
SED 1032 Transcript

EPISODE 1032

[INTRODUCTION]

[00:00:00] JM: Datomic is a database system based on an append-only record keeping system.

Datamic users can query the complete history of the database, and Datomic has ACID
transactional support. The data within Datomic is stored is an underlying database system such

as Cassandra of Postgres. The database is written in Clojure and was coauthored by the
creator of Clojure, Rich Hicke. Datomic has a unique architecture with a component called a

peer, which gets embedded in an application backend. A peer stores a subset of the database
data in-memory in this application backend improving the latency of database queries that hit

this caching layer.

Marshall Thompson works at Cognitect, the company that supports and sells the Datomic
database. Marshall joins the show to talk about the architecture of Datomic, its applications and

the life of a query against the database.

As always, we’re looking for show ideas. If you have a great set of topics that you’re interested
in hearing more about, send me an email, jeff@softwareengineeringdaily.com. We’re looking for

interesting guests, great topics to cover in the world of software and exciting conference talks or
podcasts that you’ve heard. You can also tweet at us @software_daily.

[SPONSOR MESSAGE]

[00:01:26] JM: DigitalOcean makes infrastructure simple. I continue to use DigitalOcean

because of the low friction and attention to user experience. DigitalOcean has kept the
experience simple and I can spin up a server in less than a minute and get high quality

performance for a low price. For an application that needs to scale, DigitalOcean has CPU
optimized droplets, memory optimized droplets, managed databases, managed Kubernetes and

many more products. DigitalOcean has the flexibility to choose the right instance for the right
workload and he could mix-and-match different configurations of CPU and RAM.

© 2020 Software Engineering Daily 1

SED 1032 Transcript

If you get stuck, DigitalOcean has thousands of high-quality tutorials, responsive Q&A forums

and a customer team who treats customers respectfully. DigitalOcean lets developers focus on
what they are building. Visit do.co/sedaily and receive $100 in credit over 60 days. That $100

can be put towards hosting or infrastructure and that includes managed databases, a managed
Kubernetes service and more.

If you want to get started with Kubernetes, DigitalOcean is a great place to go. You can use your

$100 to start building your distributed system and you can get that $100 in credit for free at
do.co/sedaily.

Thank you to DigitalOcean for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:03:03] JM: Marshall Thompson, welcome to Software Engineering Daily.

[00:03:05] MT: Hey! Thanks, Jeff.

[00:03:08] JM: You work at Cognitec, which helps make the Datomic database. Datomic was

started in 2012. Describe the principles behind the Datomic database.

[00:03:19] MT: Sure. Yeah, Datomic has been around in one form or another. Now in a couple
of forms since 2012, as you said, and it was developed by – Well, architected by Rich Hickey,

who is the CTO of Cognitec and also the author of the Clojure programming language.
Unsurprisingly, a lot of the principles behind Datomic itself are very akin to those behind Clojure

as a language and as a philosophy. Those include things like immutability all the way up and
down, simplicity at the core and sort of opinionated perspective that rich and the Clojure

ecosystem have sort of contributed to software in general I think are well-reflected in Datomic
as a product and as a database.

[00:04:01] JM: The classic model for applications that interact with a database backend is the

client server model. How does Datomic differ from the traditional client/server model?

© 2020 Software Engineering Daily 2

SED 1032 Transcript

[00:04:12] MT: Yeah, that’s a really interesting question, and I think there’s sort of an original

easy answer and sort of a more subtle answer that follows from it. The answer three or four
years ago would have been, “Well, Datomic isn’t a client/server database because it uses

something that we called the peer library instead of a client library. The key difference there
being that calls to do things in the database, whether it’s run some query or do some ordering or

whatever the work is that the database would traditionally do actually occur in your own
application code in the JVM where your app is running. That’s why we called it a peer instead of

a client.

In the years since with the release of Datomic Cloud, which I’m guessing we’ll talk about in a
little while, the lines have blurred a little bit and that we actually do have the ability to use

Datomic in a more client/servery sort of sense. There is the Datomic client API and the Datomic
Cloud database acts a little more like a server where you send a request over the wire and the

database some work and then it turns around and it sends you an answer. But, of course, as we
release that, a lot of customers said, “Hey, this whole cloud thing is cool, but I really miss that in

my app processability locality with the data, being able to control where this work happens.”

In the time since then, we’ve actually released some additional features for Datomic Cloud
including what we call ions, which is where you can deploy your code into the running JVM

that’s up on the Datomic Cloud system to bring back some of that sort of database in your local
process nature that was really popular with the peer API.

[00:05:47] JM: You mentioned this peer API, this concept of peering. This is pretty core to how

Datomic has historically worked. Can you explain what that term peer means?

[00:05:59] MT: Sure. Absolutely. The Datomic database is a decentralized database and the
idea here is that instead of having all the work the database does, whether it’s storage or writing

things to the database or reading things from the database all in one place, which is sort of the
traditional model that you’ see in a RDBMS. Datomic is distributed.

We have a process called the transactor that’s responsible for doing the write work. It’s what

actually persist data that you have transacted to the system. We also have in the example that
you’re discussing, Datomic peers. Peers are actually any JVM that’s running the Datomic API as

© 2020 Software Engineering Daily 3

SED 1032 Transcript

a JVM dependency, and those peers are able to read the database but not through that

transactor instance that I talked about. I actually read directly from the disk storage, the
persistence layer. Datomic also sort of outsources the persistence to other options, and that

makes it sort of modular. The peer library is able to read those persistence layers directly into
your JVM and it includes the facilities for local caching and using additional caches if

appropriate.

But what that means is that you essentially get unlimited horizontal read scalability by spinning
up more of your app servers. Any JVM that is running this Datomic peer library is considered a

Datomic peer and it can read the entire contents of that Datomic contents from storage, perform
all the work of query and it does all that in-memory on your process. Then whenever your

application says, “Hey, I need to write something to the database.” It issues a transaction and
that’s sent then over the wire to the transactor instance that I mentioned, which is actually the bit

that’s responsible for persisting that information.

