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[INTRODUCTION]

[00:00:00] JM: Developing machine learning models is not easy. From the perspective of the 
machine learning researcher, there is the iterative process of tuning hyperparameters and 
selecting relevant features. From the perspective of the operation’s engineer, there is the hand-
off from development to production and the management of GPU clusters to parallelize model 
training. 

In the last 5 years, machine learning has become easier to use, thanks to point solutions. 
Tensorflow, cloud provider tools, Spark, Jupyter Notebooks. But every company works 
differently and there are few hard and fast rules for the workflows around machine learning 
operations. 

Determined AI is a platform that provides a means for collaborating around data preparation, 
model development and training and model deployment. Neil Conway is a cofounder of 
Determined and he joins the show to discuss the challenges around machine learning 
operations and what he’s built with Determined. 

I want to mention that we are looking for writers. If you are interested in writing for Software 
Engineering Daily, send me an email, jeff@softwareengineeringdaily. And personally, I’m making 
some investments. If you are a developer who’s building a developer tools company or 
something that’s closely related to software engineering, you can also send me an email, 
jeff@softwareengineeringdaily.com. I’d be curious to see what you’re building. And thanks for 
listening. 

[SPONSOR MESSAGE]

[00:01:27] JM: JFrog Container Registry is a comprehensive registry that supports Docker 
containers and Helm chart repositories for your Kubernetes deployments. It supports not only 
local storage for your artifacts, but also proxying remote registries and repositories and virtual 
repositories to simplify configuration. 
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Use any number of Docker registries over the same backend providing quality gates and 
promotion between those different environments. Use JFrog Container Registry to search the 
custom metadata of the repositories. You can find out more about JFrog Container Registry by 
visiting softwareengineeringdaily.com/jfrog. That's softwareengineering.com/jfrog.

[INTERVIEW]

[00:02:22] JM: Neil, welcome to the show. 

[00:02:24] NC: Thanks, Jeff. Great to be here. 

[00:02:25] JM: Your company is built around the continuous iteration of machine learning. You 
have exploration and iteration, the hyperparameter search and model training. Describe this 
continuous iteration of machine learning in more detail.

[00:02:40] NC: Yeah. That’s a great question. I think one thing that differentiates machine 
learning when you’re building an application that involves a machine learning from traditional 
software development is that when we’re building traditional software, we have a definition of 
what a correctness looks like and we have a specification or something like that, and we’re 
trying to build, we’re trying to write down a bunch of rules, software code that meets that 
specification. 

When we’re doing machine learning on the other hand, what we’re actually doing is often 
searching through a space of possible solutions, and in some cases having the computer help 
us explore that space. Rather than writing down all the rules ourselves, we’re sort of searching 
over large bodies of possible rule sets and we might encode those rules using a neural network 
or some other kind of structure. But as the developer, we’re sort of orchestrating this search and 
kind of supervising it. That’s just inherently a more of an experimental process, more of an 
iterative process where you might start with one dataset or a data represented in a certain way 
and try to find, given that dataset, what kind of models, what kinds of rules am I able – Does the 
computer produce and then iterate on that many times and explore different parameters, 
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different ways to structure the rule sets, different kinds of data. It’s inherently kind of I would say 
a much more iterative process maybe than traditional software intensity. 

[00:03:56] JM: Okay. And in practice, the bottleneck that I hear about most often is we’ve got a 
data scientist that’s working with a notebook, a Jupyter Notebook. And then you’ve got these 
machine learning engineers that need to productionize these models. And you need to take this 
work that this data scientist is doing ad hoc and you need to productionize it. We’ve discussed 
this ad nauseam on the show, but this handoff between the data scientist and the machine 
learning engineer, it seems iconic of general frictions that appear in machine learning workflows. 
Can you tell me about what makes this handoff difficult? More generally, what are the other 
frictions around machine learning development that you’ve seen?  

[00:04:42] NC: Yeah, that’s a great question. So, specifically on the handoff from the kind of 
model development team or the model development process through to the deployment 
process. Yeah, I mean, there’s a lot of sources of friction there. And I think part of the reason 
why is that the – First of all, there’s a lot of moving pieces. There’re maybe many different 
models. You might be deploying it at different environments. You might be deploying it on the 
edge or on a web service. Those pieces also tend to be the technology that you’re actually 
deploying. A lot of those APIs, a lot of those interfaces are still moving pieces. 

Even something as simple as taking a machine learning model that you’ve trained, serializing it 
to a file and then de-serializing it back into something that you can use in memory for either 
further training or for inference, you would think that that would really be table stakes. And pretty 
much all frameworks will provide a way to do that. But doing that in a way that preserves all the 
information of a trained model including some of the custom extensions and custom layers that 
certain frameworks allow you to do, the state of your optimizers, really making that, even that 
kind of relatively basic operation, that can still – Doing that correctly is not something that 
always happens out of the box and can require some additional code on the part of the user. 

