
SED 1161 Transcript

EPISODE 1161

[INTRODUCTION]

[00:00:00] JM: Data labeling and model training require tools to enable humans to work in the 
loop more effectively. The human in the loop is necessary to train models via human-labeled 

data. Humanloop is a platform for streamlining the tasks of the human in the loop. Raza Habib is 
a founder of Humanloop and joins the show to talk about NLP workflows and his work on 

Humanloop. 

[INTERVIEW] 

[00:00:30] JM: Raza, welcome to the show.

[00:00:31] RH: Thanks, Jeff. It's a pleasure to be here.

[00:00:32] JM: We're talking today about training and deploying machine learning models, 
specifically NLP models, natural language processing. What is difficult about training and 

deploying natural language processing?

[00:00:43] RH: That's a great question and gets really to the heart of what we're trying to do at 
Humanloop. So what I would say is that the process for deploying machine learning models 

today is both extraordinarily data-hungry and also extremely waterfall. And what I mean by that 
is that to train these modern neural network models, deep learning models and especially in the 

NLP space transformer based models that have really revolutionized things in recent years, 
often requires a very large labeled training set. So this is a dataset where you have inputs, 

which are often text and outputs which are labels that have been human curated. And when I 
say that it's extremely waterfall, what I mean is that the process of building a machine learning 

model today is still quite disjointed across multiple stages and often multiple teams. So typically 
you find the dataset that you want to train a machine learning model on and then there's a team 

of annotators that has to annotate it. That gets handed from them often to a data science team 
who maybe are not software engineers by trade but they're people who are machine learning 

engineers or machine learning experts. And once they've trained models, it's often a different 
set of people who are then responsible for deploying and handling ML ops and monitoring. 

	 © 2020 Software Engineering Daily	 �1



SED 1161 Transcript

And as a result of this sort of multiple stages of handoff or multiple steps, it's difficult to update 
models very quickly, but also there's a huge opportunity missed, which is that actually because 

the data gets labeled at random or the model isn't incorporated in the annotation process, 
there's a huge amount of redundancy baked into the data labeling. And so what we're trying to 

do at Humanloop is actually make this entire process a closed iterative process instead of 
something that's very waterfall. And the benefits of that are many fold, but one of the big ones is 

that you can use the model to find the most valuable data as your annotate.

[00:02:30] JM: And tell me a little bit more about what specifically you are building at 
Humanloop.

[00:02:35] RH: Sure. So in the first instance, it's a platform to annotate data, train and deploy 

these natural language processing models. So if you were to use the Humanloop platform, you 
would upload your data either by the API or CSV or you can drag and drop a file. And you 

basically get taken to an interface where you can start annotating that data or a team of 
annotators can annotate that data. And whilst they are labeling it or annotating it, we train a 

machine learning model in parallel. 

So for example, you could imagine that you have a team of people who want to classify their 
support tickets. So they want to automate support ticket routing. So they would load up the 

existing support tickets into the platform. They would have their customer support people label 
those tickets. And as they’re labeling, the machine learning model learns in parallel. Selects the 

most valuable data to annotate next so that instead of labeling entirely at random, you're always 
labeling the things that will help the model the most. And it also gives you real-time feedback 

into the performance, which is something that is traditionally missing. So in the normal way to 
deploy machine learning models, you only really find out about the model performance after 

you've labeled all the data. But we actually give you some kind of metric of performance in 
parallel. And then once you've finished labeling or the performance is reached a standard that 

you're happy with, then there's a hosted API with the deployed model that's hosted on GPU 
that's ready to go. So you can simply take that API endpoint and integrate it into whatever 

process you're hoping to use the model for.

	 © 2020 Software Engineering Daily	 �2



SED 1161 Transcript

[00:04:02] JM: How does Humanloop change the way that machine learning teams act with 

each other?

[00:04:08] RH: This is a really good question. And first and foremost I think the goal here is to 
try and sort of have fewer separations of handoffs and allow a more data-centric approach to 

machine learning training. So instead of spending lots of time going back and forth with 
annotation guidelines to an annotation team potentially outsourced or if they're in-house, often 

expensive resource, and pinging back and forth, the hope is that actually this is a continuous 
process with all of these different teams working together to the annotators and the data 

scientists continuously rather than in a multi-stage process.

