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[INTRODUCTION]

[00:00:00] JM: A data workflow scheduler is a tool used for connecting multiple systems 
together in order to build pipelines for processing data. A data pipeline might include a Hadoop 
task for ETL, a Spark task for stream processing, and a Tensorflow task to train a machine 
learning model. The workflow scheduler manages the tasks in that data pipeline and the logical 
flow between them. 

Airflow is a popular data workflow scheduler that was originally created at Airbnb. Since then, 
the project is been adapted by numerous companies that need workflow orchestration for their 
data pipelines. 

Jeremiah Lowin was a core contributor to Airflow for several years before he identified several 
features of Airflow that he wanted to change. Prefect is a dataflow scheduler that was born out 
of Jeremiah's experience working with Airflow. Prefect’s features include data sharing between 
tasks, task parameterization and a different API than Airflow. 

Jeremiah joins the show to discuss prefect and how his experience with Airflow led to his current 
work in dataflow scheduling with Prefect.

[SPONSOR MESSAGE]

[00:01:12] JM: Today’s show is sponsored by StrongDM. StrongDM is a system for managing 
and monitoring access to servers, databases and Kubernetes clusters. You already treat 
infrastructure as code. StrongDM lets you do the same with access. With StrongDM, easily 
extend your identity provider to manage infrastructure access. 

It’s one click to onboard and one click to terminate. Instantly pull people in and out of roles. 
Admins get full auditability into anything that anyone does. When they connect? What queries 
they run? What commands are typed? It’s full visibility into everything. For SSH, RDP and 
Kubernetes, that means video replays. For databases, it’s a single unified query log across all 
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database management systems. StrongDM is used by admins at Greenhouse, Hurst, Peloton, 
Betterment and SoFi Control Access. 

Start your free 14-day trial of StrongDM by going to softwareengineeringdaily.com/strongdm. 
That’s softwareengineeringdaily.com/strongdm. 

Thank you to StrongDM for sponsoring Software Engineering Daily.

[INTERVIEW]

[00:02:35] JM: Jeremiah Lowin, welcome to the show.

[00:02:38] JL: Thanks so much for having me.

[00:02:40] JM: You’ve spent several years in the Airflow community. How did you first get 
involved with Airflow?

[00:02:47] JL: At my previous company before I formed Prefect, I was overseeing a very broad 
data science and engineering mandate, and I was very literally running out of hours to get all of 
my work done. I began searching for something, anything that would help me basically 
automate myself. 

By coincidence, Airflow was open sourced right around that time. So if it was in the day it was 
released, it was the day after I saw and I immediately said, “This will solve my problem. This is 
going to help me automate the things I need to do.” 

However, when Airflow was released, it was a Python 2 codebase and I switched basically cold 
turkey to Python 3 years ago. So that didn't work for me, but I recognized in Airflow something 
that would really be beneficial to me. I wrote to Max, who is the maintainer, still is, and I asked 
him, “If I go ahead and modernize this and make it Python 3 compatible, is that cool with you?” 
He said, “Of course. Why would anybody say no to that?” 
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My first interaction with the Airflow codebase not just as a user but as the developer was to 
introduce full Python 3 compatibility. It took a long time to touch pretty much every file, but as a 
result, I just became intimately familiar with the system and the product, and then of course as a 
user, continue to deploy it, and that was my introduction. 

[00:04:03] JM: There are some acute problems that a data engineer encounters in today's 
space of tools, and one of them that you just touched on this the automation side of things. Data 
engineering is this funky practice that has kind of gotten formalized with the name data 
engineering in maybe the last five years, but we've been doing things like data engineering for a 
very long time, ETL jobs, building search indexes, building nightly reports. Now it's become 
more formalized just because there're more types of data engineering to be done. What are the 
problems in data engineering that Airflow solves?

[00:04:51] JL: That's a really wonderful question, and I think Airflow in some ways predates the 
formalization of data engineering that you're even referring to. I think Airflow actually solves a 
rather small subset of problems however it does so in a fairly simplistic way. I mean that in a 
good way actually, that it allows the paradigm that Airflow exposes to be generalized relatively 
easily as data engineering itself has become more formalized and more understood. 

I think that the principal hallmark of a data engineer is someone who understands the access 
patterns around data. A data engineer might not be an expert in just, say, Postgres as supposed 
to MySQL, but they are going to be an expert in understanding how to interact with that system. 
If they in addition are in expert in Postgres itself as a discrete piece of technology, that's 
wonderful too, but if I'm looking to hire a data engineer, I'm looking for someone who can speak 
intelligently about the motion of data throughout a system, probably hydrating, being serialized, 
etc., who I’m going to trust to make sure that that infrastructure is going to keep it healthy. 

What Airflow contributed really for the first time was the ability to define those health checks and 
that infrastructure flow in code, in Python code most importantly, because Python then and 
certainly now, of course, is the sort of emergent language, de fact language of data science, and 
therefore data engineering. I could go in with Airflow and I could say I want to do the following 
things and use a set of libraries and frameworks that felt normal to me as a data scientist and I 
could put them into motion by specifying when I wanted them to happen. I think more 
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importantly, what I wanted to happen when they failed, and that failure condition is to me the 
sort of central hallmark of a workflow orchestration system. It’s actually not what it lets you do, 
because I’m perfectly capable to write code and just run it. It’s actually how do I put it into the 
world in a way that I believe is secure and I have some insurance and confidence around its 
execution. Among all of Airflow's features, to me, the hallmark is the introduction of states, 
success and failure, and retry as code, things that I can respond to in my workflow infrastructure 
directly, not implicitly. 

[00:07:07] JM: The workflow scheduler idea in today's context I think of a workflow scheduler 
for data jobs doing things like a nightly Hadoop scheduled job or a nightly Spark scheduled job 
that’s copying all of the data from HDFS into a data warehouse as a simple operation. A more 
complex operation might be take a bunch of data that represents all the transactions that were 
generated over the previous month and load those into a Spark cluster and then do a multistage 
machine learning job across that dataset that is now in Spark. You’ve get a sequence of tasks to 
do there and you may represent these tasks as a DAG. Can you describe the kinds of DAGS 
that Airflow can execute, the DAG representation that Airflow formalized? 

