great tools for other engineers on top of that. Like just a 

really fun and really interesting moment to start a company around.  

 

© 2021 Software Engineering Daily 15 



SED 1199 Transcript 

We were probably too early. I mean when we started, WebRTC was in Chrome and kind of in 

Firefox and not in Safari at all, and every release of Chrome broke something. Firefox was a 

little more stable, but also made some different choices than Chrome about which parts of the 

spec to support win. So cross-browser interop was like I probably – When we were three or 

four people and I was writing a big chunk of our code personally, I probably spent half my time 

working on browser interop, which it's a really good thing to solve for customers. It also just 

kind of feels like pushing a rock up a hill when every browser update breaks something. I 

probably have a bunch of tweets in my – Tweet stream from 2016, 2017, 2018 saying some 

version of building for video feels like building for the web in like 1998 when you had to special 

case all the different web browsers with your HTLM and your CSS. That's stabilized a lot, but 

it's not stabilized completely. Safari 14 release broke some stuff. Most of which, but not quite, 

all of which we can work around at a level that's lower and invisible to our customers. So just 

being on the cutting edge of a new wave of standards and kind of ecosystem adoption is super 

challenging. It's fulfilling when we get it right. It's really stressful when we're struggling.  

 

[00:35:46] WF:​ I have to say from the inside, I can see the growth of the company from even a 

year ago to now has also been something that has done a lot of headroom in terms of the 

company has grown fairly large not just because of the employee base, but because of the use 

cases. Before, it just used to be video was a square and a grid of squares, but now it could be 

round. We have spatial audio. We have like snap filters where people are trying to add 

augmented reality into the stream. We have – Of course COVID happened when the 

one-to-many and to like whole companies trying to do video chat and video conferencing. All 

of those new use cases that continue to evolve every single day, the new applications that are 

trying to use video and Daily's commitment to try to enable those new use cases using our API. 

I've seen a flurry of development to try to get these concerns around video safety, reliability, 

encryption, all of that, all those features around video that people took for granted or didn't 

worry about. I see that being implemented on top of the WebRTC spec. And so it's making it 

so complicated under the hood and us trying to make it so much easier. So a lot of people who 

see these cool new uses are able to bring those as actual products to their customers.  

 

© 2021 Software Engineering Daily 16 



SED 1199 Transcript 

[00:37:11] KHK:​ That's such a great point. I mean one of the things that's both really fun and 

really challenging about the goals we've set for ourselves are we want to support every kind of 

developer. So you can get started with our pre-built UI with literally two lines of JavaScript. 

And a lot of people are using our API in that way on top of low-code and no-code platforms, 

embedding video calls into pages on Webflow or WordPress. And then at the other end of the 

spectrum we have customers who are what we sometimes say internally are deconstructing 

the whole idea of a video call and putting together brand new experiences. Those customers 

have really different concerns at least in part. They're a lot more worried about the developer 

ergonomics of our low-level APIs, client-side APIs, and they also tend to exercise code paths 

that our pre-built UI doesn't just because there are such a variety of different things people are 

trying to use. So those customers find bugs or performance shortcomings in our code that are 

completely different from what our kind of low-code developers do. And that's code 

complexity. It's product feature complexity. It's definitely a challenge. It's really fun to work 

with both kinds of developers though. The low-code or the pre-built UI developers kind of 

teach us a lot about how video is getting embedded into kind of everything we all do online 

every day. And then the custom UX developers show us the future. Like what are these UIs 

going to look like when they're not, as Wesley said, boxes within boxes anymore? When 

they're little floating heads and there are AI GPU filters changing them on the fly and they're 

getting kind of recorded and archived and reused and rebroadcast in all sorts of different 

ways?  

 

So we're sort of violating one of the good rules of thumb of a startup, which is that you should 

focus really well. I mean we are focused 100% on video and real-time video, but we aren't 

specializing in what kind of developer we think is our customer. We're trying to serve every 

kind of developer in every use case for real-time video.  

 

[00:39:20] JM:​ So those two use cases, the very experienced JavaScript developer who builds 

really cool front-end experiences that are totally unprecedented versus the low-code developer 

that's building maybe an app in Webflow or something like that. Can you go deeper into the 

dichotomy between these two kinds of developers?  