[00:07:45] JM: As you mentioned, Datomic uses an underlying storage service and this means
that there’s an actual underlying database to a Datomic instance, like Postgres, or Cassandra,

or DynamoDB. Why do I need another database that sits under my Datomic database?

[00:08:06] MT: Sure. The way Datomic uses storage – And you’re correct, many of the storages
that are available are themselves databases, is largely a key value sort of usage. Datomic

writes chunks of data to it as sort of opaque blobs that are indexed with UUID. The actual
semantic access to the data in Datomic is only through the Datomic APIs.

When we talk about using Datomic, the schema that you can use, the way that your data is laid

out, the hierarchical categorization of your entities and the relationships between those entities,
all of that semantic information is only available through the Datomic API itself, because

Datomic is responsible for making as something that your system can consume.

The decision to make a pluggable storage actually was made to make it sort of more portable
and more available in many places. Some customers with Datomic on-prem say, “Well, I have to

run my own data center and our DevOps people say you can use anything you want as long as
it’s Oracle.” Others say, “Hey, I’m 100% on this cloud thing and this DynamoDB sounds great. I

© 2020 Software Engineering Daily 4

SED 1032 Transcript

want to use that.” The ability to sort of outsource or step away one layer from the persistence

layer itself allows you to deploy Datomic in a lot of different scenarios that may or may not be
available to everyone.

[00:09:25] JM: Datomic is written in Clojure. Can you give a brief overview of the Clojure

language and why it’s useful for a database like Datomic to be written in Clojure?

[00:09:34] MT: Sure. Clojure is a list that runs on JVM. I would say about 2005 or 2006, and I’m
not the Clojure historian here. You should talk to Alex Miller, Alex or Rich. Rich Hickey who has

spent most of his career working on large distributed transactional systems felt that there might
be a better way of doing this sort of work. He took a sabbatical and authored the Clojure

language as his approach to the way that he wanted to build software. Clojure values a lot of
things fundamentally differently than some other languages. I already mentioned immutability.

Clojure is fully immutable language. By default, everything is an immutable data structure.
Clojure is very data-oriented. It’s functional programming language. A lot of these principles are

the things that Rich felt strongly were better tools for building large distributed complex systems
in a way that was both simpler and easier to maintain.

All of that influences also the design of Datomic. Datomic comes from the same set of principles

that things should be modular, things should be functional. Data is what's important, right? Not
necessarily objects are abstractions, but the actual data and the transformations of that data.

Also, the system should be designed in a simple way to make them future proof in the sense
that they remain easy and straightforward to maintain and extend in the future.

[00:11:04] JM: A Datomic database stores a collection of facts in the underlying storage system,

and most databases, you think of them as storing documents, like a NoSQL database, or in the
case of a relational database, you think of a rows and columns. What is a fact? Why am I

building a database out of facts?

[00:11:29] MT: Right. Another way of saying that is that Datomic is actually a topple store in
similar ways to, for instance, RDF. So the relational data framework as a 3-tuple that’s been

around for a very long time, and the idea behind that is it's an entity, an attribute and a value.
You can say lots of – Almost everything you want to say about information and data modeling as

© 2020 Software Engineering Daily 5

SED 1032 Transcript

represented by that entity attribute value pairing. So you can say things like Jeff is an entity,

right? What does Jeff do? Jeff hosts. What does Jeff host? He hosts this podcast. So that’s an
entity is Jeff. The attribute is what you do, and the podcast is the value of the thing that you do

that with.

However, there are some definite shortcomings with just an EAV tuple model, and one of those
is the nature of time. This is unsurprisingly anyone who uses most traditional databases. There

are lots of different approaches that people have taken, but often it's very cumbersome to sort of
model when did this happen in my database? What was the state yesterday? Is it possible for

me to rewind what my database looked like yesterday or last Tuesday or last Thursday versus
what it looks like right now?

That's where the fourth element of the Datomic tuple. Datomic is actually a five-tuple. It’s entity,

attribute, value, then transaction, and operation. Transaction represents the fact that Datomic
remembers the transaction time. So that's essentially the transactor machine time that every

fact has been added to the system.

What this means is that you can do what I just suggested. You can very simply ask Datomic,
“Hey, what was the state of my database last week at 2 PM?” and you get a value of the

database back that represents exactly what that looked like, which, it turns out, is extremely
powerful for debugging, for auditability, which is one of the places where we see a lot of traction

as far as our customers being interested in Datomic and its applications. The final element of
that tuple that I mentioned is the operation. So that's whether or not you're adding this fact

saying this is true now, or you're retracting a fact. Marshall likes pizza. I'm going to say that’s
true as of right now. Then two hours from now, Marshall no longer likes pizza. So I can retract

that fact. This speaks now to the fact that I mentioned that Datomic is an immutable database.
We can't just take things away. If we want to remember what the state of the world was last

Tuesday, I can't go in and delete the datum that said, “Hey –” The fact that it said, “Hey,
Marshall like pizza.” I have to now assert that I no longer like pizza. That's what the last element

of that tuple is for.

It turns out that this five-tuple model is very powerful and flexible way of modeling data that lets
you do things, as you suggested, like row modeling. A row equivalent in Datomic is give me all

© 2020 Software Engineering Daily 6

SED 1032 Transcript

the facts about a given entity. That’s sort of like a row query. So find all the facts that have the

same E. On the other hand, you can do things like say, “Hey, tell me all the facts about the same
A.” That's a little more like a column-like query of the data. You can also have datums about

other entities. There's a type in Datomic called a reference, and this allows you to model things
like hierarchical and graph structures because you can traverse from one entity to another

through a relationship type of fact.

[00:14:44] JM: How does the sequence of facts, how does that compare to a database
replication log? I know like Postgres, for example, has this log of transactions that you can roll

back to or roll forward at any point so you can replay the database to any particular time. Is a
fact, the fact store for Datomic, is that service similar purpose?