[00:08:19] JL: From a software engineering perspective, Airflow probably take any series of 
tasks that can be arranged into a DAG. But I think to answer your question directly, where is 
Airflow best used? The answer is very much the first set of examples that you had. Airflow was 
originally designed and is most popularly deployed to run nightly, maybe hourly if we push it, 
jobs that are taking place in a third-party or a remote system. The principal use case for Airflow 
is to make sure that – As I said earlier, to make sure that things happen at the prescribed time, 
and should they fail, we wait for that signal to comeback. Should they fail, we want to take some 
cleanup step. In your example, maybe want to tear down the cluster. If in fact we don't reach the 
end of the application, that should be the tear down itself. That is where Airflow is happiest. 

The second set of things that you've described is where you run into trouble if you're using 
Airflow, and the reason for that is just Airflow didn't anticipate the type of use case as you get 
into machine learning and data science as it has become understood to us today where it’s a 
very fast-paced, scale-out set of applications. The requirements are quite different. 
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If I'm running a machine learning training algorithm, I actually don't care as much. It’s not as 
mission- critical to me if it fails. I'll just run it again, which is very different than ETL failing 
midstride. That is a mission-critical problem. I need to make sure that when I pick up, if I wrote it 
a an idempotent job, that’s great. I can pick up right away. Everything is going to can be fine. But 
if I didn't, for any reason, I need to be very, very careful how I resume that interruption. Data 
science is a very qualitatively different set of requirements and Airflow didn't really anticipate 
those in its original design. 

[00:10:03] JM: Okay. We've done a few shows on Airflow in the past. We actually have another 
one coming up with the Astronomer people, the Airflow company, or one of the companies that’s 
been built around Airflow. I want to spend most of our time talking about your critiques of Airflow 
and your work on Prefect, which is your own scheduler that you built with some of the lessons 
you learned from the Airflow community. Tell me a little bit about what shortcomings of Airflow 
you identified over the course of your time spent as a committer to the project. 

[00:10:44] JL: Sure. We've written a blog post about this, and I think we laid out eight or nine 
major technical considerations, which essentially boiled down not necessarily to things Airflow 
did wrong, because I’m not going to so far as to tell you that Airflow is bad or anything like that, 
but these are assumptions that are baked into Airflow that make it in many ways incompatible 
with what’s emerged as a modern data science stack. 

If your primary concern, if you want to do data engineering in the sense that we just talked 
about, every night at midnight, you want to kick off a Spark job. By all means, use Airflow. 
Something of that nature is well-equipped to the sort of semantic that Airflow exposes. But if you 
want to do something more interesting than that or more complicated than that, you’re going to 
start fighting with the tool to get it to respect that. 

There're a few places that that really rose. One of them is just passing data around through the 
system. Today, when I say Airflow doesn't support dataflow, people say, “Yes. It does. It has 
something called XCom.” But it only has an XCom, because I wrote XCom just a few years ago 
to solve this problem. Airflow has no natural understanding of moving data between tasks. For a 
data scientist, that's a nonstarter. If I can’t move data between tasks that are operating on as 
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transform, why am I wasting my time building a data pipeline on this platform? Why don't I go 
use a system that natively supports data transparency and data pipelining? 

Even XComs are sort of a hack around Airflow's principal vocabulary and that when I set up an 
XCom relationship between two tasks in Airflow, the Airflow orchestration engine actually has no 
idea that I've created that dependency. Going back to what you said a moment ago about a 
DAG being this central object in Airflow, I’ve just sort of worked around that understanding. I've 
now presented a strict dependency where one task depends on data generated by another task, 
and my workflow orchestration system actually has no way to discover that dependency. It might 
run those tasks out of order. 

Now the fix is somewhat trivial. I just manually create the dependency and inform the engine, 
but here I am now working around the engine double defining a dependency to do something 
that is a data scientist I actually take for granted. The only user who's going to be of the mindset 
who wants to take this on is someone who, A, for some reason is doing data science work, and 
B, for some reason doesn't have access to a quality data science toolkit. 

Very quickly we run into this problem where the abstractions that Airflow is providing do not 
actually match the type of work that people want to deploy on it. Data passing is one idea. 
Parameterization is another great example. Typically, once I’ve defined a workflow, especially if 
I’m doing something with machine learning where a strict parameterization of the training 
algorithm or even the data I’m passing to the algorithm itself takes on this form where I define 
the logic, the workflow logic once. Then as a second step, I want to just past new inputs to it or 
new parameters to it, but rerun that same core logic. Airflow doesn't have a native way to 
express this. It has a lose concept of global variables. 

But if you want to tie those to your workflows, of which might have tens, hundreds, or 
thousands, you're not taking on the job of managing those inputs and managing their 
orchestration yourself. That's honestly what you wanted the orchestration engine to take care of 
for you. 

The list of things goes on and on. As you can see, there are many use cases for which none of 
this matters. You want to move ETL –   Excuse me. You want to have an ETL job that moves 
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data every night from one system to another? Great! You don’t really need parameterization. 
You don't really need this stuff. Just do it very simply in your third-party system. But what if you 
want to do that in three different environments? Step, staging and product? You want to write 
that DAG three different times? Because Airflow is going to require you to do that, or do you 
want to parameterize it? Now all of a sudden even this simple, simple use case of ETL has 
taken a step into what I would consider a more modern data context where parameterization is 
key.

We haven't even touched on things like scale and speed, but as you can imagine, just given the 
way Airflow is architected, those are not primary considerations, whereas in the data science 
world, I'm very used to pushing a button, spinning up 10,000 tasks, watching the next queue 
and [inaudible 00:14:50] cluster’s been down in less done a second. Airflow takes 10 seconds to 
look at a task. We’re just order of magnitude off as far as what really I can bring to the table.

[00:15:01] JM: Okay. Let's dissect some of those critiques, the first one, the data sharing or 
dataflow. As you mentioned the blog post that you wrote talks about XCom, which I didn't know. 
I guess that's a system you wrote? You wrote XCom?

[00:15:18] JL: I did. Yup.

[00:15:19] JM:  XCom, from your writing about it, is a system for handing metadata about your 
overall workflow from one task of the DAG to another. Is that right?

[00:15:34] JL: That is how it was originally designed. They handed metadata around. The 
specific use case I’ll actually share with you was one task would write data to let’s just say a 
location and S3, and then I needed the next task to load that data and operate on. But here's 
the interesting problem. How do I tell the next task where the data lives? I need a way to move 
data between the tasks. At the time, before XComs, there was no facility in Airflow for doing that 
other than using yet another third-party database or something like that to, again, manually 
configure it, manually set the key. Make sure it’s shared. You just have to jump through so many 
hoops do something so simple. The original conception of this was I just wanted a way to pass 
that string URI for an S3 blob to another task and developed XComs to do that.
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[SPONSOR MESSAGE] 

[00:16:33] JM: There are two ways to add analytics to your application, you can build them 
yourself with basic charts and dashboards using free open source charting libraries, or you can 
use a comprehensive analytics platform from a partner that you trust. If you've tried to build it 
yourself, you know that free actually is not so free. There are hidden costs like time, and 
maintenance, and technical debt, and those hidden costs can really add up. 

