
SED 1183 Transcript 

EPISODE 1183 

 

[INTRODUCTION] 

 

[00:00:00] JM:​ TensorFlow Lite is an open source deep learning framework for on-device 

inference. TensorFlow lite was designed to improve the viability of machine learning 

applications on phones, sensors and other IoT devices. Pete Warden works on TensorFlow Lite 

at Google and he joins the show to talk about the world of machine learning applications and 

the necessary frameworks and devices that are necessary to build them. 

 

[INTERVIEW] 

 

[00:00:30] JM:​ Pete, welcome to the show. 

 

[00:00:31] PW:​ Awesome. Thanks so much, Jeff. 

 

[00:00:33] JM:​ Tell me, what are the resource constraints of machine learning frameworks? 

 

[00:00:40] PW:​ So what's really interesting is that there are training constraints when you're 

actually trying to train your network, and that's usually to do with what GPUs or other server 

and cloud resources you have. And then there's the problem of, “Okay, I've got a trained 

model. How do I actually get it out into the world?” And what I've really been focused on for 

the last few years is how to get machine learning models off the cloud and onto things like 

phones, and even now microcontrollers. And there you not only don't have access to these 

sort of big beefy GPUs that you have in the cloud. You're often very limited on how much 

memory you have. If you're shipping an app, you don't want to increase the app size by 50 

megabytes or something so that it doesn't fit in the app store. But you're also trying to run it on 

mobile phone CPUs. So you have a lot of compute limits as well. And those all get even more 

extreme once you start looking at something like an Arduino or some other kind of 

microcontroller. Then you're looking at you might only have 64k of memory to fit an entire 

© 2021 Software Engineering Daily 1 



SED 1183 Transcript 

model into. So just to give you an idea of the order of magnitude of what you're looking at once 

you start deploying these models to the edge. 

 

[00:02:18] JM:​ And if I train a really big model let's say in the cloud, does that mean that – 

Well, I have a lot of training examples that go into a model. Does that mean that the model is 

necessarily going to be big itself is the model size totally uncorrelated to the number of training 

examples that you give it? 

 

[00:02:41] PW:​ It is pretty much uncorrelated with the number of training examples. Even 

comparatively small models almost always benefit from having more training data thrown at 

them. We have a model that is like 20 kilobytes in size. Has around like 20,000 parameters for 

doing voice recognition on microcontrollers, and we have about 100,000 utterances that we 

train it with. And honestly we could do with more training data to get better results. So, yeah, 

the amount of training data and the model size don't tend to correlate too much. 

 

[00:03:30] JM:​ So what are the conditions where a model would be too big to fit onto an edge 

device? 

 

[00:03:36] PW:​ So for most training situations, if you've got a model that's got hundreds of 

millions of parameters and so is hundreds of megabytes in size, that's perfectly fine on the 

cloud. So almost by default, models that you're training only with cloud deployment in mind are 

almost certainly going to be too large to fit onto mobile phones and microcontrollers. 

 

[00:04:13] JM:​ And what are the typical techniques for slimming down a model? 

 

[00:04:18] PW:​ So there are a whole world of research papers around – Just to name check 

some of the typical techniques, things like pruning, getting rid of weights. Things like 

quantization, which focuses on going from 32-bit float values down to much lower bit depth 

representations, typically 8-bit integers for the calculations. But honestly what we find to be 

most effective is actually starting off with an architecture that has been designed to be pretty 

© 2021 Software Engineering Daily 2 



SED 1183 Transcript 

efficient in terms of its compute, in the amount of compute it does and also the number of 

parameters and the amount of memory it takes.  

 

So what I usually recommend is looking around and trying to find something like, for example, 

in the image recognition space, MobileNet and the MobileNet family of models are almost as 

accurate as kind of the cutting edge imagenet models, but much, much smaller and involve 

much less compute. So what I usually recommend is don't worry about the model size when 

you start out. Just focus on the training data and focus on training any model architecture to 

get the results you want and get that working on the cloud. Because the hardest thing to get 

right really is the training data. So once you can train a big model, then start looking around at 

what people have done for more efficient, for more mobile and edge-focused architectures in 

the same area and then swap out the big architecture that you have been using to kind of 

prove that your training data is good enough and hopefully you should just be able to swap in 

the new architecture with the same training data and get something that's almost as accurate, 

but is much, much more efficient. 