[00:15:16] MT: That's an interesting question. The answer is sort of it depends, yes and no,

depending on how you like to look at it. Datomic does have a transaction log that is very much
analogous to sort of a traditional SQL transaction log and that is an ordered series of every

transaction that has ever happened. We didn't mention it yet, but Datomic is a fully ACIT
transactional database. Every time you send a transaction, that is either fully committed or fully

not committed and it's done durably in an isolated fashion.

There is a law log in that sense of the word where you can say, “Hey, what was the previous
transaction? What was the one, three transactions before that?” However, that data structure is

not inherently particularly powerful for asking questions about unless your question is
specifically what just happened or what happened at three happenings ago. What you need

then are more powerful indexes for asking questions like the ones that I just suggested, “Hey, I
want to know about the entity Jeff.” I don't care when it was established that Jeff host this

podcast, or I don't care when it was established that Marshall likes pizza. I just need to know
that fact.

Datomic has what we call multiple spanning indexes. I talked about the datum has these five

parts; EAVT and op. Those facts, those datums are actually stored in Datomic more than once,
and the reason for that is that they're stored in many different indexes that are ordered in

different fashions. We have an index that you E-leading, right? When I ask questions about the
entity Marshall or the entity Jeff, we know we can look in this index that's sorted by E’s and will

© 2020 Software Engineering Daily 7

SED 1032 Transcript

find all the Jeff datums together. Similarly, there's one that's A-leading. When we ask about you

know hosts or what people like, we can go find all the datums about that in the same place in
that other index.

Sort of a long answer to your short question is, yes, Datomic has that transactional log, but it

also has additional spanning indexes that provide the ability to ask more sophisticated questions
in an efficient way than you would normally expect from just a sort of appended transactional

log.

[SPONSOR MESSAGE]

[00:17:28] JM: Today's episode is sponsored by DataDog, a cloud scale monitoring service that
provides comprehensive visibility into cloud, hybrid and multi-cloud environments with over 250

integrations. DataDog unifies your metrics, your logs and your distributed request traces in one
platform so that you can investigate and troubleshoot issues across every layer of your stack.

Use DataDog’s rich customizable dashboards and algorithmic alert to ensure redundancy
across multi-cloud deployments and monitor cloud migrations in real-time. Start a free trial today

and DataDog will send you a T-shirt. You can visit softwareengineering.com/datadog for more
details. That's softwareengineeringdaily.com/datadog and you will get a free T-shirt for trying out

DataDog. Thanks to DataDog for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:18:28] JM: I’d like to know more about these facts. Can you tell me like how does a fact get
created? So if I do a write to my Datomic database, what kind of fact does that result in and

what's my interface into that information?

[00:18:48] MT: Sure. Facts in Datomic, or datums, as we call them, are literally just these tuples
that I mentioned. The shape of the datums that you can put in your database is defined to some

degree by the schema that you've installed. It turns out that like in Clojure, Datomic treats
everything it possibly can as data, and that includes the schema.

© 2020 Software Engineering Daily 8

SED 1032 Transcript

There are some requirements, for instance, your scheme attribute. We’ve we been talking about

the attribute what kind of food I like. That may be an attribute that I've installed in my system
and it may have the type string, right? I’ve said anytime I’m going to talk about things I like,

those things are going to be string. But the actual requirements for the schema are fairly
minimal and, again, they’re just data.

The way that you put the schema in and also the way that you add any data to the system is

through the transact API. Datomic has Clojure APIs for Datomic Cloud, and Datomic on-prem
we actually have Clojure and Java APIs and you basically pass the transact function, eithers

lists or maps. For those of you are familiar with Clojure, this is not surprising. Edn, being the
extensible date notation is the language that Clojure speaks as it were, and it is similarly

language or the data format that Datomic speaks. You can write those new datums, the new
facts you want to add in a couple of ways. The most basic way is a list that says, “Hey, add,”

and then you give it an entity and attribute and a value, and the transaction time gets added
automatically by the transacting system. It's literally just a vector of four things, add your E, A

and V.

We also have the convenience sort of wrapping up something called the entity maps. It's often
much more useful to be able to say a bunch of things about a given entity at once. I want to put

in, “Okay, I want to create a new entity called Marshall, and it has a name, and it has a Social
Security number, and a phone number, and an address, and maybe some of the things it likes. I

want to wrap all of that in sort of some convenient data structure.” In Clojure, the way we do that
is you put it in the map and each of the attributes will become an attribute of that particular

entity. So everything in that map is about that one entity, Marshall, that’s being created as part of
this transaction.

Then the transactor does the work of actually splitting that up into a set of individual datums

where your address, maybe one datum with a string, and your phone number maybe one data,
one another datum that’s a string and your Social Security number maybe – I don’t know, a

long, or whatever. The sort of specific data types of those things are.

What's interesting is if you actually look at the return value of that call to the transact function,
what you’ll actually get back is a set of the expanded individual datum's that were added. If

© 2020 Software Engineering Daily 9

SED 1032 Transcript

you're sort of curious, “Hey, what is this entity map actually turn into when it’s put into Datomic?”

The return value of that call actually includes a list of all the specific individual datums that were
created as part of that transaction.

[00:21:44] JM: I’d like to revisit this architectural piece that you touched on called the

transactor. Can you explain what the transactor is?

[00:21:51] MT: Sure, absolutely. This is now were speaking specifically about the Datomic on-
prem product, because the Datomic Cloud product has a slightly different architecture. The

transactor – I mentioned early on that Datomic is a modular distributed system and that there is
a part that does the write. There's a part that does the work of query and the reads, and then

there's the storage that are all sort of separate instances or separate systems. The transactor is
the one that's responsible for doing those writes. That is a process that you're running

presumably in your data center or on any AWS instance, and its primary job and, really, it's only
job is making sure to provide the ACID fully isolated transactions for that system. It accepts calls

to the transact API that we just discussed from peers and it persists those datums to storage.

Secondarily, I mentioned earlier that there are these other indexes that provide efficient query of
different shapes and sizes. The transactor is responsible for periodically folding all the new

datums that you’ve put in into those persistent disk indexes. That's a job we call indexing, which
is a pretty standard thing that most relational database systems do. You amortize the cost of

sort of folding in all that novelty into your persistent indexes by accumulating some of it over a
period of time and then periodically writing that and then incorporating into the overall persistent

index.