Check out Logi Analytics. Logi Analytics is developer grade embedded analytics solutions and 
they make it easy to create branded dashboards and report the scale within your own 
application. You can stop wasting time piecing together analytics and allow yourself to focus on 
your core application. You can go to logianalytics.com/sedaily and you can get a demo to see 
what is possible with Logi today. Go to logianalytics.com/sedaily. That L-O-G-I-analytics.com/
sedaily.

[INTERVIEW CONTINUED] 

[00:17:46] JM: When I think about what I want out of a workflow manager, at least in the way 
that Airflow was defined, is I think of something lightweight. I think of something where if I want 
to do data sharing between different parts of my workflow, that workflow should basically be in 
Spark. Spark was built to do this in-memory resilient distributed dataset thing where I run 
multiple operations across my RDD. So I should be just defining a data engineering task in 
Spark and then Airflow can perhaps kick-off that data engineering task. But it's not really within 
the scope of Airflow to be handing data from one part of the task to another. Are you talking 
about like kind of designing a totally – Or I guess I'll just let you respond to that.

[00:18:48] JL: Yeah. No. This is a really wonderful point. Generally speaking, I agree with you, 
or at least I should I used to agree with you very strongly, which is why XComs were originally 
designed not to pass data, because if you're doing data processing in Airflow, I think you’re in 
like a very different category of superuser, because very few people are doing data processing 
in Airflow. They are using Airflow to instrument of third-party system. Do that data processing in 
a system like Spark which as you said is definitely a good place to do it. It's a system specifically 
designed for that. That's why it's very interesting when you look at the history of XComs. They 
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were originally designed not to really assist in the data processing, but as in my example, just to 
pass the data location. 

For example, one task might – I’m making this up of course. We’re a few years removed from 
actually doing this, but one task might make sure the data was there. Perhaps validate that the 
data was there, that it had arrived. The next task might kick off a Spark job to actually do the 
processing. But somewhere I have to either repeat my logic to do the data discovery or the 
easier thing, I'm just going to pass that URI. 

My opinion a long time ago was exactly the same as the one you just laid out. Have the 
orchestrator do the orchestration and just pass around the information needed for the jobs in 
question. Do the jobs in the best place for them. 

What almost immediately happened, and this is a great lesson about designing software. What 
almost immediately happened as once the XCom utility became available, and that must have 
been four years ago, people started using it to do data processing inside of Airflow. In a very 
interesting way, this thing that was supposed to facilitate what you just described actually led to 
exactly the opposite. Why? Probably because it became much easier, and because while it's 
very easy for us to come up with examples where a different execution engine is obviously the 
best choice, you mentioned Spark. We might think of something like a compiled machine 
learning framework. Maybe once upon a time it would be Theano. Today it might be Tensorflow 
and PyTorch. Once people had the facility to just work with data and then pass it to the next 
task, if it's simple enough, why not do it?

All of a sudden, data processing comes into Airflow and they’re using XComs cons to move it 
around, and we started getting this weird class of bugs where people would be passing a 
gigabyte Pandas data frame from task-to-task using an XCom to serialize it. Because XComs 
were originally designed just to handle these tiny little strings, it never occurred to me, for 
example, to flush them out of the database.

So if you pass that gigabyte data frame through 10 different tasks, that means every time your 
DAG ran, you were putting 10 gigabytes of data permanently in the database that Airflow 
depends on in another database. But also just because of how Airflow is built, anyone who has 
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access to your system could actually go look at that data. Your data lineage is very – You’re in a 
bad spot. 

Anyway, all of this, the point I'm making is I actually used to firmly believe what you just said. 
Data execution should go live elsewhere. As a matter of fact, Prefect was originally designed not 
to bring data execution into the orchestration manager, but to make the orchestration manager 
more compatible with the execution layer. 

My favorite execution engine is Dask. I think it's incredible. As a data scientist, I can't really find 
a better tool for just getting my computations from a single core for testing and then out into the 
world. But Dask doesn't have that high-level nice state-driven API that Airflow does for 
describing what I want to happen when things fail. The very first prototype of Prefect was just 
smashing the two together. It was adding things like failure states, conditions, retries on top of 
Dask’s really excellent work scheduling engine, and Prefect just sat there and govern the 
execution of that work, but Dask was doing the heavy lifting. 

I continue to think that that is actually what you want to do. However, in order to properly 
orchestrate work, we have to decide what are the bite-size chunks that we want to govern? If 
my entire application fits in the Spark job and I never want, just for example, my workflow 
manager to be able to interrupt it or retry it or give me transparency into it, then that’s great. My 
unit of work is the entire Spark application. It might take a minute. It might take 10 hours. It 
doesn't matter. 

As soon as we have a workflow orchestration engine that is capable of expressing more 
dynamic units of work, smaller units of work, it actually becomes desirable to make those tasks 
more granular. Because they're more granular, even again if we’re still going to farm them out to 
a Spark cluster or whatever the case may be, because the more granular we need to have 
better data passing mechanisms in the workflow engine because it's going to connect all these 
things together in the way that's most familiar to the execution layer, and that of course is going 
to be premised on moving data around. 

We've gotten to a place where if you look through the best practices for something like Airflow, 
you'll see a recommendation to make big tasks. One of the reasons for that is that Airflow 
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historically doesn't support moving data between tasks, so you had no choice. You task had to 
be as big as it could be to keep the data inside the task. 

With Prefect, we take the opposite approach. You should have small tasks. Your workflow 
orchestration engine should be reporting to you at the unit of work level. If your unit of work is a 
giant Spark application that you kick out and just send them to the world and you don't need the 
workflow system to really know what's going on, great! That is fantastic. That works well. 

In the other hand your unit of work is small string transformations, or loading variables, or just 
pinging a database to make sure it's alive, or rerun a Slack bot on Prefect, or work there is very 
small, that's great too. I think the important thing about the workflow orchestration engine is to 
respect the user's ability to actually do the work where they want without impeding their ability to 
do that or forcing them to use an execution engine that’s inappropriate.

