
SED 1174 Transcript 

EPISODE 1174 

 

[INTRODUCTION] 

 

[00:00:00] JM: ​GitHub manages a large API surface for both internal and external developers. 

This API surface has been migrated from purely RESTful requests to GraphQL. GraphQL is a 

newer request language for data fetching and fewer round trips.  

 

Marc-Andre Giroux works at GitHub and is the author of Production Ready GraphQL. He joins 

the show to talk about GraphQL across the industry and specifically at GitHub. 

 

[INTERVIEW] 

 

[00:00:32] JM:​ Marc, welcome to the show. 

 

[00:00:34] MAG:​ Thank you so much for having me. Big fan of the show. 

 

[00:00:36] JM:​ Great to hear. Everybody listening probably has an idea of what GitHub is, but 

people may not know the API surface area of GitHub. People can build external apps on top of 

the API. Give me an idea of the API surface area. 

 

[00:00:50] MAG:​ Right. So the API, you can kind of think of it as just another way to access 

GitHub's domain. So anything people usually deal with with the UIs, like creating issues, 

creating pull requests, you can usually do that with the API as well. The difference is kind of like 

who's interested in using it. So multiple companies, their whole development workflow works 

around GitHub and the API is the primary way to access that domain in just a programmatic 

way.  

 

[00:01:22] JM:​ So give me a few examples of those API endpoints. 

 

© 2020 Software Engineering Daily 1 



SED 1174 Transcript 

[00:01:25] MAG:​ Yup. So you've got endpoints from anything to getting an issue, getting 

metadata for your issue. We've got API straight to Git itself. So creating Git trees, Git objects, 

and we have things that are a bit more high-level, like our new actions workflows, which are 

controllable through the API as well. 

 

[00:01:45] JM:​ And give me some sense of the scale of these different API endpoints. 

 

[00:01:49] MAG:​ Yeah. So GitHub's API scale is actually quite something. We've got so many 

companies depending on that API for development workflows. So we've got actually over a 

billion request data the API serves. We've got into the hundreds of thousands of integrations. 

So different apps or just clients or even tokens accessing the API. So it's a huge scale. It's a 

ton of different use cases to support and tons of different clients that have kind of various use 

cases in mind to support. So it's quite a challenge. 

 

[00:02:25] JM:​ And maybe you could take me through the life cycle of one particular endpoint 

just to give an example. 

 

[00:02:31] MAG:​ Right. So let's take for example just creating a pull request, given a branch. 

So there's multiple ways to do that with GitHub’s API right now. You can do that with our REST 

API by emitting a post request to a pull request endpoint. And you can do that with our 

GraphQL API now by doing a mutation against our create pull request mutation. So is that kind 

of what you had in mind as a workflow? 

 

[00:02:57] JM:​ Yes. Why don't you pick one of those and walk through the life cycle?  

 

[00:03:02] MAG:​ Did you mean kind of like the client life cycle here or –  

 

[00:03:06] JM:​ Well, the server side life cycle. So like I make a request and then what happens 

on the server side? 

 

© 2020 Software Engineering Daily 2 



SED 1174 Transcript 

[00:03:11] MAG:​ Right. So an API request always goes through our load balancer, which is 

called GLB internally. That load balancer will basically hit our Rails monolith. So GitHub is this a 

huge Rails monolith that's kind of famous for one of the biggest Rails apps really. And that 

Rails app serves everything related to the API right now. So if it's the REST API or the GraphQL 

API, this is a Ruby monolith that's handling the request. We've got these controllers that – The 

special thing about it is that the API has kind of like a separate little codebase within that 

monolith that serves these requests. So in terms of REST, we've got a nice way for our 

developers to define endpoints that has everything that a well-defined GitHub API should have.  

 

So permissions are set at as DSL description where the documentation URL is. So a developer 

– Really, what our goal is as the API team is for a team to only define their business logic. So 

whatever the domain is, creating a pull request for example, and we've got the tooling around it 

what is executed during a workflow like this. So rate limits, middlewares, authorization, 

authentication all taken care of. 

 

[00:04:27] JM:​ Tell me a little bit more about what happens at the load balancing layer. 

 

[00:04:31] MAG:​ Yup. The load balancer level doesn't do much at the moment. It has a little bit 

of rate limits when it comes to anonymous requests, but a lot of logic is found in our monolith 

running Ruby. So that little balancer is quite helpful to kind of protect our Ruby processes. But 

anything that goes in with the API itself is usually right in the monolith. 

