
SED 1067 Transcript

EPISODE 1067

[INTRODUCTION]

[00:00:00] JM: Infrastructure as code tools are used to define the architecture of software
systems. Common infrastructure as code tools include Terraform and AWS CloudFormation.
When infrastructure is defined as code, we can use static analysis tools to analyze the code for
configuration mistakes just as we could analyze a programming language with traditional static
analysis tools. When a developer writes a program, that developer might use static analysis to
parse a program for common mistakes; memory leaks, potential null pointers, security holes.
The concept of static analysis can be extended to infrastructure as code as well allowing for the
discovery of higher level problems such as insecure policies across cloud resources.

Guy Eisenkot is an engineer with Bridgecrew a company that makes static analysis tools for
security and compliance. Guy joins the show to talk about cloud security and how static analysis
can be used to improve the quality of infrastructure deployments.

[SPONSOR MESSAGE]

[00:01:08] JM: When I’m building a new product, G2i is the company that I call on to help me
find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you
can trust. Whether you are a new company building your first product, like me, or an established
company that wants additional engineering help, G2i has the talent that you need to accomplish
your goals.

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also
done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.
These are engineers who know about the React ecosystem, about the mobile ecosystem, about
GraphQL, React Native. They know their stuff and they run a great organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product

© 2020 Software Engineering Daily 1

SED 1067 Transcript

development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners
and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to
softwareengineeringdaily.com/g2i.

[INTERVIEW]

[00:02:59] JM: Guy Eisenkot, welcome to the show.

[00:03:01] GE: Hi, Jeff. How are you?

[00:03:02] JM: Large enterprises have a dedicated security team. They also have dedicated
software engineering teams. This has been the case for a long time. Overtime, there has been a
shift in responsibility from the security teams doing security work. Do the software teams doing
security work? Why have software teams increasingly had a responsibility to do security work?

[00:03:28] GE: Yeah, it’s probably the first or probably the main understanding that me and my
cofounders came to about two or three years ago when we started thinking about starting
another startup. If I have to pinpoint one thing specifically, I think power to developers. I think
we’ve seen it in our own engineering team how more and more product management decision
and architecture decisions are just flowing downstream, and you have this amazing and very
independent generation of developers who not only wants to build and design, but really wants
to shape how things are going to get done forward, and I think that’s been for our team and the
teams that we’ve worked with, startups and enterprise, I think that was probably the main
movement of shift we’ve seen in the past 12, 18 months.

[00:04:19] JM: Infrastructure as a code is a way of declaratively describing how your software
architecture fits together. I feel like there is a connection between infrastructure as code and
modern software engineering security practices. What’s the connection between infrastructure
as code and security?

© 2020 Software Engineering Daily 2

SED 1067 Transcript

[00:04:37] GE: They would, yeah. If we take a step back and maybe focus or zoon-in on cloud.
In cloud, we define infrastructure as anything that can get changed or provision or control
through a cloud provider API, and when we think about it, it’s kind of crazy. Think of even the
concept or a notion of a firewall, which is like a classic pillar or infrastructure, and like for the
past 25 years, people have been selling it in boxes. You get it. You put it in your data center. You
usually wire it. The person who knows the firewall best is the guy that dragged it into the data
center.

When you think of a firewall in the cloud, like in Amazon, the security group. It’s like six or seven
lines of code. It’s pretty ridiculous. You took this enormous idea of configuration, which was
something that was very centralized and managed on almost a physical basis and you’ve turned
into just another component within software. I think when I look at infrastructure as code and
what it’s doing to security in software development, I think about all these previous notions
we’ve had of how or what infrastructure is and make these correlations into how they look like in
the cloud.

Take databases as another example. In like our previous startup, we had like three different
database systems and we thought we’re like super advanced and crazy for using both of file
system, one for machine learning and one for short-time retention and thinking we’re reinventing
the wheel.

Now with Amazon or Google Cloud, you have dozens of database services, all of them can be
toggled on and off, provisioned, refactored, migrated with tens, even less than a hundred lines
of code. We think when we think of security, we look at these pillars of infrastructure that are
getting migrated into code and just really finding this role of what cloud infrastructure and what
cloud infrastructure engineering has become.

[00:06:31] JM: Popular ways of defining infrastructure as code include Terraform and
CloudFormation. Describe how these different tools for infrastructure as code declaratively
managed? How do these tools work?

© 2020 Software Engineering Daily 3

SED 1067 Transcript

[00:06:46] GE: Yeah, sure. I think the best way to think of declarative is to think about an
infrastructure or an architecture that you know what it’s end state is going to be. The nice thing
about declarative is you basically write a very simple language that defines objects that
eventually get deployed just the way that you wrote them to be. Another thing that you can do
with declarative, such as Terraform or CloudFormation, is to write it in steps and make sure that
the next step or the next few steps are layering that initial plan that you have. This is extremely
useful for writing in networking, for example. If you want to configure a new network, a subnet or
a VPC in cloud infrastructure, it’s really, really simple. Instead of remembering all the dotted
lines and everything that gets connected together, to think of the end state, what’s the
application going to look like? What’s its ingress or egress rules going to be? Once you start
with that, you can basically build out any logic that makes it either more granular or scales it out
and makes it more robust as you have that end state in mind.

When you have imperative, I think the most famous term to really have that picture this is
basically thinking of recipes. Having a clear set of actions you’d like to perform and then
basically give the system the ability to decide what are the best ways to orchestrate those steps
going forward. This is super useful for people that are fleets of virtual machines, for example.
Using imperative language really enables you to build them in a stateful manner that enables
you to think of every step of the every way and everything that needs to get deployed every
certain time.

[00:08:23] JM: How do people choose between Terraform and CloudFormation?