[00:24:38] JM: I find this a compelling pitch, but just to pause a little bit longer on the notion of 
data sharing in an Airflow workflow, you mentioned that one thing that people do if they're trying 
to have a multistage data pipeline is write a file to S3, and S3 is your intermediate handoff point. 
Couldn’t these workflows also use a data warehouse? Like a data warehouse would just be 
faster, right? I would imagine that one of the big issues here is that the dataset can be gigantic 
in these multistage systems. Loading it into memory multiple times is some work. 

[00:25:23] JL: You’re absolutely right. You’re absolutely right. I don’t want to suggest that my 
example of S3 is necessarily sort of canonical or typical. People use a variety of stateful 
mechanisms to move data around or create representations of that data. But the important thing 
I think about the XCom mechanism is not necessary that you would use it to move the data 
around. In fact, I would argue that if you're moving more than – I don't know. Let’s just say one 
kilobyte of data in an XCom, you are misusing it. You are not using it for its intended purpose, 
which is to move small bits of metadata around the system and make them available to tasks. 

If you are moving massive amounts of data around your system, then course you do not want to 
bring them into your workflow orchestration and then move them to the next task. That would 
just be using a tool for a purpose it wasn't designed for. Can you? You can as long as it meets 
the resource requirements of whatever engine you're using or whatever workflow platform 
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you've chosen. But I don't think I'd ever go so far as to say use the workflow orchestrator to do 
the work. I would say use it to govern the work and make sure that the work gets done. 

I think this is actually a place where a lot of tools in our space kind of fall down and they don't 
know what problem they solve. Just to give you an example, very early in the life of Prefect, we 
decided to define all these things that we’re talking about. We called it positive engineering and 
negative engineering. Positive engineering is what you want to do. Negative engineering is the 
work it takes to make sure it happens, and it was one of these things where in all honesty when 
we came up with it, it sounded a bit fluffy, right? It's a little bit ambiguous, but immediately we 
have this recognition from people we were talking to, even non-technical people, even sort of 
managers of stuff would look at this and be like, “I recognize these negative engineering 
frictions. I recognize where my team is doing work that is not directly correlated to their objective 
in my engineering team,” and that could be tracking down logs, trace backs, finding out that 
errors took place, that could be retrying code, that could be deploying code, it could 
parameterizing code. That could be fighting with the system to do the thing that you just 
mentioned where they brought too much data in and they just took down the node, because 
RAM couldn't handle it. Whatever the case may be, these are all examples of places where they 
wanted to do something and probably had a tool that was really good at doing it; moving data 
around, processing data, analyzing it, training a machine learning model, whatever the case 
may be. 

But the place they were spending their time and energy and great frustration was on the surface 
area around that usually related to the failure case. When we picked up Prefect, that's where we 
focused. Again, that's why I appreciate the question you asked earlier about sort of 
philosophically where should the work get done. When we designed a tool like Prefect, we want 
to take the position not only do we not care where the work gets done. Wherever the work gets 
done, we want to make sure that you can happily do it there. 

Prefect's job, or I would argue, any good workflow manager's job, is to report to you and give 
you visibility into the status of those operations at the level of granularity that you've chosen to 
instrument your system. If you want to do that giant Spark job that runs for 10 hours and a 
system like Prefect doesn't get to find out about it, it’s just one task. Great! We will tell you when 
it starts. We will tell you when it ends and we’ll tell you if there was any problem. 
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If you want to chop that up into 20 small tasks so that each 15 minutes you get an update or 
whatever it is, that's great too. The work can still be happening out in the Spark cluster, and 
Prefect is just going to be there to check in. This philosophical divide is super important. We 
don't want to take the opinion that you must do work away from the system. 

Look, in all honesty, at the end of the day, it's Python. People will make it do whatever they 
want. I didn't write XComs, because I had a special knowledge of how Airflow worked. I wrote 
XComs because it’s Python code, and I said, “This would be useful for Airflow to do.” 

You can always make any piece of software do whatever you want. The real challenge I think is 
to make sure that the software represents how people actually use it in the real world and 
solves the frustrations and the challenges that they have, which by and large when we talk 
about this orchestration space, it’s actually not doing the work, because we do have systems for 
doing the work. It's actually governing the work and discovering when something went wrong. 

[00:29:34] JM: Airflow at this point has been around for about five years in the open and it's one 
of these tools where you do hear people talk about changes that could be made to it. Everybody 
has their complaints about Airflow, but there is such a momentum to the project, because it's so 
– And it’s so widely used. 

From my point of view, won the first war of the workflow orchestrators. There's also Luigi. I think 
Luigi is still used, but that was the Spotify kind of equivalent or similar workflow orchestration 
system. But Airflow has become the more popular one and it's often hard to unseat these things 
when they have momentum. But sometimes it's not so important to unseat it, like maybe there's 
not actually so much that has gone into it that you can't reinvent yourself with your own project. 
You’ve started Prefect, and your goal has been to make and architect and engineer and fully 
develop an ecosystem that is an alternative to Airflow. Now you're several years into doing that. 
Tell me about the process of developing Prefect. What about it has been difficult?

[00:31:03] JL: It's a wonderful question, and you're right. We did originally envisioned Prefect 
as an alternative to Airflow, not a replacement for Airflow, and it's been very interesting 
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especially more recently as the project picks up steam to see people describe it as the 
successor to Airflow. Prefect solves a use case that Airflow cannot solve. 

We actually encountered in a very direct way. In the very early days of Prefect, it’s more than a 
year ago when we first open sourced it, we tried to put up examples to motivate why a system 
like Prefect was helpful and a system like Airflow was not, and we sort of – We put up, “Here’s 
how you do this in Airflow, and here’s how you do this in Prefect,” and we got these complaints 
from the community that we weren't being fair. It was a very weird situation, because my 
argument in some sense was, “Of course we’re not being fair. We’re showing things that Airflow 
is bad at doing and we’re that Prefect is good at doing them.” 

What was happening though is that people were viewing Prefect as a complete replacement for 
Airflow, not a way to do these advanced things, these sort of more modern data science-y 
things. Therefore, yes, in that light, we were cherry picking things that Airflow is bad at. Actually, 
that why not Airflow blog post that we mentioned earlier, that was the result of sitting down for 
about two months and thinking how do we honestly motivate the parts of Airflow that we think 
are incompatible with the modern data stack and why we feel that way and why we've gone out 
to solve them. 

Again, as I said earlier, Prefect started out by cramming together the pieces of Airflow I really 
liked stateful architecture. Sorry. By stateful here, I don't mean like writing state to a database. I 
mean, literally, it deals with states, failure, success, retries, skip with my favorite millisecond 
latency, smart data moving scheduling engine Dask. We’re not tied to Dask. You can really use 
any execution engine you want with Prefect. I just love Dask. So we recommend using it. We 
think you get the best result that way. 