 

[00:04:56] JM:​ What are the canonical problems that come from maintaining an API surface of 

this scale? 

 

[00:05:01] MAG:​ So there's two problems. There's the user scale. So how many requests 

we're getting? Serving requests that are performant. And then the other scale problem is this 

internal scale, our developer scale. So the developer scale is actually sometimes even more 

challenging than the amount of users consuming our API. So we've got hundreds of 

developers working on different features. They all want to ship their domain not only in the UI, 

but in the API. So building APIs that can serve that many users, but also serving that many 

© 2020 Software Engineering Daily 3 



SED 1174 Transcript 

developers is quite a challenge. That's why we focus a lot on making the experience as simple 

as possible building an experience that's consistent across endpoints when you have dozens 

of different teams building them. This is where we invest them over. So in terms of user scale, 

it's also something we focus on obviously, but the developer scale internally is something very 

challenging as well. 

 

[00:06:02] JM:​ There's a REST API and GraphQL API. Could you differentiate between those 

two APIs and how the interaction pattern differs between those two? 

 

[00:06:12] MAG:​ Right. So that's also a challenge we have in terms of scale, because we trade 

our GraphQL API and a REST API as basically just two different client experiences to the same 

business domain. So in theory, anything you could be able to do with a UI, we would want to 

be accessible through our REST interface and GraphQL interface. In REST, that's kind of like 

what most people are used to. You consume our domain through a set of resources and 

manipulate them through HTTP methods. With GraphQL, you consume our domain with 

GraphQL queries. So it is a lot more flexible. Clients can kind of create their own use case from 

our exposed GraphQL schema, but it might not be as optimized or coarse-grained as REST.  

 

Both patterns can be useful and we try to support both, but it's definitely a challenge there. 

Some clients who really need that flexibility will opt for GraphQL. Others who want to get 

  started quickly and can do what are coarse-grained resources will opt for REST. 

 

[00:07:18] JM:​ Were you involved in building out the GraphQL API? 

 

[00:07:22] MAG:​ Yeah. So GitHub's GraphQL launched in 2016, I believe. And I joined around 

in 2017 to help build out a public GraphQL API. Before that I was at Shopify and we were also 

building one of the first public GraphQL APIs out there. So there's not a lot of public APIs out 

there for GraphQL just yet. It's a very popular API style for internal APIs, but it's um it's super 

interesting and quite challenging to go for that pattern for a public API like GitHub’s or 

Shopify's. 

 

© 2020 Software Engineering Daily 4 



SED 1174 Transcript 

[00:07:56] JM:​ Can you tell me more about the experience of launching a large-scale GraphQL 

API? 

 

[00:08:01] MAG:​ Yeah. So for GraphQL, the main challenge here is that it is a new technology 

and you can't expect every new client to know very well about it. With REST,HTTP has been 

around for enough time that a lot of people know how to consume a REST API. With GraphQL, 

there're a lot of benefits, but you can't assume that everybody knows how to consume it. So 

the big difference here is when launching a GraphQL API, not only do you have to describe 

what your API can do, what kind of workflows you can achieve, but there's also a bunch of 

education about GraphQL itself, which is a challenge. So we try to focus a lot on 

documentation about GraphQL in general, helping people getting started with building your 

first GraphQL query and we try to focus a lot on GraphQL strands, so the type schema, and 

using that to build a documentation where people can discover our use cases as easily as 

possible. 

 

[00:08:59] JM:​ And tell me more about how the difference between Shopify – And because you 

worked on the GraphQL API Shopify, how did that experience differ from working on a GitHub? 

 

[00:09:07] MAG:​ So, ironically, they're pretty similar. Shopify also is a large Rails shop, a big 

Rails monolith. So a lot of the same technology were used, but the domain is very different. At 

Shopify things are oriented around a specific shop while GitHub's domain is a lot more 

interconnected. So you might have an issue that has an event that points to an issue in a 

completely other organization or repository. So the data access patterns are very, very different 

and making that work with GraphQL can be a challenge where everything is scoped to a single 

shop which can be sharded in its own database, for example. The data access patterns are 

manageable. With GitHub we have so many different connections between our types or 

resources that data fetching in a GraphQL world is quite challenging. So we've invested in that 

a lot. 

 

[00:10:03] JM:​ How big is the team that work on the GraphQL API? 