 

© 2021 Software Engineering Daily 17 



SED 1199 Transcript 

[00:39:45] KHK:​ Sure. It varies a lot. So I'm going to try to oversimplify a little bit. But the 

low-code developer often has some really, really compelling core use case that they know a lot 

about. Like we have a customer who does live cattle auctions, and they're not first and 

foremost a kind of hard tech developer, but they know how to build the thing that their 

customer needs and they just need super reliable, easy to use video as a core component of 

what they're doing. So in the live auction use case, if you want to extend the people who can 

participate in an auction to people who can't actually physically show up in one room, you 

need a really good, really reliable way of having 500 people join a video broadcast that's low 

latency enough that the auctioneer can actually kind of manage the bids. And we've got lots 

and lots of different versions of those kinds of use cases where the core workflow around 

solving a particular problem is the customer's expertise. And the video is critical, but it just has 

to work. And they don't want to worry about the video and they don't want to become video 

experts because they're experts in a bunch of other stuff that's already hard and specific.  

 

On the other end of the spectrum, people who are building really new video experiences often 

do care a lot about the details of how video works, because they bump up against limitations. 

And they need to understand the kind of interface between what you can do with a system and 

what they want to kind of experiment with for their users. So our customer tandem who’s 

always on virtual office has a bunch of different ways people use audio and video and they 

care about a bunch of different things like almost instantaneous push to talk with anybody on 

your team.  

 

We work with them to understand like what drives the value of this new experience? And then 

we try to improve our code or build new features to do something like reduce the latency of the 

first time to audio byte being received on any connected client. And so the experience is a little 

different in the sense that we learn from both ends. Like what just has to work versus where 

the frontiers are that kind of don't work yet, but we can probably make them work with some 

engineering effort. And we probably should because the world is moving in that direction.  

 

One other thing that's interesting about the more custom UX developers, they often come to us 

after having done a prototype on top of WebRTC themselves. So if you're a really experienced 

© 2021 Software Engineering Daily 18 



SED 1199 Transcript 

engineer and you look at the MDN docs for for WebRTC in a browser, you realize quite rightly 

that you can probably build a prototype of the UX you want that you can test with customers in 

a couple of days. And as an experienced engineer, that's a known workflow. What you realize 

after you've built that prototype is that all kinds of cross-browser real-world client quirk scaling 

the size of the calls, scaling the volume of your usage are super non-trivial. And so those folks 

often then start to look at various open source projects and various services like us. And so 

part of what we do is try to tell people, “Hey, here are the problems you're going to hit as you 

move from prototype to something you're rolling out at scale.”  

 

We don't want you to use daily, unless we're the perfect solution for you. But we definitely 

want to help you kind of understand what's scaling up a product that includes video looks like. 

And our kind of early sales funnel with the experience developer part of our customer base is 

all let us just tell you a little bit about what we've seen and then you can decide if we're a good 

fit for you. Because there's so much growth and interest in video that we would rather have a 

kind of general soft sell. We'll just tell you what we know. You're an experienced developer, 

you can decide what the right platform for you is. 

 

[00:43:45] JM:​ All right. Well, let's start to close off. I'd like to get both of your perspective on 

the future and where Daily is going. Where video streaming is going? Just give me your 

thoughts on where things are headed. 

 

[00:43:58] WF:​ From the previous question, we're talking about experienced developers and 

how they use our platform. And what I'm seeing also from that perspective and I'll see more I 

think this coming year, is that video is really good enhancement. It's a good seasoning for your 

application. So even if you're not a video-first type of application that you want to make sure 

that video is always on with every interaction. It's a good backup and a good – If text doesn't 

work, move to video. For instance, Slack has video and has had a video integrated for a very 

long time, but people don't think of the video portion when they think of Slack. But when text 

breaks down and you're like, “Let's just hop on a call.” Being able to add that to your 

application or be a backup to the primary form of either collaboration or for presentation, I see 

© 2021 Software Engineering Daily 19 



SED 1199 Transcript 

video being a really good enhancement for a lot of applications that you wouldn't necessarily 

think of video first.  

 

And so in terms of like taking a traditional program, let's say, like Microsoft Word and then 

having that collaboration, but then turning in video, adding video into that collaboration can 

make it that much better. So I see a lot of momentum and video for sure and video-first 

applications, but I am now starting to see video also type of applications and I think we're 

going to also see a lot more of that. That and stories. People are adding stories to applications. 