[00:04:48] JM: So you mentioned that the machine learning model training and the text 
annotation is parallelized. Can you talk a little bit more about that?

[00:04:57] RH: Yeah, definitely. This is really at the core of what we do. So we use a machine 

learning technique that's been around for a long time called active learning, but we actually use 
some research from myself and one of the other co-founders PhDs to try and make this scale 

really well to modern sized deep learning models. And the idea behind active learning is that at 
any point in time a model will have uncertainty about the world or uncertainty about the thing 

that it's being trained to do. And so you can use that uncertainty to guide the annotation 
process. And so the way this works in practice is you start off with a small number of annotated 

documents and you train a model on that partially labeled dataset. And then the model can tell 
you which of the unlabeled data points for which it doesn't yet have a label is going to be most 

valuable in terms of improving its performance. And so you prioritize the annotation from there. 
So the way it works in the tool is you would annotate a small number of labels, or the team 

would. The model would rapidly update. And then based off that update, it then prioritizes what 
data points should be labeled next. And what we do a little bit differently from traditional forms of 

active learning is that we take into account two different types of uncertainty. So when selecting 
data to label, you're always trying to choose the data points about which the model is unsure or 

from which it can learn the most, but there's really two reasons that a model can be unsure 
about the correct label for a given data point. So imagine I have a sentence and I want to put it 

into one of two categories. It could be a tweet, and I want to say what the sentiment is. The 
model could be uncertain, because it's never seen a sentence like that before, in which case it 

	 © 2020 Software Engineering Daily	 �3



SED 1161 Transcript

would be a really valuable sentence to label for the model. But the model could also be 

uncertain because the sentence is just inherently ambiguous, and even humans would find it 
hard to label that. And so what we do is we take into account model uncertainty using a 

technique called Bayesian Deep Learning, which allows us to find the data points which are 
uncertain because the model lacks knowledge, rather than uncertain because the data point is 

ambiguous. And doing this can give a very large reduction in the number of data points you 
need to label to get to a fully trained model. 

[00:07:08] JM: So how does Humanloop fit in with the other tools that are available in the NLP 

developers workflow?

[00:07:16] RH: I think the heart of it is that we think that a lot of the models are getting gradually 
commoditized over time. So people are increasingly using very similar architectures. So whether 

it's modern transform based models or even before that, it was still quite similar in terms of word 
embeddings followed by some form of RNN often. And so we're trying as far as possible to 

make those choices automatic and abstract them away and actually change the attention of the 
data scientists less from selecting model architectures and tuning hyper parameters, which can 

largely be automated and more towards curating datasets. And in this regard, we've been really 
inspired by things like [inaudible 00:07:55] view of software 2.0. The idea that actually what 

fundamentally affects the quality of a machine learning model isn't the code that it's been built 
with, but most often than not is the quality of the dataset. How well labeled is it? Do I have good 

coverage? And the best way to improve a model once you've run it and trained it is to actually 
investigate where do I need more data? Or do I have data examples that were mislabeled and 

how do I find those? And so we are trying to make the whole process primarily data first. And in 
some sense it's a different way of thinking about building NLP models. 

So we do interact with a lot of the traditional tools in the sense that a lot of the libraries that 

people are used to using spaCy, Hugging Face, Flair, we've encapsulated their models into our 
backend, but we actually try and choose the most appropriate model automatically and have the 

way that people develop these models be much more focused on the data. 

	 © 2020 Software Engineering Daily	 �4



SED 1161 Transcript

[00:08:51] JM: So in the ideal world, you're taking advantage of these different NLP systems 

like Hugging Face or SpaCy, but you're abstracting it away so that the annotator, the human in 
the loop does not have to deal with that kind of development.

[00:09:06] RH: Yeah, that's right it's not purely the models from Hugging Face and spaCy, 

because we build on top of them to make the active learning work well. But the fundamental 
architectures will be very familiar to people who use those libraries. And in addition, we have a 

few of our own as well.

[00:09:22] JM: The name of the company is Humanloop. So what is your vision for who the 
human in the loop is? Like what kinds of qualifications does that person have?