 

© 2020 Software Engineering Daily 5 



SED 1174 Transcript 

[00:10:06] MAG:​ We're a pretty small team. We're a four people team. The way we think about 

it though is that our team doesn't build every GraphQL type or every REST endpoint. So we're 

here to make sure our API is consistent. That our developers and engineers have the best tools 

possible to build GraphQL APIs. So that's what we focus on. So I like to think about it in a 

sense that we are the GraphQL experts. We can talk about how to design a good GraphQL 

API, but we're not the issue experts or Git experts or any other like domain experts. So I truly 

believe a great API, an API that's really well designed is kind of a mix between knowing the 

platform well. So in our case, GraphQL or REST, and knowing your domain really well to 

expose your use cases in the best way possible. So that's why we try to focus on. We focus on 

our strength building a great platform for our engineers to build on. 

 

[00:11:06] JM:​ So you have a surface area of both internal and external APIs. How does the 

difference between the internal API and the public API management differ? 

 

[00:11:16] MAG:​ In theory we'd like them to be quite similar. We'd like people to think about 

internal APIs just as if they were public APIs really, because a well-designed API is a 

well-designed API. In practice, they differ a bit. For example, in service to service 

communication or an internal API, you often know your use case very, very well and you have a 

small set of known customers. So in our case, different teams. That allows us to build APIs that 

are much more optimized, but maybe less flexible than our public API. And that's a big 

challenge. 

 

GraphQL kind of aims to solve that bridge, because we know consumers can kind of query for 

their exact use case. But the flexibility of GraphQL comes at a performance cost that for an 

internal API where you know exactly what you want and you can optimize it very well for a set 

of known consumers, we choose maybe something else or where a different technology or 

even a different design may be more proper. 

 

[00:12:20] JM:​ What are some common design decisions you see or design mistakes you see 

people making in their creation of a GraphQL API? 

 

© 2020 Software Engineering Daily 6 



SED 1174 Transcript 

[00:12:30] MAG:​ The biggest mistake I see is trying to convert an existing source of data into a 

GraphQL API. So that might be taking database tables and trying to convert them into a 

GraphQL schema or even taking an existing REST API and trying to convert it into a GraphQL 

API. That's all things that are possible. And quite frankly they're cool projects to work on, but 

the end result is rarely what your consumer will want to consume. Every platform has different 

design concerns. A REST API will be designed with something else in mind than a GraphQL 

API. So if you try to convert kind of like in a dumb way just one to one from REST to GraphQL 

or database to GraphQL you'll get often results that match your data, but don't match what 

your clients actually want to achieve from an API. So that's definitely the number one mistake 

we try to avoid. And I'd suggest anyone building an API to start from the client first, start from 

the use case first and then think about the data later. 

 

[00:13:36] JM:​ What about maintenance of a large GraphQL API? What are the difficulties with 

maintaining something? 

 

[00:13:44] MAG:​ Maintaining GraphQL API is challenging, again, kind of in terms of data 

fetching. Because there are so many ways to interact with a GraphQL API, so many paths to 

getting the same field, optimizing for all these paths is very hard and that's often shown 

through the most famous problems with GraphQL API is an N+1 problem where fetching 

certain queries causes N+1 queries at a database or a data source. And the way we try to 

avoid that is by building data abstractions that are kind of agnostic to how to query through the 

GraphQL API. There's this pattern called the data loader pattern that originates from Facebook 

actually with GraphQL. That kind of like has an interface on your data fetching layer that's all 

asynchronous or lazy if you want to say. So every time a GraphQL field in our API wants to 

access a resource, it goes through a data loader that kind of accumulates things to be loaded 

and resolves them asynchronously as a batch.  

 

[00:14:51] JM:​ Any other longer term maintenance issues you've seen with large GraphQL 

APIs? 

 

© 2020 Software Engineering Daily 7 



SED 1174 Transcript 

[00:14:57] MAG:​ The other issue I see a lot is just the evolution issue. So if you go on the 

GraphQL website today, you'll see that GraphQL says you don't need to version a GraphQL 

API. And there's some truth to that, because clients only select what they need. So adding 

fields or adding use cases doesn't impose an overhead to existing clients. The downside 

though is that you still need sometimes to remove or modify existing fields, and just like any 

other API, the solution, that is not always easy. So the way to avoid that as much as possible is 

first of all design things in a way that is future proof. And the other thing is having a good 

process for making changes to an API. So API evolution is a huge challenge for any API style, 

but GraphQL especially, because often people don't opt for versions, opt for a continuous 

evolution approach, making sure you understand how your API is used and making sure you 

design things in a future forward way often by, first of all, exposing things that are relevant to 

your domain, not the data, not the underlying data, is of great acuity. So I would say data 

fetching and evolving your graph are two of the biggest challenges. 