I think those are at least two factors and that like the APIs relatively are moving pretty quickly. I 
think another factor is just that it’s often the set of people who do the machine learning and the 
actual operating of the production service and the set of people who develop the actual model 
are two different groups of people in many cases. That’s not a model that organizations use. 

© 2020 Software Engineering Daily 3



SED 1097 Transcript

And just that handoff, the interface between those two teams I think is something that is just 
right before potentially for miscommunication or one team might have one set of requirements 
and another team might have totally different set of requirements. One thing we see, for 
example, is at model development time, the team developing the model might optimize for 
maximizing accuracy. Building the best model that kind of solves the problem that you’re trying 
to solve with the highest degree of accuracy. They’ll train that model typically on data center 
GPUs with very fast storage and they’ll get to a model that is effective. But then when it comes 
time to actually deploy that model in production either on an edge device or on a web service, 
that’s a very different environment. You might not have access to any GPUs, or maybe there’ll 
be embedded GPUs, and there might be a latency budget or a power budget or some other kind 
of constraint that might not even have been incorporated at model development time. 

That kind of deployment team then has to think about, “Okay, we have this model that is very 
accurate, but extremely slow. Maybe very memory-intensive and running it on a different custom 
hardware than it was initially trained on. We need to apply a set of kind of compression 
techniques or model simplification techniques to improve its runtime performance at the 
expense of making it less accurate.” And that’s an example of where you have two different 
groups with two different objectives, and that kind of dynamic does not always leads to the best 
outcome. 

[00:07:40] JM: That example of having heterogeneous hardware, and you’ve got one set of 
hardware that you train the model on. You’ve got another set of hardware that you deploy it to. 
That seems like something that’s – You couldn’t really solve that with a software platform, right? 
That’s just you’ve got disparate hardware. What’s the solution to fixing the dichotomy between a 
deployment environment and a testing environment? Training environment I should say. Not 
testing. 

[00:08:10] NC: Right. I think one tool that can be helpful is the ability to understand at training 
time to basically have performance models that will enable you to predict on a certain class of 
hardware that I’m going to predict and deploy my model one. What is it going to perform like? 
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That’s not I would say common capability, but that’s something that would be a really useful tool 
to be able to have with just the ability to say, “At training time, when I’m training a model, it’s 
essentially a multi-objective organization problem. Yes, I want to have high-degree of model 
accuracy, but I also want to ensure that my performance on a certain class of hardware fits 
within this kind of performance window that I have.” 

But I think the other kind of piece there is just kind of enabling those different teams that are 
working together to have that kind of shared vocabulary or a shared kind of API interface to be 
able to say, “What does the acceptance criteria look like for a model that we’re about to 
deploy?” Because right now, accuracy metric, that’s certainly something that is I think 
everyone’s around the same about understanding what the accuracy requirements are. But how 
you quantify or how you say, “Okay, what are the additional performance requirements?” is 
something that I think not all teams have figured out. 

[00:09:16] JM: Determined is an AI platform, machine learning platform. That can mean a lot of 
different things. And we’re in a time where there are so much good tooling. A lot of these tooling 
is disparate. A lot of it may require writing scripts to wire things together or do a lot of work to 
wire things together to build the right workflows. I think of a platform as something that can 
perhaps smooth-out the frictions between different tools. Tell me about what you’re trying to 
accomplish with Determined. What functionality is it serving? 

[00:09:55] NC: Yeah, absolutely. Determined is an open source deep learning training platform. 
To kind of take a look at those pieces kind of one at a time. We’re open source. We’re under the 
Apache license, and we’re focused on deep learning. In particular, rather than kind of all of 
classical machine learning, we’re really focused on models that are written in TensorFlow, and 
PyTorch typically running on GPUs. And we’re a training platform, and that our goal really is to 
enable ML engineers to train better models in less time to manage their training hardware 
resources, like GPUs and to collaborate more effectively with their colleagues. 

We make it really easy to either do your training on-premise or in the cloud to work with 
wherever your existing training data happens to live. And then once you've trained a model, we 
make it very easy for you to export that model outside of our system to run in an inference 
wherever you’re doing inference, like a serving platform like Seldon, or on an initial device. 
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So we do try to scope the set of problems that we’re tackling by saying, “We’re only going to 
deep learning and we’re really focused on training.” But really within that scope, we do try to 
build a really integrated product where all the pieces that we built work together really naturally, 
because I think that you’re right, that there are a lot of really interesting tools in the machine 
learning infrastructure space right now, and it’s a space that’s changing really quickly.

But I think as a data scientist who ultimately wants to do machine learning and train better 
models, it's incumbent on you to figure out, or you or your team to figure out how do I integrate 
all those tools together? How do I really kind of put together a package that is going to solve the 
problems that I actually care about and enable me to do better deep learning? Which can be a 
really considerable amount of work just given the number different tools in the space and that 
rate at which that’s changing.