 

[00:06:27] JM:​ So the best practice is to change your model after training it and then retest it 

with the same training data and make sure you get the same results or close to the same 

results. 

 

[00:06:39] PW:​ Exactly. And what I emphasize really is that the accuracy that you care about is 

very much a product of the app that you're actually deploying to. You have to consider not just 

the training kind of eval accuracy in the Python training loop. You have to actually consider 

how it works within the whole application.  

 

And I think a good example of that is if you think about something like a translate app that's 

doing translation of images, of menus, of signs and things like that. If you have an offline model 

where you're sending an image to the server, that model might be super accurate. But the fact 

that you're having to wait several seconds to get the result back means that it's not very 

interactive.  

 

© 2021 Software Engineering Daily 3 



SED 1183 Transcript 

So one of the interesting things that we found in situations like that that having a model that's 

actually running live on your phone to do that sort of translation can be perceived as much 

more accurate by users even though the model itself might be less accurate on strict eval 

classifications on the server side, because you're getting that interactive experience through 

running it on the phone at several frames per second.  

 

So when you think about accuracy and when you're evaluating the model, really try and think 

about how you're actually running it as part of your whole app and as part of your whole 

system. Don't get too disheartened if you lose like one or two percent on like the top one 

accuracy when you move to a mobile friendly model, because you might actually gain in the 

perceived user experience because you're able to run that model much faster and have a much 

more interactive kind of friendly user experience. 

 

[00:08:47] JM:​ So this approach to reducing the model size, is this the approach that 

TensorFlow Lite takes? 

 

[00:08:54] PW:​ It is we actually offer what we call the model optimization toolkit to help users 

go from a training side model into something that's going to be deployed efficiently on the 

edge. So that especially focuses on actually doing quantization. So going down from the 32-bit 

float models that you typically use in the training environment down to the 8-bit integer 

quantized representation that works much better on edge devices.  

 

[00:09:36] JM:​ So can you tell me a little bit more about the conversion process from a trained 

model to a reduced size model? 

 

[00:09:46] PW:​ Yeah. So the first thing to do, like I said, is really try and make sure that you're 

starting off with a model architecture on the training side that is mobile friendly, that is edge 

friendly, because there're limits to what we can do kind of through an automated conversion 

process. If your model has hundreds of millions of parameters to start with, then it's not really 

possible to automatically shrink that down. So the first step is really trying to find an 

edge-friendly model. But then once you have that, there are variety of things that happen when 

© 2021 Software Engineering Daily 4 



SED 1183 Transcript 

the TensorFlow Lite converter is run. One of them is actually fusing together some common 

ops so that they can be run more efficiently. Things like taking convolution and value and 

expressing them as kind of a single op. So there's some op fusion that happens there. There 

are also things that show up in the graph that are useful at training time but that aren't useful 

when you're actually just running pure inference jobs on the edge.  

 

So an example of that is all of the back propagation. Updating the weights. Since the weights 

are frozen, you no longer need to have all the machinery to actually update them. And then 

there are things like batch normalization, where during training you're constantly updating the 

batch normalization values. But once you've trained the model, they're frozen. So you can 

actually take those operations that form the dynamic batch normalization and freeze them 

down into a much more efficient kind of constant based representation. And that's all before 

you start getting into things like quantization and some of the other things we look at to shrink 

stuff down. 

 

So with the quantization, we actually have a couple of different techniques to do quantization 

because there are some requirements there where we need to know for quantization purposes 

what the ranges of the intermediate values in the graph are or the min and max values 

essentially of things like the activation layers. So we have a couple of different approaches to 

figure those out. One of them is called quantization aware training, which is where you actually 

modify the training process to produce more accurate quantized models at the end. And then 

we also have post-training quantization where you supply some representative data to an 

already trained model and then it figures out the quantization parameters from the 

representative dataset that you give it. 

 

[00:12:55] JM:​ Could you maybe go through an example like some model example that you've 

worked with recently? 

 

[00:13:03] PW:​ Yeah. So I will. After this podcast I'll actually post some links to some of the 

examples that we have up on GitHub and that you can actually find some collab tutorials for. 