 

[00:16:19] JM:​ You've actually written a book on Production Ready GraphQL. What did you 

learn when you were writing the book? 

 

[00:16:26] SA​: So I learned a ton, and this book is basically about everything I’ve learned at 

both Shopify and GitHub. And I think while writing this book, one thing that may sound funny to 

some people is that it's very clear GraphQL is here to stay, but it's very clear GraphQL is not 

for all use cases. So the book actually doesn't say everybody must be jumping on GraphQL 

right away. It actually talks quite honestly about GraphQL's tradeoffs, and that's the thing I 

thought the most about while writing it. And the things I discovered the most is that there are 

very clear tradeoffs where GraphQL's complexity and flexibility might not be needed, but it's 

also very needed in some cases in a tradeoff you might be able to accept. So I would say 

that's the thing I’ve learned most is how to think about GraphQL in kind of a pragmatic way in a 

nuanced way. 

 

[00:17:22] JM:​ Did you spend a lot of time talking to other practitioners who have built a lot of 

GraphQL stuff? 

 

© 2020 Software Engineering Daily 8 



SED 1174 Transcript 

[00:17:27] SA​: Absolutely. So the book actually includes a few interviews I’ve done with other 

practitioners. And part of writing a book was also just my experience talking with so many 

people in the community. A great part of GraphQL is the community around it, the tooling 

around it, and we're all kind of in the same boat. So everybody is new to that technology 

especially when it comes to exposing a public API. So I’ve talked with a lot of people in that 

boat. So definitely there are great companies doing great things with GraphQL these days. 

Airbnb comes to mind, Uber comes to mind. 

 

[00:18:05] JM:​ Not to ask a naive question, but what is advantageous about using GraphQL 

over Rest from your perspective? 

 

[00:18:12] SA​: So I like to answer the question in kind of two ways. The things that are 

inherently useful about GraphQL that we can start with. GraphQL makes it really easy to 

support a very large amount of different clients that have different use cases. The classic 

problems large internal APIs have is that every client wants its own kind of optimized version of 

an endpoint or a resource or any API that's provided. And over time that leads to the server 

team trying to kind of adapt to all these use cases and either creating different endpoints for 

everyone or creating extremely large resources that are kind of tailored to everyone, but not 

optimized for any single client.  

 

So there're various solutions to that. The backend for front end pattern is one. Netflix did 

similar things back in 2012 I think with kind of server adapters to different clients’ experiences. 

GraphQL is kind of like Facebook's approach to this problem, where you can in fact define 

your schema as a way to expose all server possibilities. But then clients are free to choose, 

pick and choose and create their own use case. I like to almost sometimes think about 

GraphQL in terms of clients creating server-side resources if the client was creating their 

endpoint on the backend. So that's kind of the inherently good part about GraphQL and large 

internal APIs. 

 

Then the other part is kind of the more almost magical part of GraphQL where it just happened 

so that the community around it, the tooling around it and the fact that it comes with so many 

© 2020 Software Engineering Daily 9 



SED 1174 Transcript 

things bundled in, like a type schema, like the fact you can select smaller payloads, so like 

exactly the fields you want. These are all things you could do with other APIs as well, but 

they're less well-defined. And the GraphQL specification defines all of these good API 

practices into one. And I think that helped a lot of people just jump on GraphQL because you 

get all of this for free and you don't need to think about it. So these are not things that only 

GraphQL does, but it brings a really good package all together. 

 

[00:20:34] JM:​ Tell me about your perspective on schema design and how that's applied to 

Github. 

 

[00:20:40] MAG:​ Schema design is a thing I think a lot about and it's something really 

important. With a GraphQL API, often people kind of assume, “Hey, I’ve got a schema. I’ve got 

a GraphQL schema. My API is going to be really easy to use compared to my maybe ad hoc 

HTTP endpoints that I’ve defined in the past. But the fact is a GraphQL API is not magically 

well-designed, and thinking about API design is just as important as anything else. So like I 

was saying a bit earlier is thinking in terms of what your clients actually want to do is such an 

important part. And I do think GraphQL helps us think that way because it's so query-focused 

and so client-focused.  

 

So a good way to do that is think about not what your schema should look like, but what your 

queries would look like and design the backend server with that in mind. And we do that by, 

yeah, basically just asking what is the client really wanting to do at this point. Does it really 

want to create a pull request record in the database or does it want something more friendly 

like merging a pull request or checking the status of a pull request or basically thinking in terms 

of workflows and use cases, not tables, not services, not anything internal? 