[00:09:32] RH: Yeah. So in the first instance, the people using this today are typically data 

science teams, because those are the ones who feel the pain of data annotation and need to 
train models. But the longer term vision for the company is really to make training these systems 

so intuitive and so similar to teaching a person that actually the end user can become the 
domain expert themselves. So we've worked with lawyers and we've worked with teams of tax 

accountants currently still working with data scientists. But in the long term vision of the 
company, we want to make it possible for anyone to be able to automate these tasks and 

achieve their own goals by programming computers in this novel paradigm where instead of 
programming by explicitly writing down instructions one after another, you actually program by 

specifying a goal and providing examples of what it is that you want. In the current instance, 
those examples are in the form of annotations. But you can imagine that that definition could be 

broadened in the future. And so the mission is really to think about a new paradigm of 
programming and democratize access to that to many more people. 

[00:10:35] JM: And what kind of applications become easier to build as the Humanloop 

becomes more powerful? 

[00:10:42] RH: So firstly, the first big impact is we dramatically reduced the number of labels 
required. And so in places where the human annotator or the human in the loop would have 

otherwise been very expensive, this improves the ROI from those applications and suddenly 
makes them much more appealing. So places that we've sort of seen a lot of interest are legal 

	 © 2020 Software Engineering Daily	 �5



SED 1161 Transcript

firms where actually document understanding and contract understanding, building these 

systems and building them in a bespoke way has traditionally been very expensive, because 
you need the lawyers to do the annotations themselves. But if you can make it sufficiently 

efficient that a lawyer can give this system a small number of examples and have it learned from 
them, then applications where you have a lawyer or a doctor, or we've even worked with teams 

of tax accountants. These are applications where previously the cost of annotation itself would 
have been prohibitive. 

The other thing that sort of we think is really important about human in the loop deployment is 

dealing with situations where you need a system that works 100% of the time. So machine 
learning as a software paradigm, one of the ways it's different, there are many ways it's different 

from traditional software, but one is that it never works 100% of the time. A machine learning 
model will not generalize to unseen data with 100% accuracy. You're very lucky to get high 90% 

accuracy. And so you need some way of dealing with those edge cases, the cases that the 
model can't handle. And this is also somewhere where actually having well-calibrated 

uncertainty estimates is important. 

And so another form of application or the utility of having a human in the loop deployment is that 
in the instances where the model is uncertain, you can naturally fall back to that human who's in 

the loop. So you could imagine that you have some human executing labeling data or teaching 
the system and it automates the tasks that are easy. So if it was, for example, a tax accountant 

categorizing expenses, this is a task that actually is being done at some of the large 
accountancy firms around the world that a human expert will look at expenses and figure out 

their tax treatment and put them into various categories. And they can do this, teach the system. 
When the system is confident, it can start automating their work. But on the examples that are 

new or it hasn't seen before, it can fall back to the human. So deploying these systems that 
require some human handoff or fallback or are safety critical is much easier with the human in 

the loop deployment.

[00:13:02] JM: Tell me a little bit more about the engineering behind Humanloop. So it's an 
application that the user just loads onto the desktop and you wire in something like Zendesk 

tickets. I mean, you could use Zendesk as an example, like if you're doing ticketing NLP over 

	 © 2020 Software Engineering Daily	 �6



SED 1161 Transcript

the tickets that are coming in for a software company, how would Humanloop work for that 

application?

[00:13:26] RH: Sure. So you can connect the data source into Humanloop via API. And we are 
in fact working on things like Zapier and Zendesk integrations to make that particularly easy. 

And it's a web-hosted application. So you would load it up in the browser and each ticket would 
appear from the end user. Or if it was integrated, it could come directly from Zendesk. So the 

ticket would come. The customer service rep would read that and recognize the category that it 
needed to belong to. So for example, maybe this was a query about returns and then there's a 

template that they want to automatically use. So they would tag that as a returns related query. 
And the model would automatically learn from that and it would look at the unlabeled support 

tickets that sit in the queue and work out which of those are best to label next to maximize its 
learning. 