We have a model that I mentioned, the sort of – I think it's like 20 or 30 kilobytes for the voice 

© 2021 Software Engineering Daily 5 



SED 1183 Transcript 

recognition. And what we do there is, as I mentioned, we have these hundred thousand 

utterances of people saying different words, like several thousand different people saying a few 

dozen different words. We create a very small model in the training environment. So this model 

starts off in the only 20,000 parameters or something like that and it consists of a simple 

convolution layer followed by a fully connected layer. So it's a simpler convolution on your 

network as you can imagine really. 

 

We then run training for a couple of hours. You can actually do that in the collab. And you end 

up with a model that's not record-breaking. It's not going to sort of blow your way in terms of 

its accuracy. But for the fact that it's only got 20,000 parameters, it can fit in like 20 or 30 

kilobytes. It's still really useful and it's able to – With the default, it's actually able to recognize 

the words yes and the words no. So it's designed to be something that you can deploy on a 

microcontroller to control some simple project. 

 

So once we've gone through the training process, you can see in the collab, we then go to the 

TensorFlow Lite converter and you invoke that from Python and you provide a series of 

examples of the sort of training data inputs that you would feed in during training, but you 

provide them as what we call a representative dataset so that the TF Lite converter is actually 

able to do a good job of figuring out the quantization ranges for the exporting when we export 

to this 8-bit representation of the original 32-bit floating point model. 

 

And it also goes through and does things like gets rid of any batch norms, gets rid of things like 

drop out that aren't needed. Gets rid of all the back propagation and converts it into a different 

representation into the TensorFlow Lite serialization format. And then one of the things we 

actually do just to verify that the export has worked is we then load up the TensorFlow Lite 

interpreter in Python and run a bunch of examples of labeled utterances from the test set 

through this exported model to make sure it's working as expected.  

 

And then once we're satisfied that we're actually getting the accuracy that we want, actually in 

this case, because we're trying to deploy on a microcontroller and microcontrollers generally 

don't have file systems. Instead of saving a file that contains the flat buffer, serialized version of 

© 2021 Software Engineering Daily 6 



SED 1183 Transcript 

the TF Lite model, we actually take that data that would have been in the file and turn it into a 

constant C array that we can compile into our application. And that's really the sort of 

end-to-end export process. 

 

[00:17:09] JM:​ And what parts of this process does the TensorFlow Lite framework make 

easier? 

 

[00:17:15] PW:​ So one of the hardest parts over the last few years really has been the 

quantizing models. It's still a bit of an art rather than the science, because quantization is pretty 

hard to do automatically. So the model optimization team have done a great job really trying to 

push the state of the art on quantization and figure out how to actually make it a lot easier than 

it used to be to get 8-bit models out of your training process.  

 

And there's also a lot of other optimizations that kind of happen under the hood like I 

mentioned around getting rid of back flop, batch normalization, getting rid of drop out and all 

of these other kind of details of the training process that you really don't want to have to worry 

about during inference. So the fact that the converter is able to take care of most of those for 

you is very helpful. 

 

[00:18:31] JM:​ What's the workflow for somebody going from developing in TensorFlow to 

building their model into TensorFlow Lite? 

 

[00:18:40] PW:​ So one of the challenges that we often find is that the people who develop 

models are often in a different team than the people who actually have to deploy the models in 

an application especially in an edge application. So in an ideal world, like I mentioned, there's 

actually a lot of iteration and feedback with the model creation process to actually find a model 

architecture that's going to be edge friendly.  

 

So what we recommend is that there's kind of an integrated full stack sort of team that handles 

everything from data collection, to model training, to deployment on the device so that there's 

the opportunity to actually supply feedback and make improvements at all stages of the 

© 2021 Software Engineering Daily 7 



SED 1183 Transcript 

process. Because, to be honest, like if you've got a model that's not edge friendly that you're 

just kind of handed and you don't get the opportunity to retrain, you're probably going to have 

a pretty bad deployment experience. You’re going to have a model that's either too big or too 

slow. And it also may not have even been trained with data that reflects the sort of data that 

you'll be getting in your application.  

 

So in terms of the workflow, what we really recommend is that you start doing exports of your 

model even before you've actually trained it just to check things like, “Okay, what's the size of 

this TF Lite model?” And you can do things like even with a model that hasn't got trained 

weights. You can still benchmark the latency and you can see how much memory it takes up in 

your phone or in your microcontroller application. And that can actually inform how you want to 

do the training.  