 

[00:22:06] JM:​ What's the state of the art of tooling around GraphQL? So that's evolving every 

day, and that's something we invest a lot in. A lot of our tooling is kind of internal tooling so far, 

but there're a lot of things I think any GraphQL API should have in place. The first one is a 

schema linter. So a tool that helps you have a consistent API and an API that respects your 

API's kind of rules internally and make sure that's done on every change. So that's something 

© 2020 Software Engineering Daily 10 



SED 1174 Transcript 

we do by checking in the GraphQL schema in Git on every change and having these checks 

ran on every change. So we have this tool called GraphQL doctor, which analyzes every 

change to our GraphQL schema and emits recommendations or warnings depending on what 

the changes. For example, we can detect if someone is removing a field that's used heavily by 

our integrators. We can then warn them that this change is dangerous and we can even tell 

them how many times this field was used. So the schema itself kind of like leads itself to great 

tooling, because it's the interface to your use cases. So any tooling that helps you maintain a 

consistent API and maintain security and making sure your changes are safe is great. 

 

The other part of tooling I think is really important is tooling that come really naturally with 

GraphQL is understanding how your schema is used. So if you think about a REST API, the 

server determines the shape of the response. And when it's sent to the client, you don't 

actually know which parts of that resource are being used. With GraphQL we know down to 

every single field argument, enum value. We know what the client has requested and we can 

assume it's using it. This lets us collect amazing data on how the API is used and use this data 

in our GraphQL doctor tool, for example, which knows what every single change, what the 

impact possibly is. We know new features already being used, already being liked. So this is a 

real power that's often forgotten about GraphQL, is you can know exactly how your API is used 

down to single leaves of the response. 

 

[00:24:33] JM:​ What about maintaining a secure API surface area? Any suggestions on 

security around GraphQL?  

 

[00:24:42] MAG:​ Yep. So one of the first thing I'll say is that GraphQL does appear less secure 

to an external eye, but it's not necessarily the fact. So I think security and API security 

shouldn't only be about the API layer itself. Authorization should be a big part of your domain 

logic, of your business logic, and no matter how you access it, it should be secure. There are 

still things you got to be careful of though with GraphQL. The main part is clients can actually 

send you the queries they want. So that's a benefit for them, but this can be dangerous for a 

GraphQL server especially a public one.  

 

© 2020 Software Engineering Daily 11 



SED 1174 Transcript 

The way we address this again is by using the schema to analyze income inquiries. We use an 

analyzer that looks at incoming queries and computes a cost for each query. Instead of rate 

limiting, for example, a REST API where you would count an amount of requests per minute, 

we instead compute the complexity of queries and use that to block queries that we deem too 

expensive and we use that cost to rate limit clients as well.  

 

The main thing we have to be careful about a GraphQL API is, yes, giving the flexibility to 

clients to design their own use case, but do that within secure bounds. And that's actually 

possible to do in a static way by analyzing the query against the schema. And there are folks, 

IBM research actually, that are working on research projects and actual scientific papers on 

how to analyze a cost for a GraphQL query in the best way possible. That's a big challenge. 

 

[00:26:27] JM:​ What are you focused on at Github today? 

 

[00:26:31] MAG:​ Today our main focus is trying to make sure all our use cases and the quality 

of APIs across REST, across GraphQL, and across our UI is consistent and easily accessible 

by everyone. So what we're working on is trying to make the REST API and the GraphQL two 

first-class citizens, just two different experiences for a client, but expose the same 

functionalities of GitHub at its core. So recently we've released an open API description for a 

REST API. Kind of bringing our REST API on par with GraphQL in terms of schema. On the 

GraphQL side, we still have work to do to bring some of these use cases that were possible in 

REST and not necessarily in GraphQL yet. So we're working on basically making that on equal 

ground and really treating both of these APIs as first-class citizens and allowing clients to pick 

the experience they need. 

 

[00:27:32] JM:​ Do you have any advice for people who are doing large-scale migrations from a 

purely REST API surface area to GraphQL? 

 

[00:27:42] MAG:​ I do. I think my first advice would be try to avoid tools that will try to automate 

this conversion for you as much as possible. So migrating from REST to GraphQL is often an 

excellent opportunity to kind of rethink a design you didn't like with your REST API and an 

© 2020 Software Engineering Daily 12 



SED 1174 Transcript 

excellent opportunity to just design things in a GraphQL-first kind of way and not that weird 

conversion flow we talked about earlier. So that would be my main advice. Try to take that as a 

new beginning and think of your design again in a GraphQL kind of way.  