[00:08:29] GE: It’s a good question. I think there are two considerations out there, and if you
ask me, I think we’re going to see a huge trend in the next coming months and seeing
HashiCorp, which owns and maintains Terraform obviously is getting bigger and more
noticeable in the landscape and there’s more and more companies that want to take a piece of
that and be part of that party.

Obviously, CloudFormation is Amazon’s proprietary language for writing infrastructure as code.
It actually has its own competitors internally for writing infrastructure. So you can use
CloudFormation, but you can also use CDK, which is another way to write a more imperative
style of infrastructure. But when you look at CloudFormation versus Terraform, I think the main

© 2020 Software Engineering Daily 4

SED 1067 Transcript

difference is that you will eventually write CloudFormation only for your Amazon Web Services
resources and you’ll probably write Terraform for everything inside Amazon. They have great
support of Amazon, but they also have this great ability to basically take any type of
infrastructure, whether it’s cloud infrastructure, but not only. So you can think of databases as a
service, even GitHub. Your code repo can eventually get provisioned, changed, managed using
that very robust, very flexible HashiCorp language that enables you to deploy resources at
scale.

For our customers, Terraform has been a natural choice because it does give you the ability to
use that same language and to continue using it even for your next cloud provider and for your
next provisioning tools. But on the other hand, Amazon is super competitive and we’re already
seeing it ramp-up a lot of the features that Terraform was able to bring up, thanks to a huge
community that’s behind it. I expect to see some more competition between the two, but my
personal opinion, more companies going to diverse their cloud portfolios, Terraform is eventually
going to reign on top.

[00:10:20] JM: Have you heard of a company called Pulumi?

[00:10:24] GE: I have. Yeah.

[00:10:25] JM: Yeah, we just did a show with Pulumi a while ago, which is an interesting blend
of classic programming languages and declarative infrastructure. I guess the goal is to give you
the best of both worlds when it comes to the Puppet and Chef imperative world versus the
Terraform declarative world. Do you see that as valuable or important?

[00:10:51] GE: I think so. If I have to categorize it in my head, and I’ll be frank, I haven’t used
Pulumi. I have seen some of their – They have some very good documentation out there about
what they’re doing and always happy to see another loud voice for pro infrastructure as code.
But think of all of these technologies eventually as additional abstractions that are supposed to
help you simplify the very complex world of cloud native.

I think one customer of ours had told me, “Think of the hundreds of services and APIs I have to
track on my existing services that I use on Amazon. Multiply that by my next cloud provider,

© 2020 Software Engineering Daily 5

SED 1067 Transcript

whether it’s Google Cloud or Azure,” and basically Terraform has been a safe zone where they
know we have to learn one language. Eventually it’s a pretty similar abstraction on top of all
three clouds, but I can definitely see why the complexity of multiple provisioning languages is
probably a challenge that I can see it on the next seal. I think our current partners and
customers were still climbing that uphill against working or getting a good or solid recognition of
all the complexity they have with their existing cloud provider.

Bottom line, I see even in the near term, more and more technologies. I think I’ve even heard of
another open source project just a few days back. Great ideas and great ways to create
additional abstraction layers over the complexities of the cloud, and yeah, rooting for them. I
think as we get more and more configuration as code, I think eventually developers are the ones
that are benefitting, because we’re giving them more power and the more centralized and
independent teams are and how they build and how they think of software and the more they
use infrastructure as code and the more we simplify infrastructure as code, the more robust,
scalable and secure systems we’ll see getting built.

[00:12:41] JM: What kinds of security mistakes get made when defining my infrastructure with
these infrastructure as code tools?

[00:12:50] GE: Yeah. It’s actually a great question. Actually one that I’m dealing with right now.
Actually, the way first wave of research around the mistakes and errors around infrastructure as
code are now getting published. There was a great research that the research arm from Palo
Alto Networks released like a few months back which had like a great overview of the different
types of configuration errors you can find in code. I think what they did is scanned public
repositories and tried to identify within template files that can be found in these registries. What
types of errors are building within them? Which is kind of a tricky analysis, because as we
mentioned, once you have a declarative language, eventually you can wrap a configuration
error with a protective configuration, additional protective layer that can basically make that
previous configuration irrelevant, the same as vulnerabilities and exploits and what you can do
to mitigate them.

Eventually I think it goes to four main areas. I think one main area that we see for configuration
errors is around usage of default configurations. Cloud providers are very good at giving you

© 2020 Software Engineering Daily 6

SED 1067 Transcript

this very broad canvas where you can build and apply default configurations to get things up
and running very fast. Take machine learning as an example. In my pervious company, it took us
two years to build a machine learning engine, and now with native tools like SageMaker and
others, you can build the most robust Airlfow-based machine learning pipeline in minutes.

What we see is when users are using these default configurations and bringing it into their
production environments, they forget that sometimes that these default configurations purpose
was to get you up and running very fast and not necessarily to a point where you can basically
build the most secure system.

I think one main area that we see is that people are just not very aware that default
configurations are not very good. I think cloud providers understand that now more than ever
and they’re actually pushing some of those previously done mistakes, like leaving buckets
public, or leaving encryption unused as things are getting, one, cheaper; and two, becoming
default configurations. That’s one bucket.

I think the other one is around making sure that everything gets logs and audited correctly. For
me, or for us as security practitioners, this actually goes without saying, because we’re used to
building the software, the tracks, things that happen like OS telemetry, and networking
telemetry, because we configure the firewalls in the old generation. But today when users are
configuring their own infrastructure, if they don’t or they’re not bounded or restricted to use
infrastructure that reports consistent telemetry, then I think they’re just black holes. So suddenly
you have ephemeral resources or different pockets within your public cloud that are just not
logged and audited, regions that you have activity and you get build for them, but you’re not
really sure who’s using them and why. That’s like another mass, mass area where we’re seeing
misconfiguration, just not using some of those tools that are unfortunately not the most or the
least pricey, but they’re just – That bottom line, they’re just that baseline that you have to have in
order to know what’s going on outside your spend on the cloud. Number two, just ensuring that
everything gets logs and audited.