[00:23:18] JM: What are the conditions – I mean, would I ever need to scale up my transactor
like under heavy load? Do I need to have multiple instances of a transactor is it completely at

singleton concept?

[00:23:32] MT: Right. Again, speaking specifically of Datomic on-prem, the transactor is –
Datomic as a single writer system. This is one of the ways and it’s probably the mode most

important way that Datomic insures total ACID compliance, right? There's no sense of you can
tune up or down the ACID level. There is no isolation factor like you'd see in some SQL

© 2020 Software Engineering Daily 10

SED 1032 Transcript

databases. With Datomic, you get all ACID all the time. One of the ways that that's ensured, is it

only one thread? Only one process is ever responsible for writing to that transaction log that we
discussed, and that lives in the transactor.

The question of scaling is an interesting one. Real quick, as an aside, you often do run two

transactors, because Datomic provides high-availability. You can run a second transactor. It
actually sits in standby and it monitors the heartbeat that the primary transactor writes. If you

have a system failure or a network hiccup or something that takes that initial transactor or that
active transactor out of commission, then you get a failover occurrence without any loss of

transactionality or data loss or anything like that. You do get the high-availability side.

But as far as scaling, you wouldn't scale by increasing the number of instances. You can
certainly scale the size of that transactor machine and the JVM that runs on it. One of the

unsurprisingly frequent questions we get is, “Well, yeah. But I want to scale bigger than that.”
But one of the places where Datomic differs is I’ve sort of already discussed, from a lot of more

traditional database systems, is that you don't have to serve all of the read load through that
transactor instance. It's only job is managing the incoming stream of novel writes.

What that means for most systems is that you no longer have to worry about doing things like

you would in some sort of more relational traditional systems where you have to build all these
read replicas and manage how you route traffic to one versus another and all these sort of stuff

because your peers are where the actual read work is happening.

What that means is that the overall amount of work that's being done by the transactor is often
less than people expect when they're coming from sort of a more traditional RDBMS system.

Having that be the single point where writes go through is very frequently not a big issue as far
as scale is concerned.

[00:25:50] JM: What's the process for me to set up a Datomic database? Is it any different than

setting up a typical SQL database or a NoSQL database like Mongo?

[00:26:01] MT: I would say this is a place where Datomic Cloud, which is a newer product than
Datomic on-prem particularly shines. Datomic on-prem, which is largely what we’ve been

© 2020 Software Engineering Daily 11

SED 1032 Transcript

discussing, is distributed as a JAR fi le. So you sign up for a license and you can download the

distribution and then it's up to you to sort of put it up on a server and start it. We have some
facilities for helping manage that in AWS and there are some community solutions for doing that

on sort of other cloud providers or on-prem, but there's a little bit of ops involved, right?
Granted, there is also sort of a local dev mode if you just want to try it out with local disk

persistence. That's quite straightforward.

On the other hand, Datomic Cloud, which is a product that we launched about two years ago
now, uses all the same semantic guarantees as Datomic. All of these stuff about how datums

work and these ACID promises and a lot of this that we've already talked about are 100%
applicable to Datomic Cloud, but the difference is that Datomic Cloud is specifically an AWS

marketplace product. What this means is that launching a Datomic Cloud database is
essentially a one-click experience. You go to the Datomic Cloud marketplace listing. You agree

to the subscription and you click launch. Then 5 to 8 minutes later, you have a Datomic instance
running in your AWS account that you could connect to either from your laptop via an SSH

bastion or from a client instance running in your AWS account.

[00:27:29] JM: And if I'm setting up a Datomic database, what about defining my schema? Is
there anything unusual I need to do when I'm defining the database schema?

[00:27:40] MT: That's it really good question. I think unusual is an interesting word for

discussing that, I think. As we already discussed, Datomic schema is just data. The exercise
that I tend to like to encourage people to do is sit down and think about how you would model

your domain once you sort of know the very basics that are needed to write the schema, right?
You need to know how do I define an attribute? What are the value types I can choose, et

cetera, and sort of draw picture, right? Make a table of your various entity types and what the
relationships between them look like, and then essentially if you sort of draw – I’m not

advocating going all the way to UML necessarily, but sort of like an entity relation diagram, if you
will.

Every attribute in each one of your entities essentially becomes a schema element. So then you

write those up. You write them into an edn file and you can transact that whole thing to your
Datomic system and you're ready to go. Now, inevitably, you’ll get it wrong the first time,

© 2020 Software Engineering Daily 12

SED 1032 Transcript

because that's part of the learning experience, but also that's how data modeling often go is we

learn new issues, new business questions come up. We realize that maybe we didn't model
something the way we actually thought we should have. One of the advantages that Datomic

has there is that, again, because schema is just data, you can update, you can add schema
more or less anytime you want.

We've talked about the Marshall entity. Six weeks from now I realize, “Oh, man! I really wish that

I had tracked the shoe size of my people entities, because I've decided to pivot and now I’m a
shoe company.” Well, instead of having to sort of do a giant ETL or figure out some other way of

handling that, you just say, “Okay. Well, now I have – Now I want to add a new schema element
to my database. We’re going to call it shoe size and it's can be an integer,” and you transact that

schema and you're done, and you can start adding shoe size values to any existing entities or
new entities sort of as you see fit.

[00:29:33] JM: We’ve touched a little bit on this model of run time that Datomic uses, the peer

model, where you have a peer component that gets embedded in the application, and the peer
component can store some data in-memory near the actual application. Does this mean like if I

am running my web app, let’s say I’m running softwaredaily.com and I make some query for a
set of users, am I fetching the data from my local application, from that application that’s sitting

in my browser?

[00:30:20] MT: Generally, I would say not in your browser necessarily, but certainly, possibly
from your web server. That caches in the JVM. Your web application – This is a little bit of a

hairsplitting thing, but you wouldn't run the peer library in a frontend app like JavaScript, for
instance. It definitely is a JVM resident library. Otherwise, yes. I mean, what you said is largely

true, and what's interesting is for users who have relatively small working datasets – So if the
actual set of data that your app cares about is fairly small, a surprisingly large percentage of that

may end up in cache in your application server instances.