[00:11:41] JM: Is it about same defaults?

[00:11:42] NC: I think that's a bunch of it, because things like – One example on our platform is 
that one of the features that we have is around experiment tracking and metrics management. 
We've talked to teams who they will give members of their team the ability to record metrics in a 
database or something like that. But if that is the default behavior and if you don't kind of – Or if 
you are kind of necessarily prescriptive in terms of how models that are trained, how that data 
should appear in a metrics database, then it's something that is going to see – Won’t see the 
kind of adaption that you might want. Whereas in our case, every workload that’s trained on our 
system, we automatically capture all the training and validation metrics, the training logs, the 
hyper parameters. If a model is trained as part of a hyper parameter search, we capture that 
context. And that's automatically linked together kind of out of the box. That's the default 
behavior that you get. Rather than saying, “Hey, here’s the ability to train a model and here's the 
ability to record metrics about a model. And if you want to use those together, then good luck.” I 
think they’re kind of going that additional extra step and making those pieces work together kind 
of out of the box. I think that really adds up over time.
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[00:12:54] JM: And can you just tell me about the same defaults, or like what the happy path of 
a workflow for a user who is using Determined AI? What are the set of tools that you're going to 
be loosely prescriptive around?

[00:13:12] NC: yeah. Maybe just to step back a little bit more and talk about the kind of major 
functionality or how the pieces fit together. So I would think of Determined, as we said, a training 
platform. And what we enable you to do is continue to use tools like TensorFlow and PyTorch to 
write on your model architecture, to write down how the optimization procedure or what your 
validation metrics are and so on. We allow you to continue using the existing training 
environment that you're comfortable with. So, GPUs or what have you. 

But what we really try to do is enable those tools like TensorFlow and PyTorch, which are really 
sort of single-user tools. Those tools are kind of focused on a single researcher training a single 
model with a single GPU or a small number of GPUs, and we try to enable those tools to scale, 
to scale to larger clusters, larger teams, training many models at once, doing large-scale hyper 
parameter search and large-scale distributed training. 

So some of that kind of key functionality then is saying once you write down your model, and we 
port your model to our API. So we have an API that is kind of a slight extension of the standard 
TensorFlow or PyTorch APIs. You do need to go through that adjustment of taking your code 
and modifying a better API. But once you've done that, you don't need to change your model to 
go from training on one GPU to training on many GPUs. 

If you want to do distributor training, if you want to use many GPUs at once, that's just a 
configuration setting where you say, “Hey, I want to use 64 GPUs to train this model.” We’ll take 
care of scheduling a task on all 64 GPUs, orchestrating that training operation, doing data 
parallel synchronous training, automatically making that fault-tolerant, capturing all the 
experiment metrics from that workload and doing that in a multiuser way. Where you don't 
necessarily need to think about, or you definitely don’t need to think about, “Well, how do I 
install a distributor training package? How do I enable my – How do I install an MPI to make the 
training package work?  What happens if other people are on the cluster and also want to do 
distributed training?” It’s just sort of capability where once you made that initial investment to 
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move over to our – To adapt your model to our API, then the number of GPUs you want to use is 
just a configuration setting. 

[00:15:16] JM: Why is that so useful? What’s so tricky about just like doing my own work to set 
up distributed training?

[00:15:24] NC: Yeah. I mean, it's the kind of thing where it's sort of kind of death by a thousand 
cuts, and that there are great packages for a distributor training, Horovod, for example. We use 
Horovod internally inside our platform. It's a great piece of software. But as we talked about, 
there are so many tools in this space and so many different problems that you need to solve as 
an ML engineer, that taking the time to understand, install, configure, and continue to operate, 
all the different pieces of software that you need to really put together a full-featured ML platform 
is just a sizable undertaking by itself. And just doing that work doesn't actually enable you as an 
ML engineer to train better models. 

If you look at something like Horovod, it solves the distributor training problem in the narrow 
well, but it's doesn't solve, “Well, how do I work with other colleagues in my team who also want 
to do distributor training?” It doesn't solve fault tolerance when. In order to install, you need to 
grapple with stuff like MPI or enabling networking to work between the machines you want to do 
distributor training over. 

If that was the only kind of tool that you needed to install, I think it would be manageable, but it's 
more that that's just one of a bunch of tools, each of which is sort of special purpose, each of 
which has to be configured and maintained that adds up to a burden especially when you 
consider that this is not directly machine learning. These are kind of tools to enable machine 
learning. So at the end of the day, it kind of does end up having a lot of work that's not directly 
what you're trying to do.