Number three is around compliance requirements. There’s like two main ones that usually
reoccur, which is the use of encryption and the proper management of users and credentials,
and this is where it gets simple and complicated. It’s simple in the way that it’s easy to turn on

© 2020 Software Engineering Daily 7

SED 1067 Transcript

encryption today probably now more than ever. On the other hand, more and more frameworks,
like SOC2, NEXT, PCI are now requiring that you encrypt almost everything especially with data
privacy becoming an area where more and more auditors are getting focused on.

It’s easier on one hand. On the other hand, there are lots of services to encrypt. That’s another
bucket that we see a lot of misconfigurations in. The last one, it ties back to compliance, but it
also ties back to everything, but it’s the use of AWS IAM and any proprietary IAM, cloud native
IAM for that matter. We have actually just introduced an open source tool that tries to help users
clean up the mess for that, because we’ve seen so many environments that spun up in the last
three, four, five years and they have these pockets of different generations of access controlling
them, like two or three SAML providers, different users of like rows, permissions, inheriting rows
and permissions. It’s a crazy big roll, but lots of lots of misconfigurations in that area. Eventually,
most of our users decide to attack it, because their compliance auditor found out that they’re just
not managing their IAM as they’re supposed to.

[00:17:34] JM: Yeah. I mean, it sounds like it can be a nightmare. Even if you just talk about
generations of developers coming through a company rather than generations of tools. You
have these IAMs and IAMs groups that gets set up and it can be hard to keep track of which
group has access to what and who is a part of what group. Tell me more about some of the
mistakes that can be made – IAM by the way is identity and access management for those who
don’t know the acronym. But tell me more about some of the mistakes that can be made in
policy management.

[00:18:14] GE: Sure, one of our favorite topics. Just maybe before that [inaudible 00:18:18].
Think of using IAM, and a lot of configuration for that matter, but IAM is like one of those that
really sticks or nail it home, but think of it as like almost archeology. We’ve seen environments
that are like 6, 7, 8-years-old, which are probably these are old environments in AWS terms, and
you can really see the layers and layers of fossils that have come about, because users initially,
maybe they use the internal IAM and then switched back to an external identity provider and
then switched back. I think when you look at it, you have to understand that, like fashion, cloud
developments has trends and has new services that are coming in all along and it seems like
identity and access is the one, has been like a poster child for being one that’s both super
simple to set up in the sense that you can write or configure a new user fairly easily specially if

© 2020 Software Engineering Daily 8

SED 1067 Transcript

you compare it to your active directory days where you had just one IT admin that was able to
provision new roles in the system. Now, even the AWS managed policies give you quite vast
permissions to create new roles and to edit permission documents and to – For almost every
resource that you spin up.

On one hand, managing IAM in Amazon, for example, but it’s the same for the other cloud
providers. It’s extremely easy in the sense that it’s accessible. Developers have it in their hands
today, but on the other hand, it’s really hard to define what’s the specific best practice, because
it really goes down to what’s your end result and what are you going to try to aspire to get.

We’ve seen a banking, an online banking company that had to go through their PCI audit that
just decided to clear out everything that’s not their existing SAML provider. They wanted to
remove probably 90% of IAM configurations that were available just to be able to report to an
auditor that the system is working with just a single provider not because it gives them the best
speed or development base just because it’s the only way to pass a PCI audit, to be able to
define a very restricted set of users that have access to a single place.

I think where we’ve taken IAM as we’ve seen it, and you may understand, we’ve seen like
probably over 100 AWS accounts so far with like every type of permutation of configurations you
can think of. Fairly early in the process, we saw that one thing that you have to do with IAM is to
codify it, and by codifying, it means unfortunately taking it out of AWS, out of that manual
configuration console, which is actually very user-friendly, but very distractive in the sense that it
really encourages people to build and write their own individual logics to how things should
communicate and have access to each other and to ensure that everything gets managed as
code.

We are, as you may understand, are firm believers in moving configurations that are manual
into configurations that are automated. As I mentioned, we’ve just built out this tool which we’ve
actually been using for the past month, a couple of months, to migrate the existing AWS AIM
permissions into much a simpler, a model that basically, one, cleans all the unused users,
groups, policy documents, permissions that are just not in use and we’re using a great Amazon
API called Access Advisor that gives us all the telemetry for free.

© 2020 Software Engineering Daily 9

SED 1067 Transcript

Once we get that all cleaned up, we basically migrate all those manual configuration into one
neat Terraform file. The reason we think it’s so cool is suddenly user management and access
management isn’t something that’s a standalone configuration that you have to go and do every
time you build a new project, but it’s actually part of your code. Just like you build your
networking configuration, as I mentioned, declarative infrastructure as code is great for that.
You’re just going to have to start working with your cloud provider and use their IAM provider
and module pack to define those as code. If you’re unfortunately using manual configurations,
multiple providers, you can basically use that tool that I mentioned. That’s called AirIAM. It’s free
open source Apache 2, and migrate all your manual configurations.

I think it’s improved our way of tracking identity and access internally and also for our
customers, and looking forward, I think more and more configurations are going to go through
that transition, and I think Amazon is going to get it too and make much more of that IAM API set
up get much more accessible through infrastructure as code, whether it’s CloudFormation, CDK,
landing zones, control tower, all those products that help you, Amazon products that help you
set up and define policies, permissions beforehand. SAP is another one.