But specific to video, I see that being a good enhancement in everyday applications that 

people use. 

 

[00:45:35] KHK:​ I completely agree with Wesley. I think there are a couple of interesting things 

that are happening in parallel, and one is that video is getting added as a value add to lots and 

lots of different things we all do online. Some of that's real-time video like we support. Some of 

it is non-real-time stuff like stories getting added to every app. And then the second category is 

new things you couldn't do before where video is just completely core. So if you're adding 

video to a web collaboration app, it's really valuable. It probably doesn't fundamentally change 

how you're collaborating with your teammates. It just makes it better. But new things like an 

always-on virtual office for your team, that's meaningfully different than collaborating over 

email in the same way, or collaborating over just Slack in the same way that Slack was 

meaningfully different from collaborating over just email.  

 

We see both of those trends happening and kind of reinforcing each other. I mean we started 

the company because we thought video was going to be just ubiquitous. And it was a hard 

story to tell and get people to believe it in 2016. I mean all the investors we pitch did their work 

over phone calls and in-person. And now every investor takes pictures over video. So just a 

kind of tiny microcosm in our Silicon Valley startup world of how things have changed. It's not 

hard for us anymore to convince people that you know video is not niche and video is going to 

grow.  

 

© 2021 Software Engineering Daily 20 



SED 1199 Transcript 

I think we still believe in video being ubiquitous in a way that other people who aren't quite as 

close to it as us do. I see all kinds of trends towards video just being assumed that feel like the 

early days of a massive change. I mean one little one is a few years ago – It's hard to 

remember now, but a few years ago, no websites had live chat for customer support. You filled 

out a form. And then tools like Intercom came along and built really great low-friction UX for 

live chat. And now if I go to a website and I have something I need to communicate with that 

company about, I'm actually kind of frustrated if there's not live chat.  

 

We're starting to see our customers add video to live chat, and that's as big an improvement 

for certain kinds of customer support or sales conversations as adding live chat is over adding 

an email form. And we just see that across the board. We see it in things like telehealth where 

there's an increasing assumption that you shouldn't have to go to the doctor's office to get 

really good care. In online learning where the quality of curriculum and now live instructor 

experience that's available online over video is just so, so high, and it opens up and 

democratizes all kinds of online learning. And even things like IoT and robotics are starting to 

change because video is really, really, really capable and available everywhere.  

 

We tend to think that kind of there are three ingredients for a big, big change in how we all use 

technology. One is the kind of core tech limitations. And we've gotten a long way up the 

scaling curve with CPU and network available everywhere that you can pretty much assume 

video is going to work for you even on a cellphone. And then the second ingredient is the kind 

of technical ecosystem and infrastructure. So that's things like WebRTC. And we hope the 

platform we're building. And then the third ingredient is people's expectations and habits. And 

back when we all picked up the phone to talk to each other, our expectation was that audio 

was better than audio plus video. I think you see with people who are teenagers today, their 

assumption is video is better than audio and video. I mean video plus audio is better than 

audio only. And that's a huge generational change. I think the rest of us who are a little older 

than teenagers are coming along behind and starting to adjust our expectations in the same 

way. So as we all start to assume that video should be everywhere because there's value 

there, video will become everywhere.  

 

© 2021 Software Engineering Daily 21 



SED 1199 Transcript 

[00:49:23] WF:​ I just wanted to chime in and just say that so much communication is 

non-verbal, that you read off cues, you read off if someone's in a good, mood bad mood, if 

they seem disheveled or if they seem full of energy. A lot of that you can take through audio, 

but some of that you really need video to understand people's personal cues and how they 

symbolize, how they feel. And that connection is really hard to replicate unless you have video.  

 

[00:49:51] JM:​ Nice. Well, it seems like a good place to wind down. Do you guys have anything 

else you want to add? 

 

[00:49:55] KHK:​ No. Thanks for the conversation. This was really fun. 

 

[00:49:58] JM:​ Okay. Likewise. Great product, very interesting. Looking forward to see where it 

goes. 

 

[00:50:03] KHK:​ Thank you for your time. Appreciate it. 

 

[END] 

 

 

© 2021 Software Engineering Daily 22 


