SED 1083 Transcript

EPISODE 1083

[INTRODUCTION]

[00:00:00] JM: A frontend developer issuing a query to a backend server typically requires that
developer to issue that query through an ORM, or a raw database query. Prisma is an
alternative to both of these data access patterns allowing for easier data access through auto-

generated type-safe query building tailored to an existing database schema.

By integrating with Prisma, the developer gets a database client that has query auto completion
and an API server with less boiler plate code. Prisma also has a system called Prisma Migrate,

which simplifies database and schema migrations.

Johannes Schickling is CEO of Prisma and he joins the show to talk about the developments of

Prisma that have occurred since we last spoke and where the company is headed.

If you want to reach to 30,000 unique engineers every day, consider sponsoring Software
Engineering Daily. Whether you are hiring engineers or selling a product to engineers, Software
Engineering Daily is a great place to reach talented engineers. You can send me an email,
jeff@softwareengineeringdaily if you are curious about sponsoring the podcast. We're also
looking for writers and a videographer. If you're great with video or you’re a great writer and you

want to write about software, then send me an email, jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]

[00:01:34] JM: Scaling a SQL cluster has historically been a difficult task. CockroachDB makes
scaling your relational database much easier. CockroachDB is a distributed SQL database that
makes it simple to build resilient, scalable applications quickly. CockroachDB is Postgres
compatible, giving the same familiar SQL interface that database developers have used for

years.

But unlike older databases, scaling with CockroachDB is handled within the database itself so

you don’t need to manage shards from your client application. Because the data is distributed,

© 2020 Software Engineering Daily 1

SED 1083 Transcript

you won't lose data if a machine or data center goes down. CockroachDB is resilient and
adaptable to any environment. You can host it on-prem, you can run it in a hybrid cloud and you

can even deploy it across multiple clouds.

Some of the world’s largest banks and massive online retailers and popular gaming platforms
and developers from companies of all sizes trust CockroachDB with their most critical data. Sign

up for a free 30-day trial and get a free T-shirt at cockroachlabs.com/sedaily.

Thanks to Cockroach Labs for being a sponsor, and nice work with CockroachDB.

[INTERVIEW]

[00:02:57] JM: Johannes, welcome back to the show.

[00:02:59] JS: Hey, Jeff. Great to be back on the show. Thanks so much for having me.

[00:03:02] JM: Of course. You run Prisma, and Prisma is involved in workflows for accessing
data. Can you describe the APIs that sit between the frontend and the backend database layer

and where Prisma fits in?

[00:03:20] JS: Sure. | think that’s a pretty complex questions and it always depends on what
your application architecture looks like. There are so many angles to take this if you’d, for
example, take a more modern Jamstack architecture or if you take a microservices architecture.
The answer here is always it depends. What’s always the same is if you build an application that

requires data persistence, then chances are you’re using a database.

How Prisma fits into that is that it tries to help application developers build applications more
easily working with the databases. Typically, that means that you’re using a part of Prisma
what’s called the Prisma client that sits typically in your application server. That’s typically an

API server and talks to your database.

Typically, this part of the stack is known as an ORM layer, or a data access layer. Prisma in

particular is not an ORM. We can talk about that separately. That’s a pretty nuanced topic, but

© 2020 Software Engineering Daily 2

SED 1083 Transcript

Prisma typically, the main function is to serve to access data noisily in your application

language.

[00:04:28] JM: Can you talk about that in more detail? Why would | need an additional layer of
access? | mean, | think, in general, if I'm sitting on the frontend and | want to access the
database, | am hitting some service. That service is talking to a database and the service is
requesting the data from the database. Why do | need Prisma to help out with that database

access?

[00:04:57] JS: In this setup, just to recap one more time. You have your frontend application.
Let’s say you have like React, a Vue app. On the other end, you have a database. Let's say you
have a more traditional Postgres, MySQL database but would also apply the same for more
modern DynamoDB, etc. And then typically you have this middle tier that's, let’s say, an API
server. Where you would use Prisma for is just having an easier time building your API server in

order to talk to the database.

Let's say you’re Postgres. The most bare-bone thing you could do is implementing your API
server and just writing implementing your endpoints, or let's say you’re building a GraphQL
server, implementing your resolvers and then just talking directly to the database by writing raw
SQL queries. That works, but that comes also with some problems typically in terms of
productivity and like there’s not quite the abstraction level that you want as an application

developer to be productive and confident in what you're writing.