[SPONSOR MESSAGE]

[00:23:09] JM: If you listen to this show, you are probably a software engineer or a data
scientist. If you want to develop skills to build machine learning models, check out Springboard.
Springboard is an online education program that gives you hands-on experience with creating
and deploying machine learning models into production, and every student who goes through
Springboard is paired with a mentor, a machine learning expert who gives that student one-on-
one mentorship support over video.

The Springboard program offers a job guarantee in its career tracks, meaning that you do not
have to pay until you secure a job in machine learning. If you're curious about transitioning into
machine learning, go to softwareengineeringdaily.com/springboard. Listeners can get $500 in
scholarship if they use the code AI Springboard. This scholarship is for 20 students who enroll
by going to softwareengineeringdaily.com/springboard and enter the code AI springboard. It
takes about 10 minutes to apply. It's free and it's awarded on a first-come first-served basis. If

© 2020 Software Engineering Daily 10

SED 1067 Transcript

you're interested in transitioning into machine learning, go to softwareengineeringdaily.com/
springboard.

Anyone who is interested and likes the idea of building and deploying machine learning models,
deep learning models, you might like Springboard. Go to softwareengineeringdaily.com/
springboard, and thank you to Springboard for being a sponsor.

[INTERVIEW CONTINUED]

[00:24:45] JM: So you're saying that much of the way that policy is managed today is through a
CLI tool or just going into the Amazon AWS dashboard, whereas in the future, maybe there
should be higher level tools that allow you to reckon with these in more of an automated
fashion.

[00:25:11] GE: Correct. Just to generalize, I think this goes for probably most of the first,
second gen services that Amazon came out with. So think of S3 Buckets, EC2s, IAM, probably
top or top three. I might be missing a few others. I think what happened with those more mature
tools is that people have accumulated this long tail of configurations that now in 2019, 2020,
when people are starting to look back and you've got some great open source and commercial
tooling out there that helps you clean up the mess, you're suddenly seeing all that long tail of
configurations you have dragged on.

I think open source community has been doing a great job in surfacing a lot of that bad practices
around IAM hygiene and other areas. If I generalize it, I think what's happening even within the
Amazon tool base is that they’re obviously understanding that people want to clean up a lot of
that messed historically because they've seen that once you don't clean up that historically
because they’ve seen that. Once you don’t clean up that historical mess and you keep those
fossils buried inside your architectural layers, over time they can get exploited. This might've not
happened two or three years, because – I don’t know, maybe it was like the grace of AWS at
that point, but we’re seeing more and more of these resources getting attacked and targeted by
both the research community that's looking for vulnerabilities, and that's great, but also for a
much darker set of actors that just understands that these are APIs accessible to the Internet
that you can exploit.

© 2020 Software Engineering Daily 11

SED 1067 Transcript

[00:26:45] JM: Now you’ve described policy management issues, and I eventually want to get
to some of the tools that you’re building, but I want to talk more about problems that occur in the
creation of infrastructure as code configurations. Networking is another issue that can lead to
problems in security if you configure a network incorrectly. What kinds of mistakes get made in
network configuration in regards to infrastructure as code?

[00:27:18] GE: It's probably not as complex as it is for your IAM actually. Networking, as we see
it, is eventually – You can almost think of it as two religions. You have people that come out of
the identity space or have identity strong identity backgrounds and they decide to segregate and
separate their environment and to decide how they're going to do multi-tenancy and other types
of internal – Building those logical walls inside. You have this other religion of people that
manage policies through networking.

In the cloud, and maybe I'm being too simplistic in this, but in the cloud, it really doesn't matter
that much. Eventually in access group or a security group, which both get defined with a six or
seven lines of code, they get exploited and manipulated and their managed policies look
different, but eventually the work that goes into managing and provisioning them is pretty much
the same in the amount of code you have to write.

Specifically, around networking, I think we've seen probably three main areas of problem, and
this kind of talks to my previous points. One is, and this has been talked about quite a lot, is the
use, again, of different configurations, epecifically Amazon's default VPC, which for some
reason still enables you to create a new VPC that's wide open to the Internet. When you create
a new VPC on Amazon, you eventually get yourself something that’s supposed to be a virtually
network, but eventually if it's widely open, for example, to the Internet or for like port 22 for SSH
connections, it could be exploited immediately once it goes online.

We see users that understand that and actually Amazon now enables you to block that type of
configuration and not use that default VPC that creates a default security group that are both
inherently containing that configuration and mistaken policy. That's one. Second is around
databases predominantly. Again, zooming on Amazon, you have your managed elastic search,
your manage elastic ElastiCache database. You have S3 obviously, archiving databases, tons of

© 2020 Software Engineering Daily 12

SED 1067 Transcript

ways to store data. You can use SQL relational, non-relational, Mongol. Lots and lots of these
databases types. Where it gets complicated is that each and every one of these databases
obviously rides on a unique protocol port and IP number and IP reg once defined.

What we've seen in our customer base, and this references mostly to companies that are in
their fifth, sixth, seventh year to building on Amazon, pretty mature. We just see that these
databases over time, various people touch them and use them and provision them. They just
get left wide open. Think of a database that eventually serves a web application, but for some
reason is accessible. Someone basically that scanning that range of addresses and looks for an
Elasticsearch, for example, that has access to the Internet. Obviously, that’s misconfiguration or
potential vulnerability and someone can exploit that.

I think one thing that we instruct most of our users at the first couple of days is basically to focus
on all the communication back and forth from databases and to see what ports are open, how
are security groups managed, because sometimes for various reasons eventually data needs to
go somewhere. If it's to show something on a web application or to enrich a process that’s doing
some complex recommendation engine, eventually data in a database doesn't serve anyone.
That entire dynamic of more and more people touching data and moving data from place to
place has historically gotten to a place where databases have become a place where we’ve
seen more and more configuration errors and potential vulnerabilities.