So maybe it's learned really well about the concept of returns, but it doesn't know about late 

delivery, for example. So it'll go and ask you to give it more examples of those data points until 
it's confident. And then as that's being trained, there's an API endpoint which you can send 

queries to for prediction. So these could be coming for when new support tickets come in once 
the system is trained. You would send them to this API endpoint, and we send back the 

predictions for each class or the most likely class alongside their confidence. So we think that 
this support ticket is related to returns with 75% confidence, or 90% confidence. 

Now if the confidence is very high then maybe that just triggers some kind of automated 

process. So perhaps you have a template that you always send, an email template, and that just 
gets sent automatically. But if the confidence isn't high, then the ticket gets rooted back to the 

annotation interface where the human can then re-label and the model will update from that. 

[00:15:11] JM: And can we talk more about the engineering behind Humanloop itself? So now 
that we've talked through an example, what exactly is going on under the hood in the 

Humanloop application?

[00:15:21] RH: Yeah. So the back end is built in Python, and what happens is when you load up 
the data, we do a bunch of things immediately. So firstly, we just extract like are there any 

	 © 2020 Software Engineering Daily	 �7



SED 1161 Transcript

labeled data points? If so, we immediately train a small model on that. If not, we take you to the 

annotation interface. So we get you to label – So you have to label a small number of examples. 
So until you've labeled a seed batch, it's purely an annotation interface. But the moment you get 

to that first seed batch of labeled examples, then we have hosted on AWS a range of NLP 
models and we immediately select one of those, start training it. Train that model. The train 

model then sends back accuracy statistics to the frontend for the viewer to see, and it also then 
basically maps over all of the unlabeled data points and scores each of those unlabeled data 

points. Finds the top fraction based off the active learning scores that we have and then queues 
them up for the human to annotate next. 

And the models that we have running on the backend, as I said, range from transformer-based 

models with sort of fairly state-of-the-art architectures down to more sort of simple deep learning 
models, which just have traditional, say, what are called glove vector embeddings or other 

traditional word embeddings and recurrent neural networks on top.

[00:16:41] JM: And is the front end of the Humanloop application, is that an electron app? 

[00:16:46] RH: No. So that's been built – it's a React frontend. It’s a JavaScript with React.

[00:16:50] JM: Okay. So it's completely in the browser.

[00:16:52] RH: Yeah, completely in the browser. 

[00:16:53] JM: Tell me about some of the difficult engineering problems in building Humanloop.

[00:16:57] RH: There's a lot of different challenges. I think the biggest challenge is actually on 
the machine learning side, is figuring out how to scale some of these active learning and 

Bayesian uncertainty techniques to models of the type of scale that we have today. So typical 
deep learning model for NLP might have millions or even billions of parameters. And if you're 

going to model uncertainty about them, then the way that typically works in a Bayesian 
paradigm is that instead of finding the single best parameter estimate for neural networks – So 

the normal way to train a neural network is you would optimize it with, say, a gradient descent 
optimize or some form, maybe Atom that kind of comes out of the box in TensorFlow or 

	 © 2020 Software Engineering Daily	 �8



SED 1161 Transcript

something like that. That returns you the single best estimate for the parameters and then you 

use those parameters for your application going forwards. 

But in reality, there's actually uncertainty about what the best parameters are. Having seen a 
small number of examples, you can never be completely sure what the best parameters are. 

And so what we do is we try to model a distribution, a probability distribution over what the 
parameters are. So you could imagine this could be a Gaussian distribution, say, although there 

are many options. And if you want to do this, then actually that means you have to store 
immediately a huge number of more parameters. So even just storing the parameters of the 

probability distribution can itself be prohibitive. 

And then oftentimes to do something like find the uncertainty estimates requires inverting a very, 
very large matrix, and all of these things become analytically and computationally intractable 

very quickly. And so the hardest things we've had to do are actually to come up with 
approximations to these techniques. So it's really infeasible to invert, say, the hessian of a 

neural network in any reasonable amount of time for these modern scale applications. And so 
we have to do numerical approximations to get that fast. 

So there's been a lot of research that has gone into how can we do these Bayesian updates of 

these bayesian approximations in a reasonable amount of time at this enormous scale? And 
then the other challenge is that I mentioned that we retrain the models in between these 

batches of annotation. So a human or a team of human annotators annotate a few examples, 
the model retrains, and then we rescore the data. Now to retrain an entire neural network of this 

scale in its entirety could take many hours or days, and it's not really practical to have the team 
of human annotators sitting around waiting for the models to retrain in full. 