This means that writing queries against it is essentially as fast as you can get things back and
forth from your web server. I think one of the things that makes that even better is that Datomic

is able to use Memcached. We have the ability to stand up – If you stand up a Memcached
cluster, you can configure both your peers and your transactors to use that, and we've definitely

© 2020 Software Engineering Daily 13

SED 1032 Transcript

seen that some customers who have modestly sized databases can stand up Memcached

clusters that are approximately the size of their database. If that's the case, then almost all
queries you ever serve are coming from a Memcached request by your web server as supposed

to a fetch from disk in the way that you would have sort of in a more traditional RDB round-trip
sort of system.

[00:31:51] JM: I understand. Okay. This is what I was confused by. In an situation where, for

example, I might be using Mongo and I'm making a query from my web application frontend. I
hit my web application backend and the web application backend hits the database service and

gets out of the database, which is on some different server. In the Datomic world, I'm going to
have a local in-memory system that is managing sub-subset of my entire Datomic database that

is on the same server as my application backend.

Now, what I'm curious about is if I'm storing some subset of my entire database on the
application backend, how much of the database am I storing? How big is the subset of my entire

database that's going to get stored on my web application backend?

[00:32:58] MT: Sure. That is a configurable parameter. It’s called the object cache. It’s
specifically the bit of cache that we’re talking about in this case. The size of that by default if

you're using the peer library is set to half of your JVM heap. But that is fully configurable. One of
the neat things about the way that works – Yes, your sort of description of that is exactly right.

Your app is in the database in the sense that not only is it on the same server, it's not even a
sort of out of process call. This is all happening in the same JVM where you have the peer

grants you access you to a local copy, local value of the database is the way we like to think
about it. You’re right. Some subset of that is live in-memory in your Java system.

Now, obviously, the object cache is cashing Java objects, which are fairly fat in-memory relative

to other possible ways of caching things. It's probably unlikely that for any sort of sizable system
your entire database is going to fit in object cache. But then that's where you moved to then

having Memcached, as I mentioned, as sort of the next backstop, where a fetch from local
memory is what? Nano seconds, I guess, for object. You’re talking less than 10 milliseconds for

a fetch from Memcached versus tens to 100 for a storage git potentially.

© 2020 Software Engineering Daily 14

SED 1032 Transcript

[00:34:26] JM: So if we were talking about a database read from my application frontend or

some operations going to result in a database read that's coming from an application frontend
and it's going to hit the Datomic cache, or I don’t know if you call it a cache, I guess the peer

embedded application. How would the latency there compare to if I was using just – Let's say, I
was using MongoDB or a Postgres and I just had like a Redis cache or a Memcached cache

that I'm managing myself?  

[00:35:06] MT: Sure. It’s obviously very hard to say, because it's going to depend a lot on what's
in your object cache versus what isn't and also potentially how much work has to be done, and

in both of those cases. I think independent of whether you're talking about Datomic or sort of a
more traditional relational database system. There is both the latency of, “Hey, I know exactly

where this bit of information I need is on disk I have to grab it,” versus, “I have to do some
munging and I have to search some key space and I have to do a join.” But if we try to sort of

equalize all that out as best we can, the general experience that our customers have is that
when you’ve set up a Datomic system with sizable caches and things are tuned well, it's very,

very fast, a lot of these requests.

The interesting thing I think about this is we mentioned horizontal rescaling. I would say that a
really cool approach that you can take when using Datomic is if you have a fairly complex

system that has many different features and sort of frontend or more user-facing use cases, you
can spin up a peer, your individual application server, for each one of those use cases. Because

the object cache in that instance is tied to the behavior and the specific questions that instance
has been asking and serving, then the result of that is that each one of those could have its own

sort of finely tuned cache for the job it does. You may have one web server that's responsible for
sort of your user login account management stuff, but you may have another one that's

responsible for some other aspect of your system and you may have an entirely separate web
server that's dedicated to serving back in more analytics queries for your quants.

The individual object caches on each one of those are going to differ based on the bits of data

that each one of them have been responsible for answering questions about. Then if you sort of
route your requests appropriately so that more analytics queries hit that same analytics-focused

instance, that’s a higher likelihood that the sort of data they're going to be asking for is already
hot in those caches.

© 2020 Software Engineering Daily 15

SED 1032 Transcript

[SPONSOR MESSAGE]

[00:37:22] JM: Over the last few months, I've started hearing about Retool. Every business
needs internal tools, but if we’re being honest, I don't know of many engineers who really enjoy

building internal tools. It can be hard to get engineering resources to build back-office
applications and it’s definitely hard to get engineers excited about maintaining those back-office

applications. Companies like a Doordash, and Brex, and Amazon use Retool to build custom
internal tools faster.

The idea is that internal tools mostly look the same. They're made out of tables, and dropdowns,

and buttons, and text inputs. Retool gives you a drag-and-drop interface so engineers can build
these internal UIs in hours, not days, and they can spend more time building features that

customers will see. Retool connects to any database and API. For example, if you are pulling
data from Postgres, you just write a SQL query. You drag a table on to the canvas.

If you want to try out Retool, you can go to retool.com/sedaily. That's R-E-T-O-O-L.com/sedaily,

and you can even host Retool on-premise if you want to keep it ultra-secure. I've heard a lot of
good things about Retool from engineers who I respect. So check it out at retool.com/sedaily.

[INTERVIEW CONTINUED]

[00:38:59] JM: I’d like to revisit the question of a read and then we can get to a write as well to
get a picture of the database architecture as a whole. Let's say I am making a read of just a

single record from my web application frontend, can you just walk me through how that read
propagates through the Datomic system? Maybe you could give examples of the data being in

that application cache, the peer component, as well as what happens when the data is not in
that peer component.