 

My other advice would be to extract any logic that's within your API layer at the REST layer. 

Extract that elsewhere from the API layer so that both your REST and GraphQL API call in in 

the same code pass. A very, very common mistake is having very important business logic 

stuck at that API layer. Commonly, that's found in kind of REST API controllers. And it's 

tempting for people migrating from GraphQL to REST to have GraphQL call in into the REST 

API, but that's not always great. And what we found is that not only is your codebase better if 

you do that if you extract your business logic into reusable logic by both REST and GraphQL, 

but you also don't get stuck with GraphQL types that oddly resemble your existing REST 

resources because you kind of leak that internal implementation detail that your GraphQL API 

calls in your REST API. So that would be my main advice. Isolate your business logic away 

from any API layer and try to avoid any kind of like automated conversion tools or at least verify 

what the result of these tools are and make sure they fit your design well. 

 

[00:29:42] JM:​ Is it worth it to make that kind of migration? How would you judge the costs 

and benefits of making migration to GraphQL? 

 

[00:29:53] MAG:​ It can be worth it, but that's definitely something to think about. I think if you 

have a single client and a single server and you've got a REST API that works well, I don't 

believe it's necessary to move to GraphQL. You will likely not notice very many benefits 

especially if you already use something like Open API or JSON schema and you've got typed 

resources already.  

 

If you do feel the pains though where you've got multiple client teams asking for maybe an 

endpoint to have an extra field or an endpoint that's growing too large because it tries to do 

too much for too many clients, that's a point where it might be worth exploring GraphQL or just 

other strategies that allow evolution of an API server with multiple clients. In a one-to-one 

© 2020 Software Engineering Daily 13 



SED 1174 Transcript 

scenario where you've got one client that's already optimized with your API, it might be a bit 

less worth it to move to GraphQL. 

 

The other interesting I’m noticing though if you have a public API is that client-side developers 

and mobile apps and frontends using React are starting to love integrating with GraphQL more 

and more. So something funny I’ve been noticing is that even if GraphQL might not be needed 

on a server-side, we're getting to a point where technology itself is so appreciated by clients 

that it may become a requirement for third-party APIs to implement.  

 

So I would say think about the tradeoffs. GraphQL definitely comes with complexity. If you 

don't need the complexity because you don't have these problems, don't move. But it's 

interesting to think about the future where maybe clients will want and require GraphQL API 

because they love the experience so much.  

 

[00:31:47] JM:​ Are there any other anti-patterns you see of people working with GraphQL? 

 

[00:31:53] MAG:​ I think the biggest anti-pattern I see is using it in strange contexts where 

maybe the power of GraphQLs don't apply. I think the main one is public and static data. So if 

you have an API that exposes a list of countries, for example, do you really need the flexibility 

that GraphQL, GraphQL server engine and its overhead and a query language? Or would you 

rather just use HTTP for what it's good for and enable the power of HTTP caching and proxy 

caches for data that doesn't change often and is not authenticated so it can use caching at its 

full potential? It's possible to do caching with GraphQL. That's got a common misconception, 

but that's definitely not the sweet spot. So the biggest mistake I think is just jumping on 

GraphQL because it sounds like it's something you need to use or learn and not thinking if you 

actually need it. The public static data is one example I see often. And the other one that's 

debatable is when you have a single client and a single server and you're just getting started. 

The overhead of building a GraphQL server might be a little too much for some people. 

 

© 2020 Software Engineering Daily 14 



SED 1174 Transcript 

[00:33:12] JM:​ So at Github, when you're standing up a new API, what's the process for 

making it externally available? Do you have to get a REST API in place? Get a GraphQL API in 

place? Have tests for everything? What's that process like? 

 

[00:33:28] MAG:​ There're multiple stages. We like to encourage teams to start by literally 

opening an issue and think about what their API will want to do and what kind of design they 

have in mind. The next step is moving to the implementation stage where we provide kind of a 

lot of knobs to release an API maybe behind a feature flag. We have this thing called previews, 

which are kind of like beta features where people can onboard with a special header. So we've 

kind of have a progression from this endpoint is not available at all or this type is available 

behind this feature flag. It's available behind a public beta until it's full GA. And we have that 

through kind of our internal tools and DSLs where people standing up a new API can choose 

how to do so.  

 

About REST and GraphQL, we kind of have these internal personas about what kind of API 

might be useful to one or both. Ideally, we would want any use case to be accessible through 

all of our interfaces. That's not exactly the case today and it's something we're working on 

right now and trying to make it way easier for teams to expose functionality everywhere.  