The same way as frontend applications are built through abstraction layers, let’s say React,
Angular, Vue. It's the same on the backend that you also want more application idiomatic
abstraction layer for the way how you’re talking to the database. Historically, there’re been many
forms of that. The most common one is in ORM, and there are more modern ways of how you
build a better abstraction on top of your database for data access, and that's a pattern that we’re

implementing with Prisma that typically you refer to as a query builder.

[00:06:32] JM: Can you explain in more detail what is the difference between a query builder
and an ORM?

© 2020 Software Engineering Daily 3

SED 1083 Transcript

[00:06:37] JS: Right. That comes down to the way how you’re thinking about these application
patterns. An ORM stands for object relational mapper, and the idea behind an ORM is mapping
typically a database table to a class in typically object-oriented programming language. This is a
pretty intuitive model and is widely used in tons of ORMs. The most prominent one probably
being active record as part of Ruby on Rails, but there are tons of other ones as well. In the
Java world, there’s Hibernate, and the idea there is you have tons of tables in your database
and you want to map that somehow into your programming language. In your programming

language, you are typically working with classes.

As supposed to a query builder, which looks a lot more like SQL in a certain way, but maps
these SQL statements into statements in your programing language. The differences really
come down to how much flexibility and control you needs, but there are tons of downsides of

ORMs, that as ORMs got more widely used, became more and more well-known.

There is a great blog post called the Vietnam of Computer Science, which is all about ORMs
and the problems behind ORMs. Most importantly, there’s one thing called the object relational
impedance mismatch, which talks about the problems of mapping databases, database tables

to objects where there is just a big amount of an impedance mismatch.

The way around that is that you should rather think about the queries that you’re writing to a
database instead of obsessing too much about the classes and the objects and your query

should really determine the shape of the data you're getting back in the same way as — The
pretty striking analogy to how GraphQL deals with this sort of pattern were GraphQL was all
about the query that you're writing that you need in your components and it's a pretty similar

pattern that you are now applying the way how you do data access on the backend.

[00:08:51] JM: If | was to setup Prisma for my application, what would the life of a query look

like and the structure of a query look like?

[00:09:08] JS: What you’d be using concretely there is Prisma overall is a database toolkit, and
what you would use to query a database is a part of Prisma called the Prisma client. The Prisma
client is basically just a JavaScript library that you install from npm and you’re basically writing

that query once in your code. One great advantage is that it's fully type safe by leveraging

© 2020 Software Engineering Daily 4

SED 1083 Transcript

typescript. So you’re writing that query, and then throughout runtimes, when your application is
deployed, that code gets invokes. That under the hood generates a database dependent query,
typically a SQL query, but as we’re supporting of the database as well, it could generate
Dynamo queries, etc. These queries are then sent to the underlying database and the data is

returned and then returned into your application code.

[00:10:02] JM: Got it. What's the difference between using Prisma and using GraphQL?

[00:10:10] JS: It is a really two fundamentally different technologies for different use cases. |
think a good way to think about it is where in the application stack these technologies sit.
GraphQL is typically used for frontend applications to talk to backend applications. Whereas
Prisma, and specifically the Prisma client, is used for typically your backend application to talk to

your database. They’re analogous in this way, but typically sit at different layers of the stack.

However, it always depends with newer approaches like the Jamstack. Your frontend application
can statically directly talk to your database making the API server layer obsolete and you could
use Prisma directly for that. But the most common use case is more of like three-tier
architecture where you would use Prisma to talk from your application API server to your

database.

[00:11:01] JM: Got it. What's the benefit of — Or like the companies that you work with that have
put Prisma into their backend and they use that as a way to have the backend database access

function, what improvements does that lead to for their architecture?

[00:11:23] JS: I'd like to reframe that conversation a little bit and in order to talk more about like
which problem does it solve. The problem it solves is — The question here is very related to what
problems does a better abstraction layer solve? | think it solves a couple of problems. One is a
problem of productivity that you could do something in a certain way, but there is a better way to
do it because you're more productive building your applications and you have more confidence

in how you’re building it.

Prisma provides a better abstraction layer on top of your databases for any kind of workflow,

and for data axis in particular, let's say you’re building a modern backend application. And

© 2020 Software Engineering Daily 5

SED 1083 Transcript

where we see a lot of adaption for is particularly NodedS and particularly in Typescript.
Typescript just has so much adaption right now, and typescript is all about type safety. It’s really,
really difficult to bring the schema layer from your database into the type safe environment of

your programming language.