And so what we do is we actually do a very rapid partial Bayesian update to a subset of the 

parameters and use that to give fast feedback to the annotators and then we run the slower 
retraining sort of in parallel so that there's immediate feedback coming back to the interface. 

And then when the model has retrained maybe after a few hours or potentially overnight, we 
then do the full update. And so from the perspective of the user, it always feels responsive and 

reactive and you're getting feedback every time you label a small number of data points. And 

	 © 2020 Software Engineering Daily	 �9



SED 1161 Transcript

then we do a longer retrain that might be quite time consuming less frequently, but we hide that 

from the end user. 

[00:20:06] JM: How do you test the application?

[00:20:08] RH: Yeah. So I guess there're a few different things to test. But one of the big ones is 
that you're getting a reduction in data labeling. So one of the things that we do is we run tests 

where we compare labeling using our tool versus labeling at random and look at how the 
accuracy or the performance metrics of a model function as a number of labeled data points. So 

what we're looking to see is that we're always getting better performance. So these are offline 
integration tests on a range of datasets to see that we always get better performance at the 

same number of data points than if you were labeling at random. 

But actually testing machine learning software is fundamentally different as well to testing 
traditional software because it is stochastic. So we have regression tests as well for an entire 

neural network training model. So we have a set of datasets that we train on. And when we 
make changes to the architecture, we make sure that we don't see performance get worse on 

those. And then you also have all the standard testing that you expect; unit tests and integration 
tests, for each of the individual modules. But what is different about it is making sure you also 

have those regression tests, that when you're changing architectures you're changing models. 
You're not making the performance of the system worse.

[00:21:19] JM: Zooming out a bit, can you tell me what was the motivation for building 

Humanloop in the first place?

[00:21:26] RH: Yeah. So it really came about through conversations between myself and the 
other co-founders all of whom have been at the intersection of academia and industry for many 

years. So one of my co-founders, Jordan, was previously working at Amazon Alexa, as was 
Emine. And we're also joined by the Professor David Barber, who's the director of the UCL Al 

Center in London. And we were all seeing that when we were doing projects in industry, they 
were often bottlenecked firstly by this need for data annotation so that they would – Projects 

would take a very long time because of how much annotation was required. And also they were 
delayed by this handoff between the teams. So we saw, there was like one project that I saw in 

	 © 2020 Software Engineering Daily	 �10



SED 1161 Transcript

particular which was a fairly simple NLP application for text categorization that from when the 

team had the idea to do it, to when they finally got the model deployed, took them almost two 
years. And a big part of the delays that were involved in that process were because of the 

disjoint communication between the various teams involved. There was a team of subject matter 
experts who had to be annotating the data. And they weren't themselves technical. And there 

was an outsourced data science team who were training the models. And they had to explain 
sort of how to annotate clearly to the subject matter experts. And there's a lot of nuance in these 

data annotations that is difficult to communicate. So they would label a dataset and iteratively go 
back and forth refining the instructions to the annotators. They would repeatedly train models. 

And it just took them an extremely long period of time to do something that to us as researchers 
felt like it should be extremely simple. And it felt like the tooling was making this process much 

harder than it needed to be. And that there was this huge opportunity to make the whole 
process much more intuitive and much faster, much more data-efficient. And that if you were 

able to do that, you would also increase the access to how many people could use these 
technologies, because so much of it can be done purely through annotation.

[00:23:25] JM: What's the division of labor across the team in terms of working on different 

areas of the application?

[00:23:30] RH: Sure. So on the engineering side, we split between – So I've been mostly 
working on the machine learning itself and I'm making the active learning work well. And we're 

getting advice and input from David and Emine who are both excellent academics with amazing 
research track records there. And then Jordan has a lot of experience on frontend design and 

UX design. So he's been really owning the development of the user experience and the React 
front end. And Peter has been making the whole thing stand up and handling the DevOps 

challenges that come with deploying these very large models and handling the load balancing 
and the horizontal scaling that's required as more and more models get run on the system. And 

then all of us have been trying to spend a lot of time speaking to customers, because we think 
that, really, to make this work well all of us need to understand deeply what it is that the 

customers care about. And so sales is still something that we all as founders want to make sure 
we continue doing until we really can't anymore. 