 

And I definitely recommend trying to treat it not like the old sort of waterfall software 

engineering process where you have all these separate stages that happen in succession, but 

it's much more of an iterative process where you're constantly trying out new versions of the 

model in deployment and using what you've learned there to go back to the training process 

and to go back to the data collection process and labeling process even to figure out how to 

solve problems as they emerge. You're going to have a very bad experience if you're just kind 

of hoping to throw a model over the wall at the deployment team and expect it to work.  

 

[00:21:47] JM:​ Are there any other frictions that you see between the machine learning, the 

different components of a machine learning team? 

 

[00:21:55] PW:​ I mean whenever you have a group of engineers, there's always going to be 

some potential points of friction. I think that one of the things that's generally been tough has 

been the disconnect between the academic side of machine learning research where you 

expect to be working on a dataset that has been handed to you that is fixed. And the reality of 

working in applications and in industry where you actually have to spend honestly most of your 

time working on improving the dataset and you spend very little time on actually tweaking 

architectures. 

© 2021 Software Engineering Daily 8 



SED 1183 Transcript 

 

So that can be a tricky transition for people who come from the academic side of machine 

learning research to kind of switch to thinking much more about, “Hey, how can we improve 

this dataset?” Versus, “Hey, how can I like tweak this architecture, this model architecture to 

provide better results?”  

 

[00:23:07] JM:​ Does it ever happen that I train my model in TensorFlow? I modify it to 

TensorFlow Lite and it becomes too inaccurate? 

 

[00:23:19] PW:​ So I mean that's definitely possible. It's not a very frequent problem that we 

see at least. What we do tend to see is sometimes people are using operations that are not 

supported in TensorFlow Lite in TensorFlow. So what tends to happen is that there're well over 

a thousand different operations in TensorFlow. And TensorFlow Lite doesn't support all of 

them. And researchers are constantly coming up with you know new variations and new kinds 

of operations. So it's much more likely that if you're using particularly obscure or sort of very, 

very new model, that there may be some lag in getting support for that in TensorFlow Lite. That 

seems to be more common than any concerns about accuracy. 

 

[00:24:22] JM:​ Let's take a step back. Why is it important to deploy these models to edge 

devices? Why not just have big models in the cloud that we can just remotely access? 

 

[00:24:35] PW:​ Yeah, that's actually a fantastic question. And when I started working on edge 

deployment back in 2014 or even earlier before I joined Google, that was a question that came 

up pretty often, was like, “Aren't these just cloud things? Shouldn't you just be running these 

on servers?” There are a whole bunch of reasons why there are advantages to running on the 

edge. One of them, like I mentioned with the translate example, is just the interactivity and the 

ability to have really low latency results provided to the user if you're running something on 

device. You can get down to the 20, 30 frames per second on something visual potentially, 

which you'd never be able to do even with 5G sort of network uh connections.  

 

© 2021 Software Engineering Daily 9 



SED 1183 Transcript 

There's also just the economics and the physics of having connections to the cloud running all 

the time especially things like voice interfaces. A great example of using edge deployment to 

actually improve cloud-based experience is something like a voice interface that has a wake 

word, like a lot of the phone and other sort of voice assistants that we use around us. I won't 

say the OKG wake word in case it sets off a bunch of my devices and possibly people listening 

to this, but that is actually running locally on your device so that devices don't have to be 

sending like 99% silence over to the servers or 99% irrelevant speech over to the servers to 

deal with so that they could actually do the initial trigger running locally on device. And there 

are also a bunch of cases where especially in the microcontroller world where you have no 

guarantee that you actually have any kind of network connection at all.  

 

There was a great project that's actually still continuing called Plant Village, which they used 

TensorFlow Lite to actually create an application that farmers in the developing world and 

especially in Africa could actually use to diagnose plant diseases for their cassava crops by 

pointing their phone at the leaves and getting a diagnosis of what was wrong with their plant 

and also getting advice on how they could actually improve that.  

 

And in a lot of these places, there just is no connectivity. If you're out in the fields in the rural 

area of Africa, you may well not have a cell connection. And even if you do, it may be very 

expensive. You may want to not run down your battery. So having something that is actually 

able to run independent with the cloud is also a really important reason to have something 

that's deployed on the edge. And also it can be helpful to – Can be nice if you don't need to 

send data to the cloud to just keep it local. That's always helpful. 