I think if you look up Amazon Web Services and leaks for customers that are using Amazon
Web Services, you will see that most of the data that was leaked was eventually coming from
misconfigured databases, whether it's axis control over S3 or networking configuration on
Elasticsearch that just enabled people to access them [inaudible 00:31:25] to do man in the
middle, things that are slightly more complex. Note your default VPCs. Not your databases.

A third cluster is ephemeral resources. Think of everything that you need for a short period of
time. I think the problem with that, it’s like it's a great way to save money, right? One thing that
ephemeral resources came to the world, because you can basically spin up resources in the
cloud for very short periods of time. Let them do what they need to do and shut them down.

© 2020 Software Engineering Daily 13

SED 1067 Transcript

Spot instances work this way and compute and short-term compute workers work this way and
databases work this way. It's pretty awesome for development. We’ve seen a lot of configuration
errors around that area, because what happens is that you can spin up ephemeral resources
using AWS APIs, SDKs, even external services, like if you’re using Databricks, or a managed
data pipeline. You can get them to spin up databases for you.

We've seen users that are defining that initial set of permissions and networking that's required
in order to get these external as a service working for them, but forget that eventually they have
a networking wrapper that gets open and remains unused. Think of a project or a data science
project that you have that’s running databases on one hand, compute workers on the other, and
those workers get launched up and down all the time. In the interim, which can sometimes be
hours or days, you have these set of network configurations that’s actually unused. What
happens is that sometimes these networking configurations get generated dynamically. So you
get more and more of these networking configurations that are stale a lot of the time and are not
being used, and overtime they become fossils and no one manages them. Obviously, if you
don't properly manage those networking configurations, they become exploitable. If you don't
clean them out, you won’t have – You’ll basically risk the possibility that someone will try to hack
them.

[00:33:24] JM: Do these mistakes get made because people don't know what they should be
doing or because they just like make a mistake, like a typo? Is a lack of knowledge or is it just
like too much stuff in these configuration files such that they do something wrong, even though
they know if they took a second look at that piece of code they would realize they're doing
something wrong?

[00:33:53] GE: Yeah, great question. We haven't done the psychological research to really see
where some of these are configuration come from. I think my experiences showed me that it's
definitely not negligence or lack of willingness to write good infrastructure as it is just super-
duper complex and manual. Obviously, not probably the most shiny part of the job. I don't I know
a lot of developers. I don't do a lot of developers that like to write the unit tests that check out if
their configuration is sounding the sense that it was configured based on the latest set of
policies that someone applied in their infrastructure is code system, if you know what I mean.

© 2020 Software Engineering Daily 14

SED 1067 Transcript

I think what I've seen is that mostly the complexity, the amount of arguments, that amount of
different elements you can insert and inject into resources has been probably the main
contributor to misconfiguration errors being so common, and you have to connect that to where
people are getting a lot of this configuration as code. There's a lot of different sources out there
in the same way as like six or seven years ago, everybody just started scraping every popular
open source and building their stack based on that great set of open source tools that helped us
build applications like 2015, 2016, and that brought in tons of tons of vulnerabilities into our web
applications. You have the exact same thing happening now with configuration. People are
going to these public repositories which are eventually managed by good people from the
community, from the cloud providers themselves. People are obviously contributing templates
and modules of configurations, putting them out there so they help someone achieve a goal.

What they’re not thinking about correctly, and I think that's probably the biggest disadvantage of
building in the speed of infrastructure as code, is that as you write that declarative language,
you’re not constantly thinking, “Hey, is this going to – When I finish, is this going to be sound
terms of the configurations and the different arguments that I've inserted?” Because, as I
mentioned, you can write out firewall logic in six lines of code, like AWS security group, but if
you don't really look at what's in those three lines of code and make sure that it doesn't only
make your application work with two services that are indifferent VPCs or subnets, but it's also
not exposing that compute ACID that you’ve just built to potential hazardous access, then
whose fault is it? Who's accountable for it?

When we started to talk about that shift of responsibilities that started with security teams that
were centralized and had the role and responsibility to make sure that people don't get phished
online or that websites don't get harassed or tarnished, and now in the cloud, we’re expecting
them to be able to get inside each and every developer’s mind and make sure that each and
every configuration that they make is security-aware. I don't think it makes sense. It sounds to
me like there should be another boundary between the developer, which we’re asking from to
write the best code they can to get the business goal as fast as possible. On the other hand, to
have an internal force, hopefully it's like an automation, it doesn't have to be a person, that
continues and makes sure that all this configuration that gets pushed into production is
continuously getting checks for potential misconfiguration and errors, because eventually as
more and more of these activities get crowd sourced, and when I mean crowd sourced, I mean

© 2020 Software Engineering Daily 15

SED 1067 Transcript

they go back to developers when they inject one of these configure errors into code, the less
experts we’ll see and the less work we’ll give security and DevOps folks, right?

[00:37:35] JM: All right. Well, this brings us to Chekhov, which is a project that your company,
Bridgecrew created. Chekhov finds security and compliance misconfigurations. I can run this at
CICD time, and as my code is getting ready to be deployed, I can check it for misconfigurations.
What are the common security and compliance misconfigurations that I could find with
Chekhov?

[00:38:07] GE: Great question. Chekhov is fun. I’ll just give some background, but we started
off like four months ago almost. After obviously – I’ll go a little bit sidetrack, but I’ll get back to
your question in like 60 seconds. I promise. We saw that when you try to fix a lot of the
configuration errors in runtime, I mean, specifically in AWS you’re like using a Lambda function
that would correct a configuration, what happens is that the nightly bid that contains that
declarative Terraform plan is going to override that configuration fix that you made.