[SPONSOR MESSAGE] 

[00:17:02] JM: Today’s show is sponsored by Today’s show is sponsored by StrongDM. 
Managing your remote team as they work from home can be difficult. You might be managing a 
gazillion SSH keys and database passwords and Kubernetes certs. So meet StrongDM. 
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Manage and audit access to servers, databases and Kubernetes clusters no matter where your 
employees are. With StrongDM, you can easily extend your identity provider to manage 
infrastructure access. Automate onboarding, off-boarding and moving people within roles. These 
are annoying problems. You can grant temporary access that automatically expires to your on-
call teams. Admins get full auditability into anything anyone does. When they connect, what 
queries they run, what commands are typed? It’s full visibility into everything. For SSH and RDP 
and Kubernetes, that means video replays. For databases, it’s a single unified query log across 
all database management systems. StrongDM is used by companies like Hurst, Peloton, 
Betterment, Greenhouse and SoFi to manage access. It’s more control and less hassle. 
StrongDM allows you to manage and audit remote access to infrastructure. Start your free 14-
day trial today at strongdm.com/sedaily. That’s strongdm.com/sedaily to start your free 14-day 
trial.

[INTERVIEW CONTINUED]

[00:18:31] JM: You mentioned Horovod, which is a distributed deep learning framework that 
was developed Uber, I believe?

[00:18:38] NC: Yup.

[00:18:39] JM: How do you use Horovod? 

[00:18:41] NC: Yeah. We use Horovod internally inside our platform to do distributor training. 
And as I mentioned, it's not something that as a user you need to directly interact with. You just 
tell us if you want to do distributor training on our system. You just tell us the number of GPUs 
that you want to use, and we take care of scheduling and orchestrating that workload. 

[00:19:00] JM: In terms of how to parallelizable a deep learning job is, I guess one naïvely 
parallelizable task I could see would be if you've got a bunch of hyper parameters that you want 
to test in a bunch of different configurations, you could have those different hyper parameter 
training jobs just parallelized. Is that the main use of a distributed training framework?
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[00:19:31] NC: Yes. That's a great point and that there are multiple different ways to exploit 
parallelism when you're training deep learning models. And there's a question of do you want 
parallelism within the training of a single model or do you want to be training many models of 
once? Our system supports both. 

So if you want to do hyperparameter search, you are training many different models, and each 
model uses a different set of hyperparameters. Those models can be trained in parallel. That's a 
very efficient way to exploit parallel resources, because each of those training operations is 
completely independent. There's no kind of synchronization happening between them. If your 
task is hyperparamter search, then it's pretty easy to use parallel resources in an efficient way. 

Where a tool like Horovod comes in is where you're training a single model or a small number of 
models on a much larger set of resources. If I have 32 or 128 GPU and I'm only training one 
model at a time, by default, that model will only use one GPU to train. Again, if we’re doing the 
hyperparameter search, we want to explore thousands of model conversions. We can train each 
model with a single GPU. That will be very efficient and we don't need – That's not typically 
considered distributed training. Whereas if we’re training a single model, that model might take 
a week to train to conversions, and we had many of these GPUs available. If that's the 
bottleneck on the next step in my machine learning workflow, then the more – If we can throw 
many GPUs at that to train that much more quickly, then you’re able to iterate more quickly. 

Typically, training a single model with multiple GPUs is not going to scale quite as efficiently as 
using multiple GPUs to train multiple models in parallel, just because that training process 
requires a lot of communication between the GPUs if they’re coordinating and training a single 
model. And that's one of the things that Horovod and other kind of distributed training systems 
are trying to do you, is kind of be very intelligent with how they schedule that communication 
and how they overlay communication and computation to try to minimize the amount of 
communication that's happening and make that scale better. But I think it is inherently a very 
communication-intensive problem. So it does take some work and certain models will scale 
better than others in multi-GPU settings.

[00:21:47] JM: Can we talk a little bit more about that?. What would you say, if you had to boil 
down what parts of machine learning training can be easily parallelized and what parts cannot, 
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can you just – And I know you just described that in some detail, but maybe you could just give 
an even more simplified explanation for what parts of machine learning training are 
parallelizable. 

[00:22:17] NC: Sure. So within training a single model or kind of higher level what parts of the 
kind of machine learning model process?

[00:22:24] JM: I would say, yeah, the higher level. You can just run down the different parts.

[00:22:29] NC: Sure. Yeah. Kind of really high-level, when we’re doing machine learning, we 
typically start with a problem that we want to solve that’s cast as a machine learning problem, 
and a dataset, and typically in some kind of raw format. Typically, we need to preprocess the 
dataset or do data implementation in order to get into a format that's appropriate to actually train 
the model on. 

Then the ML engineer typically explores a bunch of model architectures, model 
hyperparameters, choices of which features to use and kind of evaluates which of those choices 
lead to good model performance. For each of those choices, we’re going to train the model 
either partially or through to different versions.

And then once we have modeled, it works well, we’ll kind of deploy that to production or we 
might do either real-time inference or we may also do batch inference, where we’re rescoring a 
large dataset in an offline way. 