In this case, in particular, Prisma enables by letting Prisma introspect your database schema
and generate kind of like a bespoke custom-tailored database client library that slots right into

your application framework. That would be one big one.

Another one is working with databases is pretty difficult. It's one thing that you write the right
query to get the data back that you need, but then there's also 20 ways to do that. Probably just
a few of these ways is actually performant. Making database access performant is another big,
big problem that we can optimize in many, many ways. Helping you with problems called the
N+1 query problem, for example, or if you're building, let's say you implement a GraphQL
server. There's tons of optimizations that you need to do, and all of these things we optimize by

having build a custom-tailored query engine that sits on top of a database.

Another one, which we don’t yet support, but we are planning to roll out support for a little bit
further down the road is in order to support accessing multiple databases at the same time. We
see especially in larger companies polyglot persistence being more and more common in
application architectures. That your data is fragmented between, let’s say, Postgres and Elastic,
but your application still wants a more unified way to accessing that data. That's another use

case for Prisma further down the road.

[00:14:04] JM: In these cases, if | am issuing a query on Prisma in my backend, where is that

Prisma query getting interpreted into the native database query?

[00:14:21] JS: Right. Again, taking a little step back, you would use Prisma not just for data
access, but you could use it for many different workflows, so also to migrate your database
schema, etc. But in that particular case of accessing your database, Prisma supports multiple
different database connectors. Each of them are implemented separately through a plugin

architecture.

© 2020 Software Engineering Daily 6

SED 1083 Transcript

The way how these underlying database queries are generated depends on which database
connector you're using. Right now we are supporting Postgres, MySQL, SQLite. We’re working
on MongoDB. We’re working on mSQL, and over time we want to cover support for any kind of
database and any kind of data source really where you could think of notion, for example, being
a data source. Once a query gets executed on a Prisma client level, it invokes the Prisma query
engine under the hood. That right now is running as a separate process, but over time we’ll be
hosting that directly within the programming language WebAssembly. That query engine has the
responsibility of translating this Prisma client query that’s typically expressed through a
construct in your programming language into the native database queries. That typically would

be a SQL query in the most common cases.

What's interesting here is that it doesn't just translate one big Prisma query into one big SQL
query, but sometimes it’s actually more efficient to break up that one bit query into multiple
smaller SQL queries, which is more efficient and scales better. These are patterns that we've
seen implemented for companies or web scale companies that need to scale out their
databases. These optimizations that we can bake right into the Prisma client'. Application
developers just have to write the query in a very intuitive and language-idiomatic DSL, and
under the hood we make sure that it gets translated into the most optimized database queries,
mostly SQL queries.

[SPONSOR MESSAGE]

[00:16:39] JM: When you spend your spare time learning, you can accelerate your career.
O’Reilly lets you learn through high-quality books, videos, courses and interactive experiences.
O’Reilly content has been built over decades. They’re a trusted source of effective technology
education. If you’re an individual leveling up on your own, you can use O’Reilly to chart a course
for your career goals. If you manage a team or a company, you can get access to O’Reilly’s

career development resources for your whole organization.

Go to softwareengineeringdaily.com/oreilly to explore O’Reilly’s e-learning experiences. You can
build the skills you need to future-proof your career. Check out softwareengineeringdaily.com/
oreilly, and thank you to O’Reilly for being a partner with Software Engineering Daily for many

years now.

© 2020 Software Engineering Daily 7

SED 1083 Transcript

[INTERVIEW CONTINUED]

[00:17:39] JM: The process of setting up my Prisma schema, like if | want to use Prisma for my

application, what's that set up process like? How am | defining that schema translation layer?