We understood that, specifically, the analysis of configuration and the correction of configuration
has to happen much further upstream. My cofounder, Barak Schoster, which is you have to
meet him some time. He’s like a wonder kid. He’s pretty amazing. He locked himself up this one
weekend about 4, 5 months ago, and after two days where we haven't heard from him, he came
out with Chekhov, which eventually it's a very simple Python tool that does study code analysis
and there's like hundred others out there. But what we did with it is we just gave it the exact set
of scanning capabilities that we saw Amazon and Google and Azure eventually requesting us as
users to track obviously through a framework, like the CIS framework, which gives like the most
foundational set of policies and checks people should monitor, and most cloud providers now
give you that almost for free. You can toggle it on and use it for free, but no one was looking at
the infrastructure as code.

He came up with it and we blitzed like two or three of our in-house developers writing up the
content and making sure that it goes out there and really covers as many configuration types
and configuration errors as we we've encountered and as close as possible to those
frameworks. If someone really wants to adhere to that framework and that's how they're getting
their NIST 800 or SOC 2 PCI DSS, have another layer of protection.

© 2020 Software Engineering Daily 16

SED 1067 Transcript

Eventually, Chekov looks at those same families that I mentioned before. Chekov looks
obviously at the networking layer. So it looks at the security group and VPC configurations to
track and see that you're using best practices and not exposing networking publicly to the
Internet when you're not supposed to or you don't want to do it intentionally. It looks at
databases, as I mentioned. It looks of databases for encryption on most of the popular
databases. It looks at a lot of binary configurations. For example, it looks for all of the logging
configurations that I also mentioned and makes sure that you have those toggled on.

For the past 2-1/2 month, we’ve put more and more emphasis on the compute. Added support
for most of the EC2 management, obviously, but also for the managed Kubernetes capabilities
now and just making sure more and more of those services are covered. Eventually, what we
want to accomplish there is to have as much parity as we have with the policy, policy as a code
obviously, which I don't think I've mentioned up until now, that we have defined in runtime.

Your cloud provider maybe helping you track or a third-party tool or an open-source tool is
helping you track all the configurations within your cloud provider APIs and settings, but Chekov
has been a great asset for us and for the community actually by being able to track those same
sets of policies as the infrastructure is getting build in Terraform, CloudFormation, and very
soon, a few other exciting languages, which we all know and love.

[SPONSOR MESSAGE]

[00:41:44] JM: Sponsoring today's podcast is Datadog, a cloud scale monitoring and analytics
platform. Datadog integrates with more than 400 technologies, including Cloud Foundry, Docker,
Kubernetes and Kafka, so that you can get deep visibility into every layer of your applications
and infrastructure, in the cloud, on-premises, on containers or wherever those applications run.

With rich dashboards, machine learning powered alerts and distributed request tracing, Datadog
helps teams resolve issues quickly and release new features faster. Start monitoring your
dynamic cloud infrastructure today with a 14-day trial. Listeners of this podcast will also get a
free T-shirt for trying Datadog. You can go to softwareengineeringdaily.com/datadog to try it out.
That's softwareengineeringdaily.com/datadog to get a free T-shirt for trying Datadog.

© 2020 Software Engineering Daily 17

SED 1067 Transcript

[INTERVIEW CONTINUED]

[00:42:46] JM: Chekhov has all these different policies that relate to different pieces of
infrastructure, DynamoDB, and Fargate, and whatever else. Do these policies get crowd
sourced? Are you writing most of them yourself? How do you get the necessary coverage of all
the different infrastructure pieces that you could need some pre-baked set of security and
compliance analysis over?

[00:43:26] GE: It’s probably the most encouraging topic, Jeff. Eventually, we’re a group of –
Well, today, like 11 engineers strong that have like 200,000 other things that they want to do.
We started off with the core CIS framework, which covers roughly 30 checks. It has like 50
something, but covers 30 checks that you can actually sample statically. Some of them require
you to have a periodic analysis, a difference between time-to-time, like ensuring that key
rotation happens every 30 days. That's something you're not going to be able to do with study
code and analysis in Terraform. But everything that can get covered by the CIS framework,
that's been our core focus initially.

As we saw, I think this was around January, as we saw more and more traction, and downloads,
and stars, just issues that are getting open directly on GitHub, we saw there’s huge appetite for
the community to chip-in and to help out with things that they're building that are not necessarily
the things that we and our customers are building.

We have a great group out of a consulting company, very famous out of UK, which is building a
lot of managed Kubernetes and Google Cloud, and they’ve decided to contribute some of their
work back. We have an individual contributor from Europe whose like super keen on getting S3
configurations right. He took – In the framework, you have like three or four major policies that
you want to look into. I think he had like six or seven additional ones. It’s been growing nicely,
and I think it was in our initial objective initially to get the community to help us do this, but I
think people saw the opportunity for a very simple solution that's written in Python, which I think
is super important. Not enough infrastructure as code is done in Python these days.

© 2020 Software Engineering Daily 18

SED 1067 Transcript

People see Python, they see it’s familiarity. They see how simple it is to write a policy, and
people have been contributing. I think almost 40% of the content is now contributed. It's been
growing nicely, and we’re going to chip our part and continue to add more and more
provisioning languages just to make sure that people can use that for their additional
provisioning workspaces and to make sure that those get covered by a unified set of policies.

[00:45:46] JM: Do you have some particular areas of policy the you focused on and some
particular pieces of infrastructure that you focused on? I mean, there are so many potential
configurations that people could present to you. I ship my code to CICD and Chekhov runs over
it. I got to imagine that there are some long-tail services and configuration mistakes that I could
be making that would not be covered by Chekhov. How are you prioritizing what policies to get
written?