We slammed these things together, but not without trying to make the changes in Airflow first. In 
a couple of weeks, I think, as record this in what? Early April, I think in a week or two it's going 
to be four years since I proposed what is now Prefect’s API as what at the time I was saying 
should be Airflow 2, and that gives you some sense since Airflow 2 is still not out, about how 
long a road it's been to get a new version of Airflow out the door. 
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But back then I said, “If Airflow wants to really stick around, ironically, with a modern data 
science stack, it's going to need to adapt the following change. It’s going to need API. It’s going 
to need first-class way of moving data around. It's going to need to be able to run two workflows 
at the same time.” This is like one of those little tiny technical details that really matters for some 
of our users on the Prefect side. Airflow can't schedule the same DAG two times at the same 
time, because time is a primary key in the database. 

If you want to run two different parameterized versions of your workflow, and forget for a 
moment that Airflow doesn’t support parameters, but if you wanted to do that, you’re just out of 
luck. A design decision was made years ago that Airflow jobs would never run at the same time 
for the same workflow. Today, that has severe implications for some of our data science user 
who like to spin up many jobs at the same time with a variety of different parameters. 

Anyway, I'm getting off-topic. When we first slammed these two things together, one of the 
biggest challenges was how do we motivate this? How do we argue, “Yes, as a data scientist –” 
And my background is first and foremost as a data scientist. As data scientist, it’s clear to me 
that a lot of my use cases and workflow space don't map on Airflow semantics. But how do I 
motivate this into the world?

I started collecting opinions from people. This is before Prefect was a company. This is when 
Prefect was just a little tool that I built for myself. I started collecting opinions from people. I just 
started asking them what kind of problems are they running into. I asked data scientists. I asked 
data engineers. I asked data managers. I asked C levels. I asked junior people. I just talked to 
people about their problems. They came up with a list of about – I think it was probably seven or 
eight words that people kept using over and over when they described their frustrations with 
their workflow system whether it was Airflow or not. It didn't matter. Those words – And they 
wouldn't surprise you. Some of them were very basic; speed scale, parameterization that we 
mentioned earlier, data flow, mapping and dynamism, caching of a very specific type. These 
were the words that people used to describe the frustrations they felt in their day-to-day job 
trying to use data and trying to deploy data applications. 

We spent an enormous amount of time trying to figure out what is the API that we can expose 
that will take these words that people are telling us? Their principal issues with data workflow 
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management, and get them into a nice cohesive Python framework. We spent an enormous 
amount of time on that. We weren’t always right, but I think what we've ended up with is a really, 
really great set of, we might say, Lego bricks, that each one represents one of these dimensions 
that people say is critical to building a solid data application and are guaranteed the thing that 
we work hard on us is to make sure that they snap together. It takes on the Lego amount where 
they all come from the same kit. You’re not going to connect to something that looks like a pirate 
something that looks like a spaceship, because that would be crazy. We promised that they all 
work together. 

That was in the beginning, going from this just base frustration that I felt and trying really hard 
not to just solve my problem, but understand how is my problem an instance of a more broad 
description of a problem? How do I solve that? What is the vocabulary we need to expose in the 
framework? That's where Prefect you was really born and that's why it actually took life very 
different than Airflow.

[00:36:47] JM: The mention of Dask is timely, because I did a show about Dask literally last 
week with Matthew Rocklin, and my understanding of Dask is it's a way of efficiently 
representing large objects in in Python in performing operations over those large objects. So if 
you have a really big Pandas data frame, as you mentioned earlier, this will allow you to 
efficiently manage that big in-memory Pandas data frame, or it doesn't have to be entirely in-
memory. You could have part of it beyond disk. But in any case, it lets you manage your large 
objects efficiently. This is something that was not as prominent when Airflow came out. The data 
engineering, the data science world looked a little bit different when Airflow was first born. 

My understanding is, today, with Dask for example, you could string together a large scikit-learn 
job and a large XG boost job. You could string these things together. Well, using these large 
Python objects that you can define in Dask. I can imagine wanting the ability to use Dask 
together with a rich ecosystem of maybe like connectors and handing things from one system to 
another. But I'm still, I guess, having trouble understanding why that couldn't be accomplished in 
Airflow. Maybe could help me understand to what extent is Dask an enabler here and how does 
the contemporary context of how people are building their Python data science and data 
engineering workflows relate to this comparison between Airflow and Prefect.
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[00:38:51] JL: Very good question. There’re a lot of pieces we can unpack from it. But it is 
another example of a place where I tried to solve this problem in Airflow. Airflow, if you dig in it, 
has a Dask executor, which does exactly what it sounds like. It ships the work off to Dask. I 
believe no one's maintained it. I think it's not compatible with the current version of Airflow, but 
it’s still there in the codebase if you want to go take a look at it. Why did I build it? I built it 
because I took exactly the point of view that you just laid out. I said, “Airflow is my orchestrator. 
Dask is where I’m doing all my data science. Let’s just get them to work together.” 

But what I ran up against is the fact that Airflow’s conception of where execution takes place 
and what it scheduler is responsible for is very interesting. The Airflow scheduler is running on I 
think like a 5-second loop or a 10-second loop. Some very, very slow process. Let’s just say 
every 10 – I think it’s every five seconds, but it takes two looks at a task. I think it’s 10 seconds 
to run a task. Every five seconds, it looks, it finds a task, and then five seconds later it runs that 
task by submitting it through the Dask executor to the Dask cluster, and that's great, and it runs 
in Dask. Comes back, it returns successfully. 10 seconds later the next task will go out. 

One of the reasons that this doesn't work with the Airflow model is that the Airflow scheduler is 
the bottleneck, the speed at which it examines tasks, the extreme amount of work that it does. It 
reparses the entire DAG to load up a task. It just doesn't fit the model where what I'm used to 
doing with Dask is pushing a button and watching 10,000 little things spin up in a real-time UI all 
doing work, all communicating with each other and then turning themselves off a second later 
when my result is computed. 

We have this just strict incompatibility between the way I want to do work in Dask and the way 
Airflow is allowing me to actually form that work out. The other part of your question about the 
nature of Dask is a really interesting one as well, because it's a great chance to highlight what I 
think is a hallmark of an effective framework. 