If those are the kind of major kind steps in the process, data augmentation typically paralyzes 
well in most cases depending on exactly the way you're doing data implementation, but there's 
usually a way to phrase that in a way that is reasonably easy to paralyze. 

Hyperparameter search usually does paralyze effectively as well. Because each of the 
hyperperameter configurations is independent of the other configurations, as long as your 
search algorithm is friendly to parallelism, and the ones that we typically recommend are able to 
be easily parallelized, then that’s something again that kind of hyperparameter search aspect is 
something that’s easier parallelize.
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Then when get down to training a single model, that is harder to paralyze. It's just because it's a 
very communication-intensive problem. So you're doing a lot of computation, yes, but the results 
of that computation in terms of the gradient updates for the model itself, those are quite large. 
They need to be communicated pretty frequently in order to keep the different workers in the 
computation up-to-date. So that’s something that can definitely be parallelized, but the scaling 
efficiency that you’re going to see there differs depending on the model architecture that you're 
using. 

In a common technique that folks will apply in order to make training a single model scale better 
is they'll use a larger batch size. They’ll essentially do more computation before doing that 
gradient update. That does change the actual training algorithm itself though. That can actually 
change the behavior of the model that we’re training. 

In some cases, training with large batch sizes, so doing a lot of local computation before doing 
that communication phase. Some models that works well. In other cases though, there might be 
limits on how large of a batch size you can use either due to the kind of GPU memory, because 
larger batch, they’re going to need more GPU memory, or because the model itself doesn't train 
as effectively with a large batch size. Training itself may or may not parallelize super well 
depending on the characters of the model. 

[00:25:24] JM: As far as the work that needs to be done for resource sharing between different 
parallel jobs, is that something the you have to write scheduling infrastructure to actually do the 
resource management yourself, or can you offload all that work to some pre-written scheduler in 
order to parallelize if a user is doing some training work within Determined? How much 
scheduler code have you actually had to write?

[00:25:57] NC: Yeah. We've actually built our own job scheduler, and we did that for a couple 
reasons. First, we felt like building a job scheduler that is specialized for deep learning 
workloads and for scheduling tasks on top of GPS, we thought that we could just do better 
scheduling logic. 
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For example, one of the capabilities that you want if you doing larger hyperparameter search is 
the ability to explore a large number of hyperparameter configurations on a relatively small 
number of GPUs If you have 32 GPUs and you want to explore a thousand or 10,000 
hyperparmeter configurations, the main hyperparameter search algorithm we use inside the 
product is based on an algorithm called Hyperband, which one of my cofounders was the 
inventor of. And the intuition there is that you’re training many different models for a relatively 
short period of time and then looking at those results to decide which models to train further and 
which configurations are not performing very well. 

You might start by training 10,000 models, but each for a relatively short period of time before 
you decide which to train further. That ability to take a large number of models and multiplex 
them over a much smaller number of GPUs and have efficiently move them in and out is a 
pretty important capability for us. And that's not something you’re actually going to get on top of 
an off-the-shelf batch scheduling system or kind of standard container scheduler, like something 
like Kubernetes. We did make the decision to build our on scheduler partly for that reason. 

I think another factor there is, honestly, that talking to a lot of organizations that are doing deep 
learning today, a lot of people – And we started the company three years ago. So I think even 
more so back then, kind of integrating GPUs into their container orchestration system and their 
kind of task scheduling system. For a lot of companies, it was still kind of aspirational where 
they might've had a monoculture management system, but GPU's were kind of experimental or 
they hadn’t quite figured how they want to manage them yet. They hadn’t rolled out Kubernetes 
for GPUs, for example. 

Still, today, we talk to a lot of organizations that might use Kubernetes, but they’re only certain to 
think today about how to use Kubernetes to manage GPUs. That was the other factor, was that I 
think, certainly three years ago, this was true, and it still should at quite a few places today, is 
that GPU management is done, a GPU scheduling is done with a very kind of simple 
techniques. One engineer gets one 8-GPU box. You might statically partition your GPU box. 
[inaudible 00:28:25]. Or you might have a simple calendar system where users manually 
reserve GPUs. Those are both kind of techniques that I've seen at relatively sophisticated 
organizations. 
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[00:28:36] JM: Rough.

[00:28:37] NC: Yeah.

[00:28:38] JM: And you used to work at Mesosphere. Do you take any lessons from your time 
at Mesosphere around building scheduler infrastructure? I don’t know which worked on at 
Mesosphere, but –

[00:28:47] NC: Yeah. I worked on kind of core Mesos when I was at my Mesosphere. Kind of 
more focused on making Mesos work well for databases and stateful workloads than HPC in 
particular. But certainly, that experience was very relevant to me as we’re starting the company 
and thinking about how we want to do task scheduling. 

Yeah. Definitely, it was helpful when it came time to build our own job scheduler. But, honestly, 
my initial thinking around when we’re starting the company making initial kind of technology 
choices was to say, “Well, there's a ton of momentum around Kubernetes. Let's just be 
Kubernetes only and let's just assume that everyone’s going to have Kubernetes and then we’ll 
kind of build on top of that.