	 © 2020 Software Engineering Daily	 �11



SED 1161 Transcript

[00:24:28] JM: You've talked a little bit about uncertainty. Can you talk more about the 

importance of uncertainty in NLP models?

[00:24:36] RH: Yeah. So the uncertainty is important for two reasons. One is post-deployment. 
When you have high uncertainty, it's an indication that you probably don't want to let the 

machine learning model handle it entirely on its own and you might want to have a human 
intervention or back-off to some other kind of system. And the other reason why the uncertainty 

is important to be aware of is because it allows you, as I said, to find the best data points to 
label. And that's the core of it. 

I think I spoke a little bit about the two different types of uncertainty that are important here, 

right? And I mentioned before there's uncertainty that comes inherently from ambiguity or what 
we would call noise, and these are examples of data points or sentences that genuinely are 

difficult to categorize, like humans would actually disagree on this. And this is one of the things 
that makes annotating data for NLP so challenging is that actually you'd be surprised by how 

much different people might disagree about the annotation for a sentence. So especially for 
things like sentiment, say, if you ask four different people for a response, you often get four 

different answers. And so figuring out how to handle quality and what examples might need 
multiple labels and where you need to do quality assurance is made a lot easier if you have 

good uncertainty estimates. It's also extremely important to make the active learning work well. 
And then finally, it's needed post-deployment. So when you integrate with a human in the loop, 

you can find the places that you need to back off to the human. 

[00:26:06] JM: And you also mentioned earlier that under the surface, there's all the different AI 
systems. So you've got Hugging Face and spaCy, and Flair, and these have their own NLP 

models. Tell me a little bit more about the integration between those NLP model systems and 
Humanloop.

[00:26:27] RH: Sure. So we essentially have a unified interface for any model. So it's a fixed 

interface. That means we can try and chop and change between different libraries. And so 
integrating those was just a question of taking the existing API interfaces that they have and 

matching them to ours. And then once we've done that, we then are building on top of each of 
these models to make the active learning work well. So it's essentially – They all end up feeding 

	 © 2020 Software Engineering Daily	 �12



SED 1161 Transcript

into the same model on top of them for the final few layers from our perspective. So I don't want 

to go into too much detail about how we make that magic work, but the core of it is essentially 
just making sure that from our perspective there's a uniform interface irrespective of what the 

model library is. So whether it's one of our own models or whether it's one that comes from 
these libraries, we've just unified that interface.

[00:27:17] JM: Can you tell me a little bit more about the state-of-the-art of the NLP tooling? So 

just how these different frameworks interact and what their different pros and cons are?

[00:27:27] RH: Sure. So if you're looking for transformer based models, these sort of highly 
parallel models that have taken the NLP world by storm in recent years that are almost entirely 

attention-based, then really the most popular library by far is Hugging Face, and it's a really 
well-maintained library, a huge community and has been growing in popularity enormously 

recently. They've got a large library of pre-trained models that users are uploading and a very 
responsive team. 

The only real disadvantage is that it is all transformer-based models. So if you want something 

that's different to that environment, it's not necessarily supported there at the moment. But 
within the world of transformers, I think they're definitely the leading player and everything has 

been designed to run. It's enterprise level software. It's very performant. And they are also really 
fast at getting ideas from research into production. So that's been very impressive. 

And then Flair, I think, is less of a production level library, but has some advantages, and that it 

probably still has the state-of-the-art models for certain natural language tests related to 
sequence labeling and named entity recognition. The maintainers or the original authors of Flair 

were also excellent NLP researchers who made some breakthroughs in word embeddings that 
take into account neighboring contexts that have proved really useful for named entity 

recognition. And so in those types of models, they often have advantages. And spaCy is another 
extremely well-maintained, extremely popular NLP library that really covers this whole spectrum. 

I think they also now have their own wrappers to Hugging Face transformers as well, and they 
have a very intuitive API. They have a lot of pre-trained models. So if you want to be rolling your 

own solutions, then those are all excellent options.