Dask is exactly what you just described. I's a way to do out-of-core computation on large Python 
datasets, and I'll argue it's the easiest and best. However, the aspect of Dask that I actually find 
most exciting is not that. When I say Dask, and I always forget I need to sort of clarify that 
sometimes when I say Dask, I'm actually talking about a subproject of Dask, which is the Dask 
distributed project. 
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The Dask engine at its core is a way of figuring out what tasks need to run and where and has 
these great algorithms for taking, as you described, the Pandas data frame. Chopping it up into 
little pieces and doing essentially an asynchronous analysis of it out, out of core and distributed. 
The Dask distributed subproject is a way of doing that transparently over multiple CPUs and just 
farming the work out to an enormous cluster. It actually doesn't care about the size of the data 
or the way you're doing it. In fact, you could map over a string. You could take A, B, C, map over 
it, spin up three different tasks in three different computers. It's the most trivial thing in the world, 
but the nice thing about using Dask distributed is all of that work, the scheduling over a 
distributed set of possibly geographically disparate computers, the collection of work, the 
making sure that the work is act and brought back to the client. All of that distributed computing 
stuff, which is really hard. That's what the Dask distributed project takes care of. 

Thee piece of Dask that's actually the most interesting to us and Prefect is not Dask’s ability to 
move Pandas data frames around, although that's great. If people are using up by all means, go 
right ahead. The piece of it that we find so cool is that by building on top of Dask, we have 
instant ability to take advantage of the distributed subproject and get this HPC scale out that's 
practically invisible to our users. That piece of it, not just because of how slowly the Airflow 
scheduler is ticking over as a bottleneck, but simply the inability to interface with an external 
cluster. I think Celery is the only sort of nonlocal process system that Airflow is really supporting 
right now. I know they're moving to this interesting – It’s the first time Airflow is going to sort of 
learn in on a single infrastructure provider and go for this KNative approach, but Celery is the 
only way that Airflow allows you to really get off the box that the Airflow scheduler is running on. 
Even there, you’re still subject to this bottleneck, this once every 10-second bottleneck. 

Again, as a data scientist, I’m just like, “That doesn't work for me. That's not how I do work.” 
Does that help to explain why Dask, if you think about it as this transparent pure Python way to 
get HPC scale out through the distributed subproject? All of a sudden, it's like you give your 
workflow orchestrator superpowers as long as you don't make this decision early on in the 
orchestration layer to bottleneck yourself. 

We’ve worked with folks like Matt, Matt Rocklin, who’s just phenomenal. We’ve been working 
with him for a long time. We recently brought Jim Crist who is one of the top maintainers of the 
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Dask ecosystem over to Prefect where he’s been a continuous Dask maintainer, but also 
obviously help us supercharge Prefect’s integrations with the Dask world. This is just one of 
those cases where if you can transparently take advantage of an HPC set up like that, you just 
gain these superpowers as a data scientist. You may not care. If you're doing ETL or you’re 
kicking off a single thing in a Spark cluster, you may not care about this. That's completely fine. 
You don't have to. But if you are one of our data science users, and we have quite a few, this is 
actually what makes all the difference. Because otherwise they’re going to have to maintain 
their own Dask infrastructure in addition to a workflow orchestration, that’s going to be very 
painful.

[SPONSOR MESSAGE] 

[00:44:33] JM:  When I’m building a new product, G2i is the company that I call on to help me 
find a developer who can build the first version of my product. G2i is a hiring platform run by 
engineers that matches you with React, React Native, GraphQL and mobile engineers who you 
can trust. Whether you are a new company building your first product, like me, or an established 
company that wants additional engineering help, G2i has the talent that you need to accomplish 
your goals. 

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also 
done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team. 
These are engineers who know about the React ecosystem, about the mobile ecosystem, about 
GraphQL, React Native. They know their stuff and they run a great organization. 

In my personal experience, G2i has linked me up with experienced engineers that can fit my 
budget, and the G2i staff are friendly and easy to work with. They know how product 
development works. They can help you find the perfect engineer for your stack, and you can go 
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners 
and also as people who have contributed code that have helped me out in my projects. So if you 
want to get some additional help for your engineering projects, go to 
softwareengineeringdaily.com/g2i.
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[INTERVIEW CONTINUED] 

[00:46:22] JM: I’m having a little bit of trouble understanding what that looks like in practice. If I 
am a data scientist and I – Like Prefect is solving this problem for me that involves Dask 
distributed. Let’s say I'm running on AWS infrastructure. Can you give me an example that will 
make it more concrete for what problem you're describing here?

[00:46:46] JL: Sure. Whether we use Dask or not, for example, we don't even need to use 
Dask. So let's stick with AWS. We have a lot of people use Fargate to do this. We have an 
executor for Fargate. One of the core problems that I have as a data scientists is that the nature 
of my workflows tends to be very wide, very fast, very wide and often not discoverable until 
runtime. This is a MapReduce problem. Of course, we’ve talked about Spark a lot. For those of 
us who live in a Spark world, this is very familiar. If you can live in a Spark world and your 
systems are appropriate for the semantics that Spark exposes, you probably should. That's 
great. Again, Prefect is not trying to replace that. Prefect is trying to make it easier for people 
who use a variety of tools to glue them together and use them in interesting ways. 

But if you need parallelism in your workflow, if your workflow involves 10,000 tasks, which is by 
an order of magnitude not the most people are pumping through our system, you need a way to 
transparently scale out and you need to have a workflow orchestration manager that can keep 
track of all that work. So we have to have this delicate partnership. We need to be working with 
an execution layer that can handle that volume of work. We need to have an orchestration 
manager that can keep track of that volume of work, and Dask, through something like Prefect, 
makes that marriage possible. 

Airflow is too slow in the orchestration layer to allow that type of scale out. I just don’t think it’s 
possible, to be honest. I’m a little more removed from the Airflow codebase at this time, but it 
sure wasn't possible when I was involved. I could go full in on an execution layer like to Dask or 
like Spark where I can get that trivial scale out, but sometimes this, and this is where it gets 
interesting. Sometimes I don't know the scope of a DAG until I start running it. There’s a runtime 
discoverability on it. 
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Even if I did, I still want my workflows orchestration layer to respect what's happening in the 
execution layer. I want them to work together. I want it to be aware of this type of scale out. We 
could get – And I’m happy. We can go into the details of specifically how we do mapping and 
how we farm it out to the Dask cluster and how we bring it back, but I think the motivation here 
is if you are doing something that involves spinning up 10,000 tasks, especially ones that come 
up that are discovered at runtime and you want your execution layer to treat them as first-class 
objects and do it scale out on as many cores as you provide and you’re on your orchestration 
layer to do what it's good at and give you status updates and tell you which of them succeeded 
and which of them failed and really let you know what the progress is, then you need to make 
sure that you have that tight integration. 