But we spent a while talking to customers trying to understand what the state of play look like 
around deep learning infrastructure and ML platforms at a lot of companies today, and we really 
found that the level of Kubernetes penetration for GPU and deep learning workloads three years 
ago was very small. That kind of meant man being Kubernetes only. We decided not go down 
that path. 

I think that's ticked up slightly over the last couple years, but it's still, I would say, probably 
something we see in a minority of the folks that we talk to that are doing machine learning is 
kind of doing that on top of Kubernetes at least at the moment.

[00:30:06] JM: The platform is open sourced. So why is that relevant? When I think about these 
large kind of platforms for enterprises to adopt that is – Like at least companies like I think Data 
Robot is one of them, or like Databricks. I think of companies with proprietary, like large 
proprietary platforms, what's the go-to-market value of having an open sourced platform?
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[00:30:36] NC: Yeah. The kind of strategy that we took in terms of getting to the decision to 
open source the product was we started by wanted to work really closely with a pretty small 
group of early adapters, and that's how we spent the first two and a half years at the company, 
is really working closely with companies that were really using deep learning in a serious way 
and building a product that was a good fit for their use cases and kind of iterating based on 
feedback from them.

But we also felt like, for a lot of company, two things became true. One, the product became 
mature enough and we felt like it was ready for broader adaption. We were excited to kind of 
share with the broader community of teams doing machine learning, deep learning. But the 
second is just that I think for a lot of teams today when they're looking at what their machine 
learning infrastructure stack is going to look like, most of those machines are open source. 

When you think about kind of developer tools, that's frequently a requirement or certainly very 
welcome attribute for technology that a company is thinking about really kind of committing to as 
a core part of their infrastructure stack. Being open source, I think a lot of the folks that we’ve 
talk to are really excited about that aspect the product. 

[00:31:49] JM: And when you look at the overall space of machine learning infrastructure and 
you’re offering something that is somewhat prescriptive, is there anything that falls outside of 
that prescriptive workflow that you’re offering with Determined that isn't like not so easy to plug 
into, or are there any frictions with the – That the user base is uncovered in using Determine? 

[00:32:16] NC: I wouldn't say there’s like fundamental things that people have tried to do that 
they haven't been able to do. I would say that it's kind of a continual process of getting feedback 
from customers trying to understand how to make the APIs in a system and the capabilities work 
more smoothly for the kinds of things people want to do. As the saying goes, everything should 
be possible, whatever the phrase is. Everything should be possible and easy things should be 
easier. 

I think it's more than a conversation of it is possible to run just an arbitrary container inside the 
system. That's attached to a GPU where you don't get access to a lot of the product’s 
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functionality, but you do have that capability to sort of do anything that you want. And then there 
is a more kind of integrated mode where you can run workloads that fit into our APIs where you 
get a lot of this kind of functionality out of the box and kind of evolving those APIs so that they 
strike the right balance between expressiveness versus convenience and so on. That’s been an 
evolution. 

In particular, one thing recently that we’ve been working on is kind of extending the APIs beyond 
sort of kind of simple supervised models to kind of make it easier to train things like GANs, do 
reinforcement learning and have multiple optimizers, multiple models inside a single [inaudible 
00:33:32], which is based on a lot of feedback that we've gotten from customers. That’s 
something that they’re excited about.

[SPONSOR MESSAGE]

[00:33:46] JM: Over the last few months, I've started hearing about Retool. Every business 
needs internal tools, but if we’re being honest, I don't know of many engineers who really enjoy 
building internal tools. It can be hard to get engineering resources to build back-office 
applications and it’s definitely hard to get engineers excited about maintaining those back-office 
applications. Companies like a Doordash, and Brex, and Amazon use Retool to build custom 
internal tools faster. 

The idea is that internal tools mostly look the same. They're made out of tables, and dropdowns, 
and buttons, and text inputs. Retool gives you a drag-and-drop interface so engineers can build 
these internal UIs in hours, not days, and they can spend more time building features that 
customers will see. Retool connects to any database and API. For example, if you are pulling 
data from Postgres, you just write a SQL query. You drag a table on to the canvas. 

If you want to try out Retool, you can go to retool.com/sedaily. That's R-E-T-O-O-L.com/sedaily, 
and you can even host Retool on-premise if you want to keep it ultra-secure. I've heard a lot of 
good things about Retool from engineers who I respect. So check it out at retool.com/sedaily.

[INTERVIEW CONTINUED]
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[00:35:22] JM: Let’s return to the subject of hyperparameter search. I’m doing a 
hyperparameter search. That can take a pretty long-time. It can consume a lot of resources. Tell 
me more about when you have been writing this scheduler. How do you manage the tradeoff 
between the potential for better performance if you were to just use more and more resources 
and the cost of that performance? Because obviously, GPU time can add up. 