[00:46:23] GE: Yeah. Eventually, it's a tradeoff between two main factors. One main factor is
how common does a configuration get abused or get an error for? If you have some building
blocks or some very popular modules out there that are actually cook containing most of the
things that you need to get a proper resource in place. I think the – I will give just two example,
but I think the module, the supported AWS modules for S3 and EC2 are great in the sense that
they’re springing up a very secure set of resources and all that ecosystem around both of these
resources.

I’ll give you the opposite example where we’re just seeing a lot of configuration error, which is
RDS for some reason. This is a combination of multiple arguments and attributes that you have
when you configure RDS. People are also using RDS historically. Fixing RDS configuration is
not that easy, because you have to migrate actually to a new RDS instance before you make
the configuration fixes in Terraform, but very, very predominant.

We've actually focused on RDS and some additional popular database system, like
Elasticsearch is another one of them, because we saw that those are just getting a lot of hits in
terms of configuration failures and errors in our small customer base. Do you understand? One
obviously is the amount of configuration errors. The second one is exploitability, and this is
where it gets tricky. I think I mentioned also this already, but exploitability around configuration is
probably not as mature as it is in other forms of programming languages and it's one of the

© 2020 Software Engineering Daily 19

SED 1067 Transcript

challenges that our team has faced in the sense that you can basically wrap every
configurations with so many layers that potentially can protect it where it gets to the point where
you are asking yourself for families of configurations that are very deep inside the logic of the
application whether it makes sense even to repair them or not. That's where we have the
discretion to focus, for example, on resources that are facing the cloud. Think of the load
balancer is I think a good example.

Your load balancer eventually is your frontend server that talks to the Internet and makes sure
that all your requests are getting routed to the right places, but it has a like a very wide surface
area in the sense that it can get attacked. If it gets exploited, it cannot lead people inside your
organization. That's why we’ve doubled down on the elastic load balancer, ELB, the ALB, the
previous generation as well just because it's a much more, just in a much more likely scenario
going to get exploited as a source of configuration.

Also, it's another one of those resources that obviously got a few provisions and additions of
additional features and APIs added to it and it also made some of the more granular
configuration. I mean, getting it right slightly more complex. On the other, you have like a very
good modules and templates for it, but when you think of something that has such a wide
surface in terms of its touch with the public Internet, that's probably one set of configurations
you really want to get right. I think for Chekhov, it was probably the right decision to focus on
having like a very solid set of policies around it that really tried to nail the right configurations
that you have to have on it.

[00:49:33] JM: Okay. If I run Chekhov during CICD, what would happen?

[00:49:41] GE: A great question. There is actually three ways you can run Chekhov. You can
run it from your personal computer. You pip install Chekov. You point it to a folder, whether it's
online, local that contains your configuration errors, and you’ll basically get a report printed out
of all the configuration errors first, and you can start knocking them off one-by-one. You get the
annotation of where exactly the code, the configuration error was found? What policies in
violation? Actually, we extract all the variables. If you're inheriting variables from other places
within the directory, we’ll actually point you to the variables which we used in order to scan the
code, pretty cool.

© 2020 Software Engineering Daily 20

SED 1067 Transcript

One place, do it locally in your computer. Most of our users do that for the first time and then
they see what big of the problem they have, companies that have like one Terraform that rules
them all. Probably that's a good way to go do a one-time project. But probably if you’re
managing a team of like 5, 6, 7 engineers, bigger than that, you’ll probably want to automate,
and that's the two other methods. One way is to actually integrate to like a pre-commit hook.
You can integrate this into your JetBrains ID, your GitHub ID. Anything that you use to write your
code, and eventually it does the same logic of scan in a much shorter dimension, but in the
sense, it captures the configurations before you push them into your – Or merge them into your
codebase. That's probably a great place if you have like dedicated engineers that are writing
infrastructure all the time. We’ve had a community contributed to plug-in to pre-commit, which I
think is awesome. Just find those configuration errors as code is getting imported into the
codebase and before it gets merged into a master branch.

The third place, and I think that's been probably the most popular use case, is to put it on a
Jenkins server, a CircleCI server, and have it just run as one of your tests that are testing a
branch once it's complete. We have a customer that ran locally saw that they have tens, I think
even hundreds of users that are managing and changing Terraform code, and what they did
basically is they integrated Chekhov into their [inaudible 00:51:46] system and what they did is
that every branch, once it goes through the merge request, it goes through a set of checks
obviously, unit tests and so forth, and one of them is Chekhov. If Chekhov fails at least one of
the tests, the entire branch fails.

You can do this on probably any one of the popular continuous integration software and
continues delivery software out there, but it's pretty cool. What happens is that the branch gets
failed, the user, the developer, gets a notification that their branch had failed because of a
Chekhov failure in identifying encrypted EBS volumes, for example, and they have to select
between remediating, basically writing, looking it up on Terraform documentation. Seeing what's
the argument? Why it's missing or an existing configuration is out of policy, or they can provide a
suppression. They can provide an inline suppression, and once they do, actually, that CD
systems picks it up and moves it to one of the code owners. Every time someone wants to skip,
annotate a skip of a Chekov failure, it basically goes to the code owner’s groups and they have
to approve that request before it goes to another build process.

© 2020 Software Engineering Daily 21

SED 1067 Transcript

That's probably the more advanced way to use Chekhov. Yeah, I think it's been going fairly well
for summer customers. We’ve seen like very, very big footprint customers. We know Amazon
internally are using them. Even HashiCorp has tested it at some point. Salesforce have given it
a try and given some good feedback Lots of good Google big companies have tried it and
provided some valuable feedback and we’re pretty happy to see it getting integrated and
merged into more and more systems and in unique workflows.