Airflow lacks that. We typically don't see that in other workflow orchestration systems unless 
they are very, very intimately tied to a specific set of infrastructure. Kubeflow comes to mind 
where if you’re doing machine learning on Kubernetes, it’s great. It’s a great option. But our goal 
is to make it transparent. If that's your use case, there's really nothing about a workflow 
orchestrator that should stop you from doing that. The role of the workflow orchestration engine 
should not be a bottleneck. It just simply report back to you in a nice way what's happening out 
in the world. 

Again, the classic use case for us is a machine learning training and analytic. Involves 
thousands of tasks. I want them to run as fast as possible in the fast execution layer I have, but I 
still want to get an orchestration layer that reports back on them to me. We really need that 
communication pattern to be solid to make that possible.

[00:50:03] JM: The distinction there in the feedback, so let’s select let's say I have – Let’s say 
the Airflow community has fixed whatever Dask driver or executor issue. I think if I understand 
correctly, I've got some Python script written that uses Dask, and if I'm using the Airflow 
ecosystem, I have a an executor, and Airflow executor, that knows how to manage that script, 
the Python script that involves Dask. It's going to spin up my machines and execute that task 
across them. Then there's going to be some result from that. 

In contrast, it's like while that task is going on, Airflow itself is not reporting data back to me 
about what's going on in those servers I suppose? Then in contrast, in Prefect, you're saying 
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that there is a tighter integration between the workflow orchestration system and the Dask job 
that's running and being spun up. Can you drill a little bit deeper into that distinction?

[00:51:15] JL: That's correct. To be honest with you, I'm not even sure that what you're 
describing is possible in Airflow. I think the best case in Airflow would be that you wrote a job, a 
single Airflow task, or excuse me, a single Airflow operator to use the right terminology, that 
when submitted to a Dask cluster, or rather when submitted to Airflow's own executor layer and 
in turn submitted to a Dask cluster, then spun up thousands of children processes. 

Is that a viable way to do it? It not only is it. It's how people have been doing it. It's how they get 
around this limitation that we’re describing. But now I've got these thousands of child processes 
out there in the world living in my Dask cluster and what happens when one of them fails? It's 
divorced from the workflow orchestration manager, which means critically it can't be retried. 

Just for example. I mean, there are other things. There’re a lot of problems as well, but let’s just 
drill in for a second. I cannot retry that one of the 10,000 things that I just spun up. The reason I 
can’t is because retries are a semantic of the workflow orchestration engine not of the execution 
layer. In this world where I'm co-opting Airflow to do this thing, I guess what I would do is, first of 
all, I don't have an easy way to find out that that failure took place. I'm actually having trouble 
motivating how I as a data scientist would solve this problem in Airflow, because what I would 
need is I would need to launch a new job into that cluster whose sole responsibility was to 
examine I guess the outputs of those children tasks and report back to me if any of them had 
failed. Maybe I represent that as in Airflow task so that I can get this failure state back into my 
orchestration layer. Maybe if that fails, I convince Airflow to rerun the other task, but now I'm 
starting to introduce something that sounds dangerously like a cycle into my DAG. 

This frustration becomes very readily apparent. I am struggling right now to think how would I 
launch this child processes in an Airflow governed system and also gain introspection into their 
state? I can't think of it. In Prefect, it’s very easy. We have a map operator you call .map that 
tells the system that there’s going to be a bunch of child processes discovered at runtime. If you 
already know about them, you don't have to do the map. We just treat them as normal tasks. 
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Now what’s going to happen is before any child process runs, it's going to register itself with 
Prefect and it’s going to say, “Hey, here I am. I’m a fully featured Prefect task. You can retry me. 
You can do all the stuff. I can be rediscovered in the future. I can be resumed.” All of a sudden I 
gain this visibility. I’m going to find out if an error took place. Let's be honest. If I'm doing this 
type of work, if I'm really doing a large-scale map in a remote system, the likelihood of an error 
is much higher in the map and before the map, because the map is where the work is taking 
place. It actually becomes much more important that I have that visibility. 

It's sort of funny. I actually don't think this is possible. I shouldn't say possible. Anything is 
possible when you have access to a language like Python, right? We can find a way to make 
this happen. But I think it's certainly nontrivial for anyone to get this to work effectively in Airflow. 
Here’s sort of the sad truth if we’re completely honest with ourselves. What I'm describing is not 
hard, and this is sort of a drum that we keep beating at Prefect. We don't need for this to be 
sophisticated and hard, and big data, and impossible to achieve without the workflow 
orchestration system. In fact, it’s quite the opposite. All these things they we’re talking about 
today, they’re kind of easy. They’re kind of trivial. We’re talking about like retries. We’re talking 
about phoning home when something fails, mapping. I mean, it’s not like MapReduce is a new 
concept, right? 

When we really step back and think about what are we doing here, and this is where the sort of 
fundamental question of what problem does the workflow orchestration layer actually solve. 
These are easy things. Anyone of them is easy, and that's why Prefect’s biggest competition is 
not actually Airflow. It’s actually homegrown systems. The number one solution that people who 
started using Prefect are coming from is a homegrown system. 

That's because anybody who looks at this in any one instance will just shrug. They’re like, “Well, 
this is easy. I'll do it myself,” and they’ll do it themselves. Then the second problem will come 
along and they'll say, “Oh! I need to – In addition to retrying, I need to track failures. Oh! In 
addition to tracking failures, I need to track logs. Oh! In addition to tracking logs, I need to 
actually register each node so that I can de-serialize the data appropriately where it lived.” I 
think the edge case list will go on and on and on and on and pretty soon you’re in maintenance 
hell, and that's usually when people start looking for something like Prefect. 
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It's a very important consideration here and it almost feels funny for me to say, because I would 
love to sit here and tell you, you should use Prefect because you can spin up thousands of 
advanced machine learning analytic tasks. Yes, you can, and there’s a reason to use Prefect. 
But a more interesting reason to use Prefect is so that it'll save you some time writing retries 
because it’s just a lot easier. That acknowledgment of the triviality of each piece of this problem 
is something that I think tools that misguided belief that they’re there to help with the execution 
of code mess up over and over and over, and that's what we’re seeing in our space right now. 
We’re seeing a lot of use-case-driven workflow orchestrator. Many of them are open sourced by 
very large companies and they reflect a use case or a way of working that's familiar to a large 
company, and that's generally speaking good within that company. But when you get out into the 
real world and you talk to the sort of people that I talk to as an Airflow PMC, thousands of data 
engineers in businesses ranging from one person to hundreds of thousands. You find that the 
use cases that people struggle with and the things that would improve their lives, they tend to 
not be giant scale, advanced, sophisticated problems. They tend to be, “Oh! I’ve been trying to 
track down the log for three hours, but the Kubernetes job that I spun off to run this thing in, it’s 
not around anymore and I forgot to configure it to ship the logs to a state somewhere. I'm 
screwed. I can’t find out what this error and I can’t trap it and I’m wasting all my time.” 