[00:39:41] MT: Similar to the transact API that we talked about before, there are a couple of

read functioned APIs for Datomic. Probably the most common one you'll see initially is the query
API. Datomic uses DataLog as its query language. Let's say you sent a Datalog query to your

© 2020 Software Engineering Daily 16

SED 1032 Transcript

application server in one form or another. Now in that system you've invoked the D/Q API. What

happens is Datomic, the peer library, will compile that query as necessary and say, “Okay, I
know what I need to look for.” Depending on the complexity of that query, that may be – It may

involve one or more of those indexes that we talked about before that it knows how to most
efficiently find things that match the parameters that you’ve asked for.

It will then say, “Okay, I know what the overall tree of these indexes look like.” Datomic stores all

of its datums in a shallow tree and it'll say, “I need to find the segment where this particular set
of Datums foo is at.” That segment is going to be identified by a UUID and maybe I already have

it in my local cache.” If that's the case, then it can read it from the local object cache. It can feed
it back into the query engine that's responsible for doing the joins and whatever, and then

obviously as additional bits of data are return to it as appropriate, it can do those joins and
return your answer.

If, on the other hand, it says, “Okay, I know I need this particular bit of data foo from this index,”

it's not in my object cache. I’m going to go look in Memcached. It says, “Okay. Well, let's
presume it’s not in Memcached this time.” The peer library does not go to the transactor. It goes

directly to the storage backend. Remember, we said you can use many different pluggable
storages, whether they’d be a SQL store, or a Postgres, or a DynamoDB, Cassandra. The peer

itself accesses those storages directly and says, Hey, give me the segment with the ID foo that I
know these bits of data that I'm interested in is located in. Then if you have Memcached

configured, it will sort of the same time that is done that read from storage, it will write that
segment into the Memcached instance as well as bringing it in to your peer application, caching

it there in the local object cache and then it will do sort of everything I talked about before, which
is it will look in there. It will find the specific datums that it knew it was looking for, pass them up

to the query engine for either return or inclusion in additional joins.

[00:42:08] JM: How does a write contrast with the read path of Datomic?

[00:42:12] MT: Right. If your application says, “Hey, I need to transact this data. Marshall shoe
size is 10.” You've called the D transact API that we’ve mentioned before, and what the peer

does then is it says, “Hey, this needs to be persisted. That's the transactor’s job. It sends that
information, that transaction itself, across the wire to that transact or instance that we talked

© 2020 Software Engineering Daily 17

SED 1032 Transcript

about where it’s put in the write queue. You can either do this synchronously or asynchronously.

There are APIs for both. Let's assume you're doing synchronously. The peer will then be waiting
for a return value from that transactor. The transactor will grab that transaction data and it will

persist it to disk. Before it ever acknowledges that any write has been achieved that you're
guaranteed that that write has been persisted to that transaction log that we talked about before.

What that means is if you peer, if your client instance has said, “Hey, I got an acknowledged

write,” and then immediately all the power in the US goes out. When that power comes back on
and you turn your database back on, your guaranteed that that data will still be there. The

transactor will take that transaction data. It will do any work that it needs to do. So Datomic
allows you to specify that things might be unique, for instance. You can have unique values and

unique identities. That transactor may have to do a little bit of work to say, “Okay, you’ve just
said that you want to create an entity called Marshall,” and the entity name is something you

said can only be a unique value.” It may have to make sure that there's not already a Marshall in
the database, that you're not doing something that’s sort of not permitted by your uniqueness

constraints. Once it's made sure that everything is good there, then it persists that to the disk
and it returns an acknowledgment to the caller that the transaction has been persisted.

[00:43:57] JM: Are there any conditions that can lead to data consistency issues with Datomic,

like inconsistent writes or reads?  

[00:44:05] MT: Right. No. Datomic is from the very beginning, as I sort of briefly alluded to
before, intended and designed to be a fully ACID system that doesn't allow you to end up with

staleness or inconsistent views – Datomic considers consistency the primary goal of the
database. If there is a situation on which Datomic has to choose between consistency and

availability, it will choose consistency.

[00:44:35] JM: What about – What are the conditions that can lead to latency in that availability
scenario or some kind of inability to serve a request due to low availability?

[00:44:50] MT: Sure. Speaking from the write side specifically, that connection to storage, right?

Obviously, this is all distributed computing. Things happen. If the transactor can't reach storage,
it does have significant retry built-in. But after a certain period of time, which is configurable, at

© 2020 Software Engineering Daily 18

SED 1032 Transcript

least in Datomic on-prem, we call the heartbeat. If the transactor is unable to write to storage, it

will say, “That's it. I can't persist things. This is a consistency violation. I'm going to shut down.”

If you get a heartbeat failure, Datomic’s transactor will terminate. That's where that HA failover
that we talked about earlier comes in. As far as sort of on the support side of things, that's one

of the predominant number one causes of sort of Datomic systems going out or going down is,
“Everything was great,” and then it went down because storage was configured or someone

turned off storage not realizing that it was related to Datomic or that sort of thing. That's the
predominant one.

Obviously, again, being a distributed system, just general networking sort of messages could

not be passed between peers and transactors or transactor in storage can lead to some amount
of latency in a system, but usually either the built-in or some client level retry can handle most

cases of that that we see in the wild.

[00:46:05] JM: How does database indexing work in Datomic? Does the database make any
indexes automatically, and what happens when a user wants to define their own index?

[00:46:17] MT: Right. That's a great question, and it comes right after the sort of path that we

talked about with respect to writing datums. As we mentioned earlier, Datomic is a multiple
spanning index database. So it does in fact maintain numerous indexes and those are differed

by the sort of the elements of the tuples in Datomic, right? Those datums are sorted either by
AEVT, or VAET, or EAVT, and Datomic automatically manages and updates those indexes in

real-time effectively. The way that it actually does that is it advertises the cost of putting data into
those indexes over time.

As you accumulate a certain amount of novelty, by default that's like 32 megs of new data,

Datomic will kickoff and indexing job where the transactor says, “Okay, I need to fold this stuff
into the persistent indexes on disk.” It does all that work and it writes the new segments to

storage and/or Memcached if configured, and then it notifies all the peers, “Hey, there's a new
index route. You can just start using that now.”