[00:35:54] NC: Yeah. I think that's something where we try to give users the flexibility to make 
those kinds of tradeoffs at a high level, right? In on-premise setting, you have a fixed pool of 
resources, and we give you tools to make decisions about how to share those resources over 
the users of the cluster in a pretty flexible way. 

By default, we’ll fair share the resources and the cluster over all the active workloads in an 
equally weighted way. If you have 64 GPU's and you have two hyperparameter searches active, 
each one by default can use up to 32 GPU's. You can adjust that waiting and you can say this 
one is more importan. This one is less important. 

But the other kind of property there is that we’re able to elastically scale those workloads up and 
down. If one of the searches finishes or if a user cancels one of the searchers, because they are 
no longer interested in results, that other search can dynamically and automatically be scaled 
up to use the entire cluster to use all 64 GPUs. Similarly, if a third search then joints the cluster, 
we’re able to dynamically adjust those resources down to each one using approximately 21 
GPU's. 

I think that's one thing that we give you. In a cloud environment though, because you don't have 
a static pool of resources, what the product can do for you is kind of automatically provision 
GPU instances automatically. You can kind of set parameters there in terms of the maximum 
number of instances you want to provision or what type of instance you want to provision. But 
that's something that as a user I think you can make different kind of cost versus performance 
tradeoffs. But I think that is a pretty interesting aspect of the cloud and that if you’re doing a 
large hyperparameter search, we make it very easy for you to spin up a thousand GPUs all at 
once. Do a very large hyperparameter search completely in parallel, but only use those GPUs 
for pretty short period of time. That's the kind of thing where just building at that tooling to make 
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that process of dynamically using all those resources make you do that from scratch. That 
would be pretty painful. But within the product, it's a pretty straightforward thing to do. 

[00:37:58] JM: Let's run through an example. So paint me a picture of a company that wants to 
use deep learning for some business case. Let's say they want to do image recognition or 
segmentation and detect objects in an image. They need to deploy deep learning models for the 
first time in the company. What are the engineers in this company going to do and how will they 
use Determine potentially?

[00:38:26] NC: Yeah. I would say we often see a pretty similar kind of narrative, and that often, 
a company, if they're exploring deep learning, is going to start with a proof of concept. And they 
want to see some evidence that deep learning can be an effective solution to the problems that 
they’re trying to solve. Maybe you kind of use a small amount of cloud resources, or you buy 
four AGPU box. You kind of dedicate a small team to that, maybe a single engineer or a handful 
of engineers. And then you try to demonstrate that for the problem that you want to solve. 
There’s some promise there that deep learning is leading you in the direction of an effective 
solution.

Then for that initial kind of POC project, tools like TensorFlow and PyTorch are reasonably good, 
are well-suited, and that you're not yet thinking about how do I do deep learning at scale. How 
do I do it in production? How I do it over a sustained period of time?

But then once a company kind of sees promising results from that initial POC, they start to think 
about, “Okay. Well, how do we make that next investment to really make deep learning kind of a 
part of the toolbox and something that we can apply to a variety of problems?” That's I think 
where Determined really – The sorts of challenges that you face there are largely outside the 
scope of tools like TensorFlow and PyTorch and are really kind of what are really in the sweet 
spot for Determined. Questions of how do I share my GPU cluster among a team of users? How 
do I apply all of my GPU's to training a single model or to do in hyperparameter searches in a 
very flexible way? How do I track all my model metrics and metadata? If I've deployed a model 
of production six months ago and I want to revisit, “Well, what version of TensorFlow do they 
use to train that model? What hyper parameters? What training and validation behavior did I see 
on which dataset?” We’ll automatically capture all that information for you.
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Whereas that question of how to manage my models and how do I track my metrics? During the 
initial POC phase, something like a spreadsheet is a totally adequate solution to that problem, 
right? But once you go from training a single model with a team of 1 to 2 to training 10s, 20 or 
30 models on a team of 5, 10, 15, that's really an area where investing in some process and 
investing some tooling is going to give you a pretty important thing to do. 

[00:40:42] JM: From a business perspective, what have you found to be difficult around the go-
to-market process for Determined?

[00:40:50] NC: I mean, I think one thing that's been an evolution is just I think that striking the 
right balance between talking to – When you're trying to kind of market a very technical product 
like this to a technical user base in a fairly crowded space. Figuring out the right way to describe 
what makes a product unique, what the value proposition is, has been something that has been 
an evolution. 

This is an area where different companies are at pretty different stages of their kind of deep 
adaption process. They are certainly plenty of companies talking about AI. Some companies are 
really far down that path of really adapting it in practice and exploiting it successfully. Other 
companies are kind of much earlier. 