That's really where people feel pain. A big part of our philosophy at Prefect is if you could 
guarantee this stuff worked, you don't need Prefect. You don’t need Airflow. You don’t need any 
of these things. You’re a competent programmer. You can do this, right? You only need these 
governance systems when one of two things is true. The scope of what you're doing is big 
enough that you just can't keep track of it and you want something to tell you what's going on, or 
you’re worried that something will go wrong. 

I think you asked earlier what are some of the challenges we found in building Prefect. I think 
one of the biggest challenges is how do we not get in someone's way when things are going 
well but still deliver a meaningful and good experience when things go wrong? The only way 
that we can do that in all honesty, in all sort of intellectual honesty, is to acknowledge that most 
of the problems we solve are very trivial until an up to the moment when they go wrong and 
then, man, you wish you had them. It's like buying fire insurance for your house. It’s a very easy 
transaction. It’s easy to frankly forget about if it were mandated. Most the time, you never need 
it. In fact, it's very hard to demonstrate that you should buy fire insurance for your house, 
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because you’re not going to – Your house just light on fire every day. It’s very hard to motivate 
this purchase except for the fear of something going wrong, and that's where we see Prefect 
and that's where we think workflow orchestration managers need to live. They’re insurance 
products. They’re only useful when things go wrong and they should strive to solve these 
complexities in the failure case. When things go well, when you know your execution layer, 
whether it's Dask or Spark, whatever it is, that's great. That’s your expertise. That's the positive 
engineering. 

[00:58:39] JM: All right. Well, we’re up against time, but I just want to ask one more question. 
We’ve done a few shows about these different workflow schedulers. We’ve done a show on – A 
couple of shows on Airflow. We’ve done a show on Dagster. We recently did a show on 
Cadence, which I think is in kind of a different category, because it's more long-lived workflows 
rather than focused on the data workflows. Tell me about your prediction for how this market 
unfolds. Do you think it shifts towards a winner-take-all or do you think it shifts in a place where 
there are domain-specific scheduling systems?

[00:59:25] JL: That is if fabulous question and an easy one to be wrong on. I do not think that 
domain- specific systems can emerge at this time because I think that the environment we’re in 
the still to nascent even year-by-year. The use cases that data science, even the infrastructure 
that we might talk about. If we just sat down in December of each of the last five years, forget 10 
years, and talked about the dominant pieces of software and infrastructure in the data world, 
that list would be changing over and over and over. Some things would be constant. Many 
things would be changing and we'd see a lot of movement in and out of that list. I think we’re 
some ways off from seeing use-case-specific schedulers simply because of where they run, 
how they run and what their use case is. It’s still very much in flux. 

I think what we’re looking for is we’re looking for the next Airflow in the sense that it's general 
enough. It doesn't – So many assumptions that it prevents certain use cases, but it's general 
enough to allow a great flexibility of data applications. Whether or not that's a winner-take-all is 
like another layer of complexity for some time until – I don’t know, from my point of view, until a 
white flag was raised, Airflow is not in a winner-take-all situation. The majority of Airflow's life, it 
went side-by-side with Luigi, and there was a brief attempt by a tool called Pinball, which was 
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made by Pinterest, [inaudible 01:00:48]. Airflow is just a fascinating case study in market 
dynamics. 

I don't think Airflow is one because it's the best tool. I don't even think it’s the best general 
purpose tool. I think it's one in the absence of a viable competitor. What we’re watching him play 
out is the strength of a defensible first mover position with a network effect played over it 
through the open source community. 

If you try to attack Airflow ‘s position purely on doing more or new use cases, it's not enough. It's 
really not. Airflow is in a very powerful place if all you do is consider the number of people using 
it. That's why recently, you mentioned you’re going to talk to the Astronomer folks. They put out 
an article, a blog post on why you should use Airflow, and it's called Why Airflow, of course, and 
it's only argument, is you should use Airflow because other people use it. 

The truth is I don't think that's why any of us got into writing software. We don’t write software 
because we like doing what other people do. We like writing software because we like beautiful 
abstractions that make our lives better, and Airflow is reaching a point as data science and now 
data engineering advance where I don't think it is achieving that. When you talk to people about 
Airflow, you don't often hear how much they love it. You year how much they tolerate it, and 
that’s the opportunity to introduce a new set of abstractions that people genuinely love to use 
and will adapt. 

I feel somewhat strongly that, look, there’ll always be a place for a use case specific thing. If 
you're in a hyper specific niche that has extreme requirements, yes, by all means they’ll be 
something for you. But to unseat Airflow, it's going to take a really powerful, useful and 
applicable vocabulary that is general enough to be used by such a wide audience. I think that's 
what we’re going to see play out in the next few years.

[01:02:32] JM: Okay. Jeremiah, thanks for coming on the show. It’s been great talking.

[01:02:36] JL: Absolutely! Thanks for having me, Jeff. 
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[END OF INTERVIEW]

[01:02:45] JM: As a company grows, the software infrastructure becomes a large complex 
distributed system. Without standardized applications or security policies, it can become difficult 
to oversee all the vulnerabilities that might exist across all of your physical machines, virtual 
machines, containers and cloud services. ExtraHop is a cloud-native security company that 
detects threats across your hybrid infrastructure. ExtraHop has vulnerability detection running 
up and down your networking stock from L2 to L7 and it helps you spot, investigate and respond 
to anomalous behavior using more than 100 machine learning models. 

At extrahop.com/cloud, you can learn about how ExtraHop delivers cloud-native network 
detection and response. ExtraHop will help you find misconfigurations and blind spots in your 
infrastructure and stay in compliance. Understand your identity and access management 
payloads to look for credential harvesting and brute force attacks and automate the security 
settings of your cloud provider integrations. Visit extrahop.com/cloud to find out how ExtraHop 
can help you secure your enterprise. 

Thank you to ExtraHop for being a sponsor of Software Engineering Daily, if you want to check 
out ExtraHop and support the show, go to extrahop.com/cloud.

[END]
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