[00:18:00] JS: | think we can distinguish here in two broader use cases. One would be a
complete greenfield use case. Let's say you want to build a completely new app. You're starting
from scratch. You're taking all of the pieces of your application and you, for example, decide on
Postgres and you want to use Prisma with Postgres and you want to build, let’s say, a REST API
node. What you would do is like you would set up your node project. You would install Prisma as
an npm dependency and you would then run the Prisma CLI Eli Prisma in it. This would set up a
file for you. That's the Prisma schema. In that Prisma schema, you say you want to use
Postgres. You configure your database credentials and then you start writing in that Prisma
schema your database schema. There're multiple keywords, for example, keyword model where
you can say, “l want a model user. | want a model post,” and you express your database
schema and then you use the Prisma CLI in order to migrate your database schema. Make sure
that all the right tables are created and then also the right Prisma client that just fits your
database schema is generated and you can start making database queries. That the greenfield
use case and that’s super straightforward and it gives you the great benefit of you know just the
right SQL commands in order to create the right tables, but you can declaratively express your
database schema similar to a nice analogy here, is like Prisma is kind of like Terraform, but for
your database schema. It you can fully declaratively express your database schema. That's the

greenfield use case.

Another very common use case is that you want to may be re-factor some of the applications or
we see it a lot that people have built applications in Rails and they want to move them to
JavaScript. They step-by-step face all their Rails backend, but they want to keep the database.
This is where they can use Prisma to introspect their existing database schema. This is one of
the workflows that Prisma supports so that instead of you writing your database schema

manually, you just tell Prisma, “Hey, these are my database credentials,” and we introspect your

© 2020 Software Engineering Daily 8

SED 1083 Transcript

database schema, generate the Prisma schema from it, and then generate the Prisma client

that matches your existing database schema.

Then you can either at some point say, “No. | actually want Prisma to also take the responsibility
of taking care of my database, my schema migrations going forward,” or you say, “l want to not
change my database schema, or maybe Rails keeps changing it,” and then you integrate the

Prisma introspect workflow into your CICD system. That also gives you that full type safety.

[00:20:52] JM: The actual implementation of Prisma is something I'm curious about. When a
Prisma queries getting executed, | know the first version of Prisma, you had a proxy server that
sat on top of a database and handled the incoming queries and Prisma 2.0 no longer has that
Prisma server. Can you explain the architectural changes that you made to Prisma and the

benefits to your change to Prisma 2.0?

[00:21:26] JS: Yeah. What I've been describing so far is all about Prisma 2. Prisma 1, the
predecessor of what's available now, has been more bit of an artifacts of our historic origins,
which actually started out more on a different architectural paradigm of the backend service,
and since then was Prisma. With Prisma 2, we’ve been really now focusing on the database
toolkit kind of framework approach. This is where Prisma 1 has still been more like an artifact.
That application server and the separate Prisma server has been more of an artifact of the past,
and Prisma 2, we’ve build completely from scratch with the best architecture in mind. The
Prisma query engine and the Prisma Migration engine are all implemented in Rust, which gives
us great performance benefits and lets us integrates the Prisma query engine, Prisma Migration

engine seamlessly into various programming languages.

Right now, we support JavaScript and Typescript, but we are already experimentally supporting
Go as well and we’ll be covering other languages as well. That's really a design goal for us that
we write the tricky part once when comes to the performance optimizations, etc. and that's all in
Rust and that’s super battle-tested. Then we can just seamlessly integrate that into these client
languages, whether that’s typescript, JavaScript, whether that’s Python further down the road,

and that these are basically just thin layers around that that are all generated.

© 2020 Software Engineering Daily 9

SED 1083 Transcript

Right now, the way how you deploy the Prisma client is just as a JavaScript library that’s
generated. There is no intermediate server that you need to deploy separately or you need to
manage separately. The way how you run migrations is just throw CLI so you can embed it into

your application architecture however you want.

[00:23:28] JM: What are the engineering challenges that you’ve encountered in the rewrite of

Prisma 2.0 when you — You rewrote it to Rust, right?

[00:23:36] JS: That’s right.

[00:23:37] JM: Yeah. What’s been challenging about that?

[00:23:39] JS: Obviously, the engineering teams would probably be the better people to answer
this question, but from what | can tell is that Rust is a fairly complex language. We've been
using Scala before and we’ve been moving it to Rust. Memory management and Rust is

notoriously hard. This was quite a learning curve for everyone involved.