	 © 2020 Software Engineering Daily	 �13



SED 1161 Transcript

[00:29:21] JM: What about Snorkel? What's the role of Snorkel in NLP development?

[00:29:25] RH: Yeah. So Snorkel I think is a really interesting project, and there're two arms to 

Snorkel, right? There's the company and then there's the original open source project. And 
Snorkel is a complementary technique to active learning to what we've been talking about so far 

at trying to solve this problem that we discussed that training these modern machine learning 
models and specifically NLP models is very data-hungry. And the way Snorkel tries to approach 

this is they say, “Okay, oftentimes, instead of having a label, we might be able to specify a 
heuristic that would allow us to classify some data, but in a very inaccurate way.” 

So for example, we've mentioned the example of sentiment analysis a couple of times. So it's 

maybe one that's worth sticking to. So if I wanted to label the sentiment of a sentence, I might 
have a heuristic that if it contains the word bad or the word shit, that it's probably a negative 

sentiment sentence. Now that's not always going to be true, there are counter examples, but it 
might be true, say, 70% of the time. And the idea of Snorkel is that if you can – So they call 

these heuristics labeling functions. And the idea is that you can specify a labeling function as a 
rule that takes in a sentence of text or a document and then makes a best guess at the label, 

but isn't always going to be accurate. It's not as good as a human. 

Given a collection of these rules that are not correlated with each other. So they will sometimes 
disagree. You can use them together to make a best guess for the label for each of the 

instances in your dataset. So some of the labels could come from humans. And then the rest 
would come from these automatically generated label rules. And given those heuristic rules, you 

then make a best guess for each label. And once you've got a best guess for each label and the 
confidence, they then train a model against that label set. So they essentially automate the 

labeling approximately and then train a model against those automated labels. 

And I think this is a – It's a great technique especially when you have no label data at all. So it 
helps you overcome what's called the cold start problem where you have no labels to start with. 

And even active learning is not possible until you have some labels. It does have some added 
complexity and that now you have to manage this collection of rules, and it can grow – You can 

get a very large number of rules required, and it can sometimes also be difficult for the domain 
experts to write the rules in the domain specific language that is required by Snorkel. So those 

	 © 2020 Software Engineering Daily	 �14



SED 1161 Transcript

are some of the downsides. But I think it's a really good technique to overcome cold starts and 

is complementary to active learning. It's actually something that we're likely to incorporate into 
the Humanloop platform in the future, because the way we view it is that weak learning is a 

great way to get started, and active learning is a great way to get to a very performant model. 
So often in machine learning, getting to 80% accuracy or getting to some sort of decent level of 

accuracy is not that hard. But then the final few percentage points of performance, going from a 
model that is okay to a model that is very good and good enough to be deployed in production is 

where most of the effort is spent, and that's where active learning becomes particularly useful in 
helping you curate these datasets. And so the two techniques are very complementary, but 

useful at different stages of the pipeline. 

[00:32:52] JM: Taking a bird's-eye view of the NLP space more broadly, what are the 
outstanding problems in NLP that you see as unsolved.

[00:33:00] RH: Oh gosh! Wow! That's a big question. And common sense reasoning is still very 

much unsolved. I mean, ultimately, we've made huge strides in recent years, right? Ever since 
the advent of deep learning and NLP more or less switched wholesale over to deep learning-

based methods. There's been enormous progress in machine translation, in speech recognition 
in speech synthesis, in question answering, in text generation. All of these have seen big 

performance gains, but we're still a very long way away from a system that has any semblance 
of understanding in the way that a lay person would think about it. Common sense reasoning, 

grounding language in the real-world remains open, and there’s a really interesting paper ACL 
this year that was debating whether or not language models are actually ever going to be able 

to, on their own, come to develop this kind of knowledge of the world or whether you need other 
contextual information. 