So being able to adapt the way you talk about the product and the set of problems to the kind of 
a sophistication of the audience and just kind of being clear about who the intended user is and 
the benefits they are going to see is something that has taken us a little while to figure out. I 
think that some people have kind of gone down that path of really trying to scale deep learning 
and trying to productionize it, and they’ve seen a bunch of – They’ve gotten battle scars from 
some of the issues that arise there. Whereas other people, they’re sort of still trying to look 
around the corner and predict, “Well, once we go and do that, what issues are we going to run 
into?” I think that's two different instances that you probably want to talk to a little bit differently. 

[00:42:17] JM: All right. Well, just to close off, what do you think are the emergent problems on 
the horizon that are going to be more acute problems for enterprises that are trying to develop 
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machine learning models, develop a well-rounded process for machine learning development? 
What's around the corner?

[00:42:36] NC: Yeah. I mean, one area that we’re watching pretty carefully is the hardware 
space. I think compared to classical software, deep learning is already pretty interesting from a 
hardware perspective. Anyone building standard software, you're probably pretty content 
building and developing environment around multicore CPU. Deep learning obviously needs to 
take an energy of GPUs, but it's basically been – NVIDIA GPUs has been kind of the only 
interesting training environment for the history of deep learning. 

There are a lot of companies that are trying to change that and developing kind of custom trips 
for doing deep learning and training. And those products are starting to come to market now. I 
think that'll be a pretty interesting event to see what that looks like. And both the price-
performance of some of those different offerings, but also what you need to do as a deep 
learning team to make your training environment kind of hardware-agnostic or able to exploit the 
best kind of class of hardware for your particular model. Because I think it's also likely to be the 
case that different kinds of hardware might be more effective at training different kinds of 
models, and it's not necessarily a one-size-fits-all kind of a situation. Building your ML 
infrastructure in a way that gives you that kind of hardware portability is something that I think is 
going to be an interesting challenge for the industry in the future. 

[00:43:57] JM: This is like a wider range of chip types, wider range of I guess memory size of 
machine that you're talking about? Like all the configurations?

[00:44:08] NC: Yeah. There are a bunch of startups building deep learning training accelerators, 
companies like Cerebras and Graphcore. There's quite a few of them. As well as a bunch of the 
incumbents and cloud vendors are also building their own kind of custom hardware. Google 
have TPUs. Then both the training time added inference time as well, kind of custom trips for 
doing low-power, high-performance, departing inference. I think that’s something where being 
able to kind of manage that hardware diversity and make your training, give you the capability to 
move between those different hardware environments is going to be an interesting capability if 
you have that. It's also something that’s going to intersect, I think, interestingly with questions 
around cloud portability, because you can certainly make a choice to say, “Okay, we’re going to 
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double down on going with a certain cloud vendor and a certain kind of limited set of hardware 
accelerators that are available through that vendor that will have certain advantages in terms of 
maybe that's not going to be more integrated or what have you. But it does mean kind of maybe 
kind of committing to working well in that environment, but pretty difficult transition story to 
working on either different cloud or on a different set of hardware accelerators.

[00:45:15] JM: Cool. All right, Neil. Well, thank you so much for coming on the show. It’s been a 
real pleasure talking to you at Determined, and congratulations on all the success.

[00:45:22] NC: Thanks very much, Jeff. Real pleasure to be on here. 

[END OF INTERVIEW]

[00:45:33] JM: You probably do not enjoy searching for a job. Engineers don’t like sacrificing 
their time to do phone screens, and we don’t like doing whiteboard problems and working on 
tedious take home projects. Everyone knows the software hiring process is not perfect. But 
what’s the alternative? Triplebyte is the alternative.  

Triplebyte is a platform for finding a great software job faster. Triplebyte works with 400+ tech 
companies, including Dropbox, Adobe, Coursera and Cruise Automation. Triplebyte improves 
the hiring process by saving you time and fast-tracking you to final interviews. At triplebyte.com/
sedaily, you can start your process by taking a quiz, and after the quiz you get interviewed by 
Triplebyte if you pass that quiz. If you pass that interview, you make it straight to multiple onsite 
interviews. If you take a job, you get an additional $1,000 signing bonus from Triplebyte 
because you use the link triplebyte.com/sedaily. 

That $1,000 is nice, but you might be making much more since those multiple onsite interviews 
would put you in a great position to potentially get multiple offers, and then you could figure out 
what your salary actually should be. Triplebyte does not look at candidate’s backgrounds, like 
resumes and where they’ve worked and where they went to school. Triplebyte only cares about 
whether someone can code. So I’m a huge fan of that aspect of their model. This means that 
they work with lots of people from nontraditional and unusual backgrounds. 
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To get started, just go to triplebyte.com/sedaily and take a quiz to get started. There’s very little 
risk and you might find yourself in a great position getting multiple onsite interviews from just 
one quiz and a Triplebyte interview. Go to triplebyte.com/sedaily to try it out. 

Thank you to Triplebyte.

[END]
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