Yeah, that was just challenging, but it's been really worth it and we have an immense test
coverage. Moving that over has also just like taking a bunch of time. That’s sort of on the Rust
layer. But the entire point of Prisma is that we make it as language-idiomatic as possible, so
also covering all the features that are available in Typescript to give you the best possible
experience working in your application language. We’ve been really pushing the limits there.
Have been using Typescript features, interacting with the Typescript team. Sometimes they've
been even surprised of like what we enabled and what we made possible. Hit a lot of bugs
there, and generally like we want to go through all of the mess in the JavaScript ecosystem in
particular that our users don't have to. That means like for every possible edge case you could
be hitting there, we’ve already hit it and implemented some smooth path there, but that also
means that we had like every possible combination of regression bugs in node or yar in different
version managers. We basically have to — This is an incredible broad spectrum of where
JavaScript fatigue, that's real, and we basically deal with the JavaScript fatigue and all the edge
cases there that our users don't have to, and ideally just smooth sailing for them. There’s maybe
not just this one hard challenge, but 10,000 annoying small challenges that we need to have like

proper testing for, etc., and that just takes a little while.

© 2020 Software Engineering Daily 10

SED 1083 Transcript

[00:25:38] JM: I'd like to understand more about database migrations and the motivation for
Prisma Migrate, which is something that allows you to migrate databases. What are the

potential scenarios that would require using Prisma Migrate?

[00:25:55] JS: We touched before on the two kind of main use cases that a user might have,
either the greenfield application, the greenfield use case or the a brownfield use case. You
would use Prisma Migrate particularly in the greenfield use case where you don't have a running
database set up before where it’s not in the right state and you want to get it structurally in the

right state.

This is the case for both schema-full and schema-less databases. Even if a database says it’s
schema-less, then your application basically becomes the schema, and you need to deal with
schema migrations in your application. Whenever you change something about the way how
you’d store data, there’s still structure to that. Then your application server basically becomes a
big pile of if/felse statements and becomes a mess, and everyone wants to have that schema

basically for your application data.

At the core of these migrations, it’s all the schema that expresses the structure. Then migrations
is you’re basically changing your mind of like what that structure should be, and then applying
that is incredibly hard, especially incredibly hard if you want to do so with confidence and in a

deterministic way.

There are a lot of — That’s a really hard challenge where you want to get every little piece of
technology that can help you hold your hands and make sure that you go through that. We’ve
heard a lot of customers perform what they call data surgery when they’ve messed up a
database migration. It’s a pretty common on a Friday afternoon. Then they basically just — They
wish for better tools, and have lots and lots of companies have invested into their own database

migration tooling as there’re no good integrated tools available.

This is what we’re working on with Prisma Migrate, where we take that declarative approach.

The way how you design your database schema and we derive and generate the imperative

© 2020 Software Engineering Daily 11

SED 1083 Transcript

migration steps from that that you can check into CICD and apply deterministically to your

applications and development to your applications in production.

[00:28:14] JM: Just to ask naively, why do database migrations happened? Who needs to

migrate the database from one place to another?

[00:28:29] JS: Right. It's a great question, and | think whoever has built an application has
experienced that you’ve — You don't know everything upfront. There is like this other feature that
you want to build. For that, you realize, “Oh! | don't have the data for that. | need to store this

additional data.”

Let's say you built a super simple blogging application and you have a title and you have a body
for each blog post, but then you also want to introduce a sub-headline. Then you need to
introduce [inaudible 00:29:02] to your database and you need to maybe backfill these for the old
items. With your changing business requirements, you need to store that data somewhere, and

this is what gets translated. The vehicle how you get that out is through database migrations.

[00:29:21] JM: For what kinds of workloads is the Prisma Migration most well-suited to? What

kinds of database migration workloads?

[00:29:33] JS: Database migrations, maybe it's worth also distinguishing here. Database
migrations is a pretty overloaded term. What we're talking about here is really migrating your
existing database schema. We are not talking about migrating data from an Oracle database in
a Cockroach database. We’'re really talking about someone building an application and their

requirements change and they want to change the database schema.

In terms of workloads, it’s incredibly wide spectrum, whether you just want to add a little field or
whether you add a huge new sub-category of your application. You like hundreds of tables. It’s
completely flexible. It's a pretty similar model as for the Prisma client data access part where
Prisma translates a Prisma query into underlying SQL queries. It's the same here for migrations
that you express the desired state you want to be in through the Prisma schema. Then the
Prisma Migration engine translates that into the undulating SQL migration steps or other

migration steps that database gets in the right shape.

© 2020 Software Engineering Daily 12

SED 1083 Transcript

The mental model here is the same way as React has the virtual DOM and you can
declaratively describe which stage your React app should be in and then React applies all the

divs. This is kind of the same approach here for Prisma or similar to Terraform.