 

[00:34:47] JM:​ Are there any major differences between how Shopify managed things and how 

Github manages things in terms of GraphQL? 

 

[00:34:55] MAG:​ It's actually quite similar. The process is actually quite similar except I think 

the main difference here is that Shopify is kind of split into two APIs. They have the admin 

version of the API as kind of the back office and the storefront API. We don't really have that. 

So we do have an internal API and a public API, but we build it as one and annotates parts of 

the schema using kind of a tooling, again, in our DSLs we provide our engineers to annotate, 

“Is this field available publicly or is this part of an internal schema?”  

 

And then at runtime we're kind of able to mask certain parts of the schema depending if you're 

using the API in an internal way or a public way. We actually do the same for anything that's a 

© 2020 Software Engineering Daily 15 



SED 1174 Transcript 

preview feature or feature flag. These are all designed as one schema internally, which 

simplifies kind of the cognitive overload for engineers. But at runtime, our kind of a GraphQL 

server is able to modify the schema a client might see depending on the permission. So do you 

have a feature flag? Are you an internal consumer of the schema? Do you have a 

preview-enabled? All these kinds of things. So the approach here is that we don't actually – 

Although they look like different APIs, they're built using kind of the same foundations and we 

annotate things to generate multiple APIs from one basically.  

 

[00:36:25] JM:​ What's the process for deploying and rolling out updates to a GraphQL server 

at Github? 

 

[00:36:33] MAG:​ So the deployment workflow is the same whether you're deploying a UI 

change, a GraphQL change or a REST API change. Our deployment flow is actually quite fun. 

It's based a lot on ChatOps. So to deploy a GraphQL change, you open a pull request with 

your changes. Our automation runs on the schema to make sure you're designing things in a 

correct way that you're not making a breaking change. And when it's your turn to deploy, you 

deploy using Slack. So we've got this deploy command where you're passing your PR. We 

deploy so much that we actually have a deploy queue that we call trains. You hop on one of 

these trains and you PR gets deployed automatically. So an engineer actually doesn't need to 

be involved into the details of a deploy. We basically interact through those very useful 

ChatOps. 

 

[00:37:22] JM:​ When you're building out your external GraphQL API for Github, did you roll out 

everything all at once? Di you have to have everything ready before a big bang release for the 

external API or did you gradually roll out the API surface area? 

 

[00:37:38] MAG:​ So right before I joined, Github released kind of a small beta GraphQL API, 

which contained quite a lot of things to be honest, but quite a small set of the whole Github 

functionality tree. So that was kind of a small bang, a small initial beta. But since then we've 

kind of been evolving it slowly by adding things. And the way we do things is by exposing 

functionality first internally. So often our UI or mobile app will be using features before it's in 

© 2020 Software Engineering Daily 16 



SED 1174 Transcript 

the public API. So that lets us kind of test and see if we did a good job with the design of the 

API. Then we might roll it to partners in a private way through feature flags. We had these 

preview features where we could expose it to anyone who wants to try it, but knowing it's a 

better feature. And then we release it fully.  

 

So when somebody makes a GraphQL change, maybe adding a field or even a REST change 

actually, adding a new resource, it might not immediately be available in the public API. It goes 

kind of through this pipeline of confidence starting from internal only to available to everyone.  

 

[00:38:50] JM:​ What do you see in the near future for the GraphQL ecosystem as a whole? 

Where are improvements coming and where are the most broad changes coming? 

 

[00:39:00] MAG:​ I think what I’m most excited about is GraphQL being more of a mature player 

into the API landscape. So I’m excited for the time where there's less blogs about here's the 

difference between REST and GraphQL and why is GraphQL better. Or is REST better? And 

focus more on here's when you would use REST or when you will use GraphQL and what are 

the tradeoffs. And get into a place where everyone is in a place where the technology is mature 

enough where it has nothing to prove anymore. There's no more of that API fight between 

different styles and we can focus on the strengths of all the APIs.  

 

For GraphQL itself, one thing I’m very excited about is just different performance 

improvements. The overhead of a GraphQL server where it has to execute everything the client 

requested, asked for, is not something to take for granted. So it does have an overhead for that 

flexibility. And I’m excited for anything new that would change how our GraphQL query would 

be executed. Right now most graphical servers execute GraphQL queries in a fairly naive way. 

And there are exciting things coming like pre-compiled queries and persistent queries that I 

think could change that game a lot.  