© 2020 Software Engineering Daily 19

SED 1032 Transcript

Prior to that indexing job, all of that novelty was held in what we call the memory index. It's not

like you can't see that data from your queries until the indexing job happens, right? It's always
visible and it’s always there. The question is whether Datomic is fetching that from the persistent

written on disk storage index or whether it’s fetching it from a memory index that it folds in as
part of the business of answering queries.

You’d also asked about sort of individual user specified indexes Datomic on-prem included one

optional index, which was the AVET index, where you could specify for certain attributes, “I want
that index turned on.” Datomic Cloud actually, by default, turns on all of them. The reason for

that is that there was initially the idea that might've been a slightly more expensive index to
maintain for Datomic. But after a couple of years of sort of having customers use it in fury, it

turned out that it was not a problem. Our recommendation now is actually to just generally run
with that on all the time, because it makes life better for queries that can take advantage of it. It

turns out not to be overly expensive for Datomic to do that.

As far as custom indexes in the sense that you would sort of think of them with SQL or a
DynamoDB or something like that, until recently, there was sort of no facility for that. But what's

interesting is we've recently released a feature called tuples. This is, before this, all V positions
in datums, so the value. They were all scaler types. We've now released the ability to put a

variable length tuple of data in that the V position. You can have a V position that is three things,
a string, a string, a string, or a long, and int, a string, whatever.

It turns out that one of the – One or the reasons that – One of the strong reasons for doing that

was that lets you build compound or composite uniqueness keys. But it also turns out that you
can essentially leverage that feature to automatically get custom indexes on any pair or three or

four set of individual values you care to. Because Datomic is already building all those indexes
we already about, anywhere that that V is, whether it's the AVET index or the EAV index, it will

sort those tuples lexicographically, the first, second, third element.

What that means is if you put two things that you care about asking questions about together
into a tuple in the V position, you've automatically created sections of your overall index that

acts like secondary indexes would in sort of a more traditional relational database. You can write
your query to specifically say, “Hey, I'm asking about the combination of the person's name and

© 2020 Software Engineering Daily 20

SED 1032 Transcript

address.” Go to the section of that index via a very efficient tree look up that talks about all the

person address value associations as supposed to find me all the people, find all their
addresses, then find all their names.

[00:50:22] JM: Datomic has the ability to query the history of the database built-in. It has an

automatic versioning history. Can you describe the conditions under which people might want to
query the history of the database?

[00:50:40] MT: Sure. Yes, that fourth element of the datum that we talked about is the T. That's

the transaction ID, which is associated with a time of every transaction that goes into the
Datomic system. What that means is that every fact has a timestamp effectively. You can, as

you said, ask what – “I want to run this query about people and their addresses and I want to
run it right now, but I also want to run it and I want to see exactly what it would've returned to me

last Tuesday at 2 PM.” Similarly, I want to ask about everything that's changed since last
Tuesday at 2 PM and now. Those are slightly subtle differences, but they are different things

you're asking.

Datomic provides out-of-the-box the ability to do all of these things by applying a filter to the
database that we call the time filter. You can say, “As of you.” You can say, “Show me the

database as of last Tuesday at 2 PM,” or you can say, “Show me all the things that happened
since time foo.” There are a number of very interesting applications for this. I think one of the

places where people have gained a ton of advantage from this certainly is in debugging, right?

A user reported a problem and now it's fine. Everything is working fine now and I don't
understand why. Must've been something weird with the state. I guess we'll jock it up to I’m

never get to see that again. With Datomic you can say, “Well, the user reported the problem on
Tuesday. 17 people have made schema changes and updated things and whatever since then.”

But I can say to Datomic, “Hey, what exactly was the state of the database when this user
reported this anomalous behavior?” Then you can look in your code and say, “Oh, look. It's

because X, Y, and Z,” which was actually mitigated by some changes that have happened since
then, for instance.

© 2020 Software Engineering Daily 21

SED 1032 Transcript

Another place where we see a lot of traction with the built-in notion of time in Datomic is in

regulated industries. We think sort of financial services, healthcare, insurance, these kinds of
places where there's at least a business level, if not frequently a sort of legal level requirement

for maintaining a history of what has happened. I need to know exactly when so-and-so's
account balance changed, or I need to know exactly when the status of this patient was

changed from A to B.

Obviously, there are plenty of ways that you can sort of layer on top of any existing application
some of those features, but the idea with Datomic is you don't have to, and there isn't the

chance that, “Oh, we wrote a bug into that system, so all of our history tracking just doesn't
work.” The database is responsible for maintaining exact record of how all the data in there has

changed.

[00:53:20] JM: Datomic uses a query language called Datalog. Can you explain what Datalog is
and how it's different from a more traditional query language like SQL?

[00:53:29] MT: Sure. Datalog, formally, is a subset of prologue, which is a logic programming

language. One of the most significant differences between Datalog and Prolog, is that Datalog
is guaranteed to terminate, which is obviously a desirable feature of a query language that

you’re using for a database. Formally, mathematically speaking, Datalog is equivalent to the
relational algebra plus recursion, which means from a sort of formal methods perspective, you

can do anything you could do with SQL with Data log and possibly even more if you consider
that you can do recursive things.

Datalog uses a pattern matching approach to writing queries. It's very logic-oriented in the way

that, I would argue, a good query language should be. In general, a lot of people sort of
approach it and they say, “This is kind of weird. I don't really know what I think about this. I know

SQL already.” But after a day or so of playing with Datalog, it really starts to shine in the sense
that because, again, Datomic uses what we call the universal relation, this five tuple datum, and

the data log query language equivalently uses this relation, your queries look like your datums.
You're writing a query that includes a set of patterns that match what the data in the database,

and furthermore, the data in your data model represent. What that means is that it's often very
straightforward to translate your query from language from, “I want to know X,” into a set of

© 2020 Software Engineering Daily 22

SED 1032 Transcript

Datalog clauses that are very logically consistent with both your data model and the question

you're trying to ask.

[00:55:07] JM: What are some of the downsides of using Datomic? What are the things that
people struggle with?