 

[00:28:25] JM:​ Would another on device example be the smart reply in Gmail? 

 

[00:28:30] PW:​ Yeah. Yeah, that's actually a nice – It means that you have this very interactive 

experience. And, again, it doesn't rely on you having good connectivity. And one of the things I 

think about is that people do think of Google as being this very cloud-focused company. But if 

you think about some of the most impactful Google products, like Google Maps or Gmail, the 

thing that was really distinctive about them when they came out was that they had these 

© 2021 Software Engineering Daily 10 



SED 1183 Transcript 

fantastic client-side experiences. With Google Maps, you could just click on the map and drag 

it around, and that was amazing at the time when it came out. And the same with Gmail, you 

suddenly went from having this very static HTML-based sort of view of your mail where you 

sort of clicked through to new pages to having this very JavaScript-driven interface that was 

very interactive. 

 

And so I see on device ML as kind of a continuation of that tradition of bringing great user 

experience and bringing interactivity close to the user so that they can actually have a much 

better experience and have a very low latency, highly interactive, very intelligent interface 

running locally on their device that seamlessly integrates with all of the cloud infrastructure as 

well. 

 

[00:30:05] JM:​ Once I have my model trained and I want to deploy the TensorFlow Lite model 

and then I want to update it over time. What is an update to an existing model on device look 

like? 

 

[00:30:17] PW:​ So one of the nice things about TensorFlow Lite and sort of edge ML models in 

general is that you can swap out the model separately from the application code. So the model 

is just a file that defines the graph of computations that you want to run on device to execute 

the computation. So whether you're updating it with a new version or, for example, you might 

have a user select a particular language and download a different model depending on what 

language they actually want to work with. Replacing the model is just a matter of swapping out 

one data file for another data file. So that can be quite a nice experience when you're 

developing and updating your applications on the edge. 

 

[00:31:17] JM:​ Are there any constraints around what kinds of devices I can deploy a 

TensorFlow Lite model to? 

 

[00:31:24] PW:​ So we're trying to cover as many devices as possible. We have a lot of 

coverage of the smartphone world, so Android and iOS phones. We have a lot of people and a 

lot of applications and a lot of you know models being deployed. What we've been doing over 

© 2021 Software Engineering Daily 11 



SED 1183 Transcript 

the last couple of years is then saying, “Okay, we've got these smartphones with gigabytes of 

memory and that can afford to have a couple of megabytes of models at least and hundreds of 

kilobytes of binary footprint for the code executable. Can we actually go down to much, much 

smaller devices and have sort of peel and stick sensors that maybe cost 50 cents? And so run 

on these sort of microcontrollers have – One of the goals has been, “Hey, can we have a voice 

interface that runs on a coin battery for a year on a piece of hardware that costs 50 cents?” 

Because we think that that would be really massive game changer in terms of how people can 

interact with all of the objects around them. So that's where TensorFlow Lite Micro has come 

in. And over the last couple of years we've actually pushed out the code and a whole bunch of 

examples on devices like the Arduino and the ESP32 that show how even if you've only got 

64k of memory, say, you can still do useful things like a very simple voice interface on one of 

these microcontrollers.  

 

So there really should be a flavor of TensorFlow Lite that you can use no matter what kind of 

edge device you're targeting, even something that's really pretty cheap and pretty 

resource-constrained. So I don't want to say there're no limits at all, but we've tried to make 

the limits as wide as possible on what you can actually deploy these TensorFlow Lite ML 

models on. 

 

[00:33:45] JM:​ we talked a little bit about redeploying retrained models to devices after a 

successful deployment. But you can also just have learning at the edge. You can just improve 

models without doing a redeployment. Are there any frictions to doing that in a 

memory-constrained environment? 

 

[00:34:08] PW:​ There definitely are, and I really haven't spent all that much time with the 

training side of the edge you know. Some of my colleagues have done some amazing work 

with federated learning, which is all about actually trying to learn on device and then actually 

send privacy preserving updates back to help improve the model for everyone else. It's not so 

much a resource constraint, though you do need to treat the weights as variables rather than 

constants if you're going to be training them. It just adds a whole another layer of complexity to 

the process. And it can be quite tough, because often you don't have the label data that you 

© 2021 Software Engineering Daily 12 



SED 1183 Transcript 

have during training on the edge when you're actually trying to do some training updates. So 

just figuring out how to label the data so that you can use it in a traditional supervised learning 

process can be a big challenge in itself. 