[00:53:29] JM: Just to clarify, this is a static analysis tool for finding Ms. configurations. What's
difficult about building a static analysis tool?

[00:53:42] GE: Just one thing, the content. Someone has to sit down, research or get the
knowledge of what's a configuration. Create a signature or the rule and deploy it. I think we've
had the maybe luck to say that we just – In the past year, we've done it in runtime, the same
exact drill. We’ve written and built scans for Python-based scanners that have looked at
Amazon telemetry and APIs and picked up on configurations and then we thought we saw there
was no very mature equivalent in Python for build time, and that's been our mission.

Actually, writing the framework or doing the static analysis. I told you, it took Barak – Which is
obviously a prodigy, but it took him two days. The challenge has been to write the content, and
to write the right content. We tried to keep our policies in check and always to think if we would
want those checks in CD system as well.

[00:54:36] JM: You are a part of Bridgecrew, which is a business. What is your platform do on
top of the open source tooling?

[00:54:45] GE: Actually, we have a sound philosophy around it. Bridgecrew, just to give like the
former background, it was founded in February 2019 between me and my two amazing
cofounders, Idan Tendler, which is our CEO that sits in San Francisco, and Barak Schoster,
which I mentioned is obviously like a computing science and open source prodigy, which I really
– Probably the most smart person I met in my life, and it was founded like a year ago. Just
raised – Just to announce, we raised in total $18 million. 14 million of those from a cool venture

© 2020 Software Engineering Daily 22

SED 1067 Transcript

capital out of California called Battery Ventures, and obviously our seed funder is backed by
NFX, which is another California and Israeli fund.

We believe in short that this entire layer of identifying the problems is something that should be
free, and I think the community already understood this much better than us. There’s like tens, if
not hundreds of tools out there that give great visibility to configuration and everything around
your cloud infrastructure. We’re just tagging along for the ride and we’ve actually used and
contributed to some of this amazing open source. Incorporated some of it back into our
commercial application, but we believe that everybody, everybody should have the access to
good visibility around their configuration and configuration errors. In that sense, open sourcing
Chekhov was a no-brainer. We thought as part of this philosophy, we have to contribute this
type of rational back, and we’re mostly focusing the business aspect on the fact that eventually
you have tons and tons of the of great cloud security talent, but it's all focused in like three or
four companies. They’re working probably for Netflix, or Airbnb, or Lyft, or Spotify, and there're
tons of great developers out there that are not enjoying the privilege of either working with them,
learning from them outside going to conferences, which are probably not going to happen in the
next year. We wanted to almost democratize and take some of that knowledge around how to
automate these processes and make them much more simpler for N-developers.

Some developers can download Chekhov and run them locally. Not all developers can
incorporate them into their Jenkins pipeline, but very, very few developers actually know by
heart all the different arguments and fixes you have to do for the different provisioning
languages. The Bridgecrew platform, which actually has a community element to it that focuses
entirely on the visibility aspect of it. As I mentioned, we want that area to be as accessible as
possible and free, but the core platform, our pro plan if you will, is focused on making a lot of the
corrections and the fixes accessible to a bigger crowd. Whereas our community plan, our open
source is just giving you great visibility to your cloud infrastructure. If you want to fix things and
do it like very, very fast, you should check out pro plan, which actually has like a 60-day free
trial, which gives you the ability to look at it, and it contains both real-time and runtime fixes. You
can invoke Lambda functions that encrypt all your S3 buckets with a single click or create your
cloud trail auditing logs in two clicks and remove the unused IAM groups in like two clicks, and
that's saving DevOps and security guys or gals tons and tons of time, but it's also exposing a lot
of the fixes in build time.

© 2020 Software Engineering Daily 23

SED 1067 Transcript

If you see a bad configuration in Chekhov, you, as I mentioned, have to go and figure it out. You
have to go to the Terraform documentation. The platform in our commercial offering contains a
fix that you can eventually send out as a pull request and send it directly to an engineer and
give them exactly a line of code that needs to be added exactly where it needs to be added. If
it’s to change an existing array or to change an existing argument or to add a new attribute, we
basically provide that as a recommendation, and that’s basically part of our core business to try
to make some of that wealth of knowledge much more accessible to all developers and just to
make people write more secure code eventually.

[00:58:39] JM: All right, Guy. Well, it's been great talking to you and thanks for coming on
Software Engineering Daily.

[00:58:42] GE: Thank you, Jeff.

[END OF INTERVIEW]

[00:58:53] JM: When a large percentage of the population goes into quarantine, the dynamics
of internet traffic change. Some companies need to scale down quickly in order to save money,
while other companies like streamers and e-commerce retailers are scrambling to keep up with
unprecedented demand. CockroachDB is a distributed SQL database that makes it simple to
build resilient, scalable applications quickly. CockroachDB is Postgres compatible giving the
same familiar SQL interface database developers have used for years.

But unlike older databases, scaling with CockroachDB is handled within the database itself so
you don’t need to manage shards from your own client application, and because the data is
distributed, you won’t lose data if a machine or a data center goes down. CockroachDB is
resilient and adaptable to any environment. You can host it on-prem, you can run it in a hybrid
cloud and you can even deploy it across multiple clouds. Some of the world’s largest banks and
massive online retailers and popular gaming platforms and developers from companies of all
sizes trust CockroachDB with their critical data. Sign up for a free 30-day trial and get a free T-
shirt at cockroachlabs.com/sedaily. That’s cockroachlabs.com/sedaily.

© 2020 Software Engineering Daily 24

SED 1067 Transcript

[END]

© 2020 Software Engineering Daily 25