[00:55:12] MT: I think there’s certainly a bit of a learning curve, especially for people who have

a strong long time commitment to some other technology or technologies. As you just pointed
out, it’s not a SQL system. It uses Datalog. Some of the ideas behind Datomic may seem a little

different. This idea that your database never forgets. You don't overwrite data, like, “Wait, how
do I write my program if I can't tell it to delete things?” There's a bit of an adjustment, I think, in

terms of the way that you would approach problem-solving.

In general, people who come from the Clojure ecosystem have a very easy time with it because,
of course, it reflects many of the same values and ethos as Clojure itself. But I think that we see

a lot of people in a lot of different technologies and industries and backgrounds really gravitating
more towards data-oriented systems that rely on the principles of functional programming and

isolation and all these principles that Datomic really resonates with.

One of my biggest suggestions to people is just give it a shot. I mean, spend a little bit of time. I
understand that trying new sort of unfamiliar things can often be a little bit of a challenge. But

more often than not, people come away quite pleased that they have spent the time and sort of
learned the interesting differences that there are to learn from Datomic.

[00:56:32] JM: Okay, final question. Datomic has been around since 2012. How has the

database evolved since then and what are the plans for the future?

[00:56:42] MT: That's a great question. I joined Cognitect in 2014 when Datomic had been out
for, yeah, about two years, a little less than two years, and I've been formally on the Datomic

team since about mid-2015, I think. In that time, we've seen a huge number of changes. The
first and possibly most obvious big changes that we’ve release Datomic Cloud. This is an

entirely new codebase. It’s entirely new database. We didn't talk as much about it. It, again,

© 2020 Software Engineering Daily 23

SED 1032 Transcript

provides many of the same semantic guarantees and functional capabilities as Datomic on-

prem, but with a significantly different set of architectural decisions.

For instance, there's no longer a transactor. It uses a client API but has the ability to do things in
the cloud. It includes as well actually a deployment model that we call Datomic ions, where you

can actually ship your code up to the running database and sort of use it as an application
deployment platform. There are many other aspects of Datomic Cloud that are sort of unique

and very interesting, which I love to talk about sometime, but we certainly have spent a lot of
time working on that aspect of it.

Additionally, since I've joined, many large features like tuples have come out, which have really

extended and expanded the capabilities of Datomic as a database system both in terms of its
actual semantic functionality and also performance and these sort of other important aspects.

Another really exciting thing that we released recently is something we call analytic support.

This actually speaks a little bit to your previous question. Analytic support is a set of features
that we've included that allow you to actually connect more traditional SQL-based tools to a

Datomic system. Using analytic support, you can do things like connect Tableau, or connect
PowerBI, or Apache Superset to your Datomic system and run your business analytics tools

against it without having to do separate ETL into whatever data stores they prefer to have. It
provides essentially a subset of a SQL interface to Datomic that's tailored specifically for sort of

the analytical side of things. That's available both in Datomic on-prem and in Datomic Cloud.

I've also been fortunate enough at the company to work a lot with our customers. I spend a lot
of my time talking to either existing or potential customers about what sorts of problems they're

trying to solve. Why they’re potentially considering Datomic? What other solutions they've
looked at? What kind of problems they're having with Datomic or without Datomic? I've been

able to find a really interesting groups of people who have communicated and conversed with
who’ve all come to this technology from many different places, many different industries,

because of a lot of the underlying systemic value propositions of both Clojure and Datomic as
an ecosystem and as an approach to writing software carefully and systematically.

© 2020 Software Engineering Daily 24

SED 1032 Transcript

I think that going forward, that's one of the places where Datomic shines now, always has

shined, and I certainly think will continue to shine, is that it holds these sort of principles around
simplicity and immutability and the way that we should be thinking about treating our distributed

systems very carefully.

A lot of the other features are wonderful and exciting, but many times some of those features
get in the way of they’re polished on top of needing to remember that you have to be very

conscientious when you're talking about the database of your system, that the foundations are
really strong. That what I would say is one of the greatest strengths of both Datomic on-prem

and Datomic Cloud and I certainly think that that will absolutely hold true in the future.

I guess the second part of your question is where are we going from here? We’re consistently
developing additional features, additional tooling. I'm personally involved with a lot of our

customers on the side of sort of how can we make it easier to use Datomic. Even if it's not a
surly feature side of things, like what are the aspects where Datomic is either difficult to learn or

you found something unexpected or surprising about it or our tooling and documentation isn't as
good as it should be. I'm heavily focused on improving all of those things as much as possible.

I also think that both Datomic on-prem and Datomic Cloud continue to grow in terms of our user-

base and the number of companies, and to some degree, even the size of companies that are
using it. I would expect that in the next few years we’ll see quite a bit more community-sourced

sort of content and I'm excited to – I always love to hear what people are doing with Datomic
that isn’t something I would've thought of. Yeah, I think that the biggest place is that I'm excited

to look forward to are those things that a lot of our customers are coming up with that are really
cool applications of the technology that we’ve put together.

[01:01:30] JM: Marshall, thanks for coming on the show. It’s been great talking.

[01:01:33] MT: Thanks, Jeff.

[END OF INTERVIEW]

© 2020 Software Engineering Daily 25

SED 1032 Transcript

[01:01:43] JM: Gauge and Taiko are open source testing tools by ThoughtWorks to reliably test

modern web applications. Gauge is a test automation tool that makes it simple and easy to
express tests in the language of your users. Gauge supports specifications in markdown, and

these reusable specifications simplify code, which makes refactoring easier and less code
means less time spent maintaining that code.

Taiko is a node library to automate the browser. It creates highly readable and maintainable

JavaScript tests. Taiko has a simple API. It has smart selectors and implicit weights that all work
together to make browser automation reliable. Together, Gauge and Taiko reduce the pain and

increase the reliability of test automation.

Gauge and Taiko are free to use. You can head to gauge.org to know more. That’s G-A-U-G-
E.ORG to learn about Gauge and Taiko, the open source test automation tools from

ThoughtWorks.

[END]

© 2020 Software Engineering Daily 