[00:31:07] JM: I’d like to know more about how large companies are using Prisma and why it's

been useful to them. How it fits into their architecture? Do you have any case study examples?

[00:31:23] JS: Sure. | think it's pretty analogous to which kinds of applications are built with
databases. Databases are used at huge, huge companies and enterprises, but they are also
used for your little pet project that you build with Rails in a weekend. We see the entire — The
same spectrum of usage within Prisma. Whether it's hobbyists building their new side project
and they have no time and they want to get more stuff done faster, and so this is where they
want to get as much help as they can get and choose Prisma in order to not waste time on their
database, or whether it's a large enterprise that wants to maybe standardize the way how they
built backend applications and how they work with their database, or who want to currently go
through digital transformation or want to modernize their backend architecture and want to build
new applications on existing databases. We really see adoptions throughout the entire spectrum

of use cases.

[00:32:31] JM: Do you have like any particular examples, like any deeper examples for what's a

particular company that's found a lot of value in it?

[00:32:40] JS: Sure. | think what | can tell you is companies that have been using Prisma 1.
We're just in the transition to Prisma 2. Prisma 2 is now been out in beta for a couple of months.
Maybe by the time this show airs, Prisma 2 is already available in GA. We see a lot of adaption
for the Prisma 2 beta already and even for larger companies using it in production. I'm not sure
whether | can tell the names of these companies. What | can tell you more about is companies

who’ve been using Prisma 1 production, which addresses the same use cases.
This is where we had companies like Adidas or Splunk, like couple larger companies really
using Prisma in production, and we see just a lot more appetite and a lot more adaption already

trending up for Prisma 2. I'm pretty sure we’ll be able to tell you a couple of really big names in

© 2020 Software Engineering Daily 13

SED 1083 Transcript

the coming months, and we’re also planning a user conference a little bit further down the road

where we’ll also want to showcase more.

[00:33:42] JM: | assume this is a virtual user conference.

[00:33:44] JS: That's right.

[00:33:46] JM: It's worth asking you, you’re now an entirely remote company. What has been
the transition like for you? The process of going from a company with an actual office to

becoming fully remote?

[00:34:00] JS: Yeah, that's a really great topic as well. We started out with the company roughly
4 years ago all in Berlin. We had a pretty small cozy office where we’re just been a handful of
people back then. And over time, we grew. We’re right now just suppressed 30 people, and at
some point we also realized, “Okay, we will serve a global customer audience and we need to
be close to our customers, but we also need to hired the talent, where the best talent is located.”
In some cases, the best talent has been in Canada, or France, or the US, or elsewhere. We
started out with a couple of separate functions. We thought initially are more self-contained, let's
say, and started testing the waters there to expanding beyond just a single office in Berlin to

also supporting remote.

As then we also went more into executive hiring as well, we also realized, “Okay, we need to
hire the best possible people, the best possible people might live somewhere in Kentucky. They
might live somewhere in the UK. They might live all around the world.” This is where we went
beyond just the more self-contained functions to saying this is now what we're doing as a
company and this is what we’ve been basically starting this journey roughly 9 months ago and
have, before Corona actually came a thing, | think been on the way to becoming not just a
remote-friendly, but a remote-first company. Then this is already the trajectory we’ve been on.
Then as the Corona pandemic unfolded more and more, it has forced us on that trajectory even

more.

In that regard, it didn't really catch us all that much by surprise in terms of flipping the way how

the company operates, but it basically just accelerated that transition and it's been pretty

© 2020 Software Engineering Daily 14

SED 1083 Transcript

smooth and | think maybe not everyone's favorite setup to work remotely, but I've heard from
many employees that they’ve been more productive since they can remember and they’re

having a really great time and | think has worked incredibly well for us so far.

[SPONSOR MESSAGE]

[00:36:33] JM: JFrog SwampUp is an online user conference with more than 30 sessions from
cross-industry expert, including Google, Microsoft, capital one, Adobe and more. You can get a
unique look into the broad DevOps market, not just point solutions. There will be tracks for cloud

native DevOps, enterprise DevOps, DevSecOps and digital transformation.

Participate in expert DevOps training classes across DevOps tools, security, CICD and more,
and you could join from two time zones, June 23 and 24th for the Americas, and June 30t and
July 1st for EMEA and APac to suit daylight hours across the globe. Go to

softwareengineeringdaily.com/swampup to learn more and sign up

JFrog will be donating all conference registration proceeds to COVIT-19 research. Go to

softwareengineeringdaily.com/swampup and check out SwampUp.