 

The other part of it is observability of a GraphQL server. A graphical server can often be kind of 

a black box where you send in a query, something happens, and you get exactly the response 

you want. But how that query is computed, how that GraphQL engine computes it is quite 

© 2020 Software Engineering Daily 17 



SED 1174 Transcript 

important for performance reason and something you want to detect kind of slow nest in and 

it's not always easy out of the box right now. So that's something we also spend a lot of time 

internally on. We're making sure we understand how certain fields execute, but also the 

relationship of different query shapes giving different performance results. So that's a big 

challenge trying to optimize for all these use cases. 

 

If I look at our GraphQL API and if I come back to what I was saying earlier where every 

GraphQL query is kind of a client constructed server endpoint, well, we serve so many different 

shapes of GraphQL queries that you can almost kind of think of it as if we were supporting 

millions of endpoints. So it's definitely a challenge to make sure that all these use cases 

execute in a performant way, in a consistent way. 

 

[00:41:37] JM:​ Let's say I’ve got my GraphQL schema built and I want to evolve that schema 

over time, what are the best practices for evolving a GraphQL schema? 

 

[00:41:47] MAG:​ So the state of the art is using a continuous evolution approach, meaning 

you've always got one version of your API running in production and you use deprecations to 

kind of warn clients about upcoming changes. So the great thing about GraphQL is it includes 

deprecations as a first-class citizen. So there's a deprecated directive you can apply to certain 

fields, values for example, to make sure clients are aware that an upcoming change is coming. 

So we use that heavily when wanting to make changes. We deprecate a field and start 

communicating that it's going to go away. 

 

The key here though is to focus on changing things in an additive way always. So if I’m 

deprecating a field, it's because there's something else a client should use instead. If you 

deprecate something without an alternative, clients are not going to move away. So continuous 

evolution is great because clients don't need to hop from version to version and kind of grasp 

all the changes that are contained within versions, but it also comes with great responsibility 

where you have to communicate changes and offer alternatives that are great for clients. 

 

© 2020 Software Engineering Daily 18 



SED 1174 Transcript 

One way we do that is by using a technique we call brownouts. So communicating changes 

are great, but you always have a long tail of clients that either don't care or didn't see your 

communications about a field going away. The way we try to reach those people is by using 

brownouts. And brownouts are basically periods where we'll disable that field as if we've 

removed it just for a minute or two hoping that the client systems using our API notice maybe 

errors or anything where they would be able to realize something's going on and then notice 

our communications.  

 

So in order, I think, the first thing you want to do is deprecate your schema members that are 

going away. Start communicating these changes. And as I was saying earlier, with GraphQL, 

we've got the potential to know exactly who and how are they using our API. So you can track 

which clients would be affected by a certain deprecation and email them directly. Hide these 

fields from your docs so no new clients are getting on-boarded. And finally if that doesn't work, 

using brownouts to kind of wake up people who haven't seen the communications is a great 

way to do it. 

 

I must say though that versioning GraphQL is possible even though if it's not a common 

approach. The folks at Shopify use kind of a filtering approach like we do at GitHub up for 

internal or public to create these versions, these calendar versions between GraphQL versions. 

And that's been working great for them. So I think they actually got a blog post about that. So 

common approach is use continuous evolution as long as you can with great communication, 

but versioning is possible even though that's not the most commonly used approach. 

 

[00:44:58] JM:​ Mar, is there anything else you want to add about Github or GraphQL or just 

your thoughts on engineering in general? 

 

[00:45:06] MAG:​ I think the only thing I would want to add here is that there is a lot of talk 

about GraphQL versus REST versus GRPC or whatever API style there is, and I think the 

important thing here to remember is that we're building APIs for users to build, to build things, 

to use features. And for them the API style is not always the most important thing. It's often the 

thing we like to think about as engineers building an API. But the reality here is that we have to 

© 2020 Software Engineering Daily 19 



SED 1174 Transcript 

pick the one that enables our clients to access the use cases in the ways they want. And I think 

no matter what the technology, designing a great API is similar, whether that's a code API, a 

Twirp, GRPC, GraphQL or REST, thinking about the client is key. And finally I think there's 

nuance in everything and carefully examining the tradeoffs. In our case, we've picked to 

support both, is really important. 

 

[00:46:09] JM:​ Okay, Marc. Well, thanks for coming on the show. It's been a real pleasure 

talking to you. 

 

[00:46:12] MAG:​ Thank you so much, Jeff. 

 

[END] 

 

 

© 2020 Software Engineering Daily 20 