 

[00:35:19] JM:​ What are the unsolved problems in machine learning at the edge? 

 

[00:35:25] PW:​ Oh! That is an extremely long list. I think a lot of the unsolved problems are 

around really trying to democratize this ML technology and make it widely available to all sorts 

of different app developers and people developing on embedded systems. At the moment, you 

still have to learn a fair bit about machine learning in order to create a model that you're going 

to deploy as part of your app or as part of your embedded system to solve a problem.  

 

One of my dreams is that we can actually make it so that there are a lot more things that are 

along the lines of the AutoML product that you can get through Google Cloud where you don't 

actually need any ML knowledge to create a model. You can just supply some examples of the 

sort of training data that you care about and the automated process will actually produce a 

model for you and then you can just grab it and use it essentially as a black box component in 

the rest of your app or in the rest of your system. And if we're really going to have widespread 

usage of ML, I think we need to get to that point where for common problems around voice 

and image classification and accelerometers on the embedded side, we have some very, very 

developer friendly workflows that avoid you having to worry too much about what's happening 

under the hood. 

 

[00:37:20] JM:​ And so what area of TensorFlow Lite are you specifically working on? 

 

[00:37:25] PW:​ So I'm focused on shrinking TensorFlow Lite down to run on these embedded 

systems. So TensorFlow Lite Micro started off as what we call a research moonshot a couple 

of years ago, which is you know hey let's take a crazy idea that would be very high risk but 

would be really high value if we could pull it off and let's spend a year sort of researching it. 

And that turned into this version of TensorFlow Lite Micro, which will actually fit within less than 

20 kilobytes of memory. So it's really this idea of taking this whole ML world and miniaturizing 

© 2021 Software Engineering Daily 13 



SED 1183 Transcript 

it so that it will work on these very cheap, very low power, but very resource-constrained 

embedded systems so that we can end up in this world where hopefully we can have these 

sort of peel and stick sensors that we can have in agriculture. We can have them in the built 

environment in buildings around us. We can have them you know in wearables, in everything 

that we can actually interact with as people. We can have, as I mentioned, this idea of a cheap 

voice interface component that you can put into anything that we build. If we can replace 

switches and buttons with things like voice interfaces or gesture interfaces in all of these items, 

then I think that that's really going to change the whole way that we interact with the world 

around us. So that's what I'm really excited about as you might be able to tell. 

 

[00:39:10] JM:​ Very interesting. And just to be clear for people. So what you're talking about is 

the runtime of you have these TensorFlow models that you deployed your edge devices, but 

there's a runtime that actually executes those models. 

 

[00:39:25] PW:​ Exactly. And it's an interpreter that takes the model files and calls the 

calculations needed to execute the model based on sort of the trained weights. And it also 

includes optimized implementations of those calculations for all of the different platforms that 

we care about like the ARM Cortex-M or the ESP32 or the Arduino, all of these different 

platforms that people are using on the embedded side. 

 

[00:39:59] JM:​ Cool. Well, anything else you'd like to add about TensorFlow Lite or the 

ecosystem in general? 

 

[00:40:06] PW:​ So there's actually a lot of tutorials that you can actually find that will help you 

especially on the Arduino side if you're an Arduino fan. You can find the TensorFlow Lite Micro 

Arduino Library as one of the official Arduino libraries that you can download. And we actually 

also have an edX course that's being run by Harvard in collaboration with them that will take 

you through a lot of the edge deployment stuff that I've been talking about. So I'll post some 

links to some of that material up on Software Daily after the podcast. And yeah, I'm really 

looking forward to seeing what people end up building with all of this stuff. 

 

© 2021 Software Engineering Daily 14 



SED 1183 Transcript 

[00:40:53] JM:​ Great. Sounds like a great place to close off. Well, thanks for coming the show. 

It's been a real pleasure. 

 

[00:40:57] PW:​ Awesome. Thanks so much, Jeff. 

 

[END] 

 

© 2021 Software Engineering Daily 15 