[INTERVIEW CONTINUED]

[00:37:38] JM: Revisiting the usage of Prisma, we had a show recently with Tom from
RedwoodJS, Tom Preston Warner, and the Redwood JS platform, well, | guess you would call it
a framework for deploying Jamstack applications. Can you explain how RedwoodJS uses

Prisma and how Prisma fits into the burgeoning vision for Jamstack?

[00:38:10] JS: Sure. That's a great topic. Our overall goal at Prisma is to help application
developers build better applications, and the way how we help them in particular is by working
better with databases, but redwoods and many other application frameworks are as in line with
our vision as what we are working on ourselves, and this is where we feel almost like a B2B
vendor for these application frameworks giving them great tools that they can build an better

framework for their users.

© 2020 Software Engineering Daily 15

SED 1083 Transcript

We almost think in terms of our user base as one, our direct users, who architecturally want to
use directly Prisma and they want to more assemble each part of their stack, and then there are
users and application developers whom | want more everything out of box in one big framework
similar to what Ruby on Rails has been, and is what Redwood is working on. For them, we're
basic giving them one building block that takes care of all the database workflows. | think it's
really good analogy here if you think of Redwood as Ruby on Rails, then Prisma fits in there as

like kind of an active record equivalent.

This is where we’re helping the Redwood framework with their use cases, but there're also
plenty of other frameworks. There is a new JavaScript framework call Blitz that works on top of
the NextJS. There other, for example, GraphQL frameworks. We really want to help all of these
application frameworks to work better with databases and are giving them Prisma, basically, a

building block to build a better framework.

[00:39:55] JM: To come back to the internals, | think type safety is something that's worth
focusing on here. Can you explain how type safety is relevant to Prisma and where — Type
safety can exist at all different areas of the stack. | guess it's most important when you're — Well,
I mean, has a lot of applications. But explain where type safety fits into Prisma and what value it

provides.

[00:40:27] JS: | am a huge, huge fan of anything type safety. | was a huge fan of Swift, Rust,
Haskel, anything that gives you powerful type system just because it gives you more
confidence. It powers tools that make you more productive and it has basically no downsides
besides maybe a slight overhead in terms of build speed, but you can sort of neglect that in a
modern environment. But it's really hard to provide great type safety for your application

development and experience.

Since type safety, you can’t really retrofit type safety for all use cases, particular for databases.
These tools have to be designed for type safety from the ground-up, which is what we've done
with Prisma. We've designed every API in order so that it can be fully type safe. Since there are
SO many moving pieces, your database is by definition decoupled from your application and it
therefore can drift apart. Your database schema might change, but your application might not

have yet caught up with that change. So you want to have some tangible way of seeing like,

© 2020 Software Engineering Daily 16

SED 1083 Transcript

“Hey, [inaudible 00:41:42] work together.” By allowing you to introspect your database schema,
derive an artifact that where now the compiler gives you a confidence and tells you, “Hey, that
works, or it doesn't work.” That's absolutely huge especially if you're building microservices and
you don’t just have that problem once, but you have thousands of microservices. You want to

get every little bit of type safety you can get.

This has been really a core, core part of what we've been building and it doesn't just give you
that confidence, but it also powers like every part of the tooling that developers love whether it’s
the best code typescript integration, just top-notch. All of the auto completion, red squiggly lines,
etc. All of that is powered through type safety. Even for the funny symmetry almost in here, that
there's tons of developers who don't even know that this is type safety or typescript. They just
know | want better auto completion. | want these red squiggly lines. But all of that is powered

through that type safety and this is where everything is based on for us.

[00:42:52] JM: Tell me more about the problems in backend access that you would like to
address with Prisma and | guess with your company in the future. That's a great question, and |
think that this makes room for — Is maybe a nice segue for future shows as well since there is —
It’s basically unbounded in that regard that there are many use cases for databases and so

many problems developers have with databases.

To give you a couple ambitious ones, for example, if you're working with multiple databases and
you have some sort of replication system set up where you want to synchronize data from one
to another, for example, in order to implement read-write models. That’s a workflow and a use
case that we want to facilitate further. | talked about the distinction between database schema
migrations and database migrations in terms of moving from one database to another. That's

another one we see ourselves addressing in the future.