There was a lot of excitement a month or two back around the announcement by open AI of 

GPT3, which is the latest language model they train. So a language model is a large NLP model 
that's trained in an unsupervised fashion on a huge corpus of data often just to predict either the 

next word or to fill in gaps in a sentence. The idea is you're trying to learn a probability 
distribution over language itself, and people are really excited about GPT3, because this was a 

huge model trained on essentially a huge subset of the Internet. And it had very interesting 
capabilities in terms of generalization. So it could do things like generalize four-digit addition. So 

	 © 2020 Software Engineering Daily	 �15



SED 1161 Transcript

having seen addition in the dataset, it was able to pick up on some idea of this concept. And 

when prompted a string that looks like an addition, it could complete that string with the correct 
answer a significant fraction of the time despite the fact that it definitely wouldn't have seen that 

example in the dataset. So it was actually generalizing a concept rather than just memorizing it. 
And it's also able to generate very long passages of coherent text that can sometimes seem 

even creative. So some people have shown that you can write comedy dialogues using GPT3, 
and that's very exciting. 

But I think most NLP researchers, most AI researchers recognize that it's still only a facsimile of 

understanding. It doesn't as yet feel like it's able to have an understanding in the world as a lay 
person would understand it. Even very simple common sense concepts can make it fall over, 

and it takes a lot of effort to get good results out of it. So there's a huge way to go from where 
we are now to NLP systems that are able to read text reason and deal with them the way that a 

human would. But the rate of progress has been absolutely remarkable and things that felt just 
impossible even a few years ago at least to me now feel like they're happening all the time.

[00:35:55] JM: Are there applications that people try to apply Humanloop to where the NLP is 

not powerful enough yet? 

[00:36:03] RH: There definitely will be. So far most of our customers have had a pretty good 
understanding of what the limitations of NLP are and what it's good for. So we haven't yet come 

up against a use case, but it's not that difficult to break NLP today. It's still early days. I think the 
technology is improving incredibly quickly, but it doesn't have the level of understanding that a 

human has. And that becomes apparent if you have very difficult question-answering tasks. You 
have very difficult summarization tasks, it becomes apparent pretty quickly. 

And then the other place, which is maybe more mundane that NLP still has challenges today is 

in lower resource languages. So most of the progress has happened in English, and there's 
been progress as well in other European languages and languages that share a lot in common 

with English and also in Mandarin, but in languages that are less well-resourced in terms of how 
much data is available, the performance gains haven't been as good yet. So one of the more 

mundane challenges is just translating some of the success that has happened in the languages 
that the researchers typically speak, right? Because a large number of the researchers are 

	 © 2020 Software Engineering Daily	 �16



SED 1161 Transcript

sitting in Western Europe and the United States and making the performance equally good in 

other languages.

[00:37:23] JM: Are there any other areas within the domain of Humanloop that you'd like to 
discuss?

[00:37:29] RH: I think that the final thing to say is that we really view what we've built so far as 

the first step on a really long journey towards something very new and quite exciting. And we’ve 
kind of touched on this before, when you ask sort of who do we see the end users as being, 

right? And today the end users are almost exclusively data scientists, people who know quite a 
lot about machine learning and natural language processing. But I think that the way we think 

about deep learning is it's really a new software paradigm. It's something that's fundamentally 
different to how software was trained before, right? The data becomes much more central than 

the code. You have constant memory footprints and compute runtimes. It's not 100 accurate. It 
really requires a rethink in how we program computers, a whole new suite of tools to do this. 

And what we're most excited about is because training machine learning systems is much more 
about teaching by example and providing data and curating datasets, the range of people for 

whom this should become accessible in the long run should be much, much larger. And in much 
the same way that every time we've abstracted computer programming, whether it was the 

move from kind of machine code to assembly, or from low-level languages to high-level 
interpreted languages like Python, there's always been an expansion and a democratization of 

the number of people who are able to use these tools. 

What really we want to do in a long-term vision is use this new style of programming to make 
what is today only accessible to software engineers and data scientists accessible to many, 

many more people and make it possible for domain experts to achieve their goals by working 
collaboration with computers themselves and by programming them through example. And 

that's the thing that we're really excited about. And so for us, the vision will be complete when a 
non-technical domain expert is able to teach a computer to achieve their goals. And this is just 

the first step.

[00:39:23] JM: Okay. Well, Raza, thanks for coming on the show. It's been a real pleasure 
talking to you.

	 © 2020 Software Engineering Daily	 �17



SED 1161 Transcript

[00:39:26] RH: Thanks, Jeff. It's been a pleasure talking to you as well.

[END]

	 © 2020 Software Engineering Daily	 �18