Then, also, in regards to polyglot systems is something that we are laying out the foundation for.
There will be always more than we can handle and we want to see what does a market most
urgently need. What do our users most urgently need, and we build everything in a modular way
that the ecosystem — There's already an ecosystem growing around Prisma where developers

step in and build ecosystem tools for things that we haven't covered yet, which is also really

© 2020 Software Engineering Daily 17

SED 1083 Transcript

great to see. Yeah. For now, we really want to focus on the data access, the schema migration

part and then all the workflows around that.

[00:44:36] JM: What are the business opportunities there? Do you have any vision for what you

might be able to structure a business around?

[00:44:46] JS: Right now, we’re a venture funded company. We've, two years ago, raised a
seed round. There’s yet unannounced follow-up around to that, which we’re going to announce
at some point this year, but now it's been spoiled through this. We are right now fully focus on
building the open-source foundation of Prisma. Prisma will always be open source, the
foundation, but this gives us a broad adaption base of users who want to buy an additional
commercial complementary product. This might be delivered as a club product. It might be
delivered as an on-prem product and might be supplemented through services offering as well,
and we are very inspired there through Hashi’s philosophy where they separate their open
source offering, their commercial offering by everything's open source and free that solves

technical complexity and everything that solves organizational complexity is commercial.

We see a very good analogy here, and where we see Prisma offering a commercial solution is
as what we think of calling an application data platform. As supposed to data platform for data
analysts, more of a platform for application developers that gives them all the workflows like
running these applications in production what a CICD for databases look like. What does
collaboration look like? You want to have a schema registry for all of your microservices that
each have their own databases, and this is where we see a lot of these systems being built at
larger companies, whether it's Facebook, or twitter, or LinkedlIn, but they're not open source.
They're so monolithic and like integral to their application architecture, but we want to take these

ideas and make them accessible to everyone as a commercial product as well.
[00:46:41] JM: Very cool. Well, do you have any other closing thoughts on the space that you're
building in? Subjects that have come up recently that you’re thinking about in just the landscape

of data access?

[00:46:57] JS: Yeah, | think the landscape is really what gets me so excited on a day-to-day

basis. Since | mentioned the term JavaScript fatigue before, this means basically that’s a

© 2020 Software Engineering Daily 18

SED 1083 Transcript

negative side of it. There is constantly something new, but there is so much innovation going on
and so many new technologies and so much drive in that ecosystem, whether it’'s new database
vendors, like Fauna, or Cockroach, or whether it's new application frameworks like Redwood or
Blitz, and we basically fit right in the center of all of this where we basically want to be similar to
how Reacts is just a foundation of an ecosystem, and like if it works with React, then you're like,
“Could you adapt this library?” We're seeing Prisma on a similar trajectory where Prisma just
becomes the default way how developers think of working with a database, and this enables this

amazing ecosystem that we see flourishing.

Whether it’s like the show you've done with Tom Preston Warner and Redwood, or other
frameworks in the future. You've done one on NextJS, which we’re also integrating deeply with.

This is for me the most exciting thing. All the pieces fit together like Lego bricks.

[00:48:10] JM: Johannes, thank you for coming on the show. It’s been great talking.

[00:48:12] JS: Thanks so much, Jeff.

[END OF INTERVIEW]

[00:48:22] JM: Over the last few months, I've started hearing about Retool. Every business
needs internal tools, but if we’re being honest, | don't know of many engineers who really enjoy
building internal tools. It can be hard to get engineering resources to build back-office
applications and it’s definitely hard to get engineers excited about maintaining those back-office
applications. Companies like a Doordash, and Brex, and Amazon use Retool to build custom

internal tools faster.

The idea is that internal tools mostly look the same. They're made out of tables, and dropdowns,
and buttons, and text inputs. Retool gives you a drag-and-drop interface so engineers can build
these internal Uls in hours, not days, and they can spend more time building features that
customers will see. Retool connects to any database and API. For example, if you are pulling

data from Postgres, you just write a SQL query. You drag a table on to the canvas.

© 2020 Software Engineering Daily 19

SED 1083 Transcript

If you want to try out Retool, you can go to retool.com/sedaily. That's R-E-T-O-O-L.com/sedaily,
and you can even host Retool on-premise if you want to keep it ultra-secure. I've heard a lot of

good things about Retool from engineers who | respect. So check it out at retool.com/sedaily.

[END]

© 2020 Software Engineering Daily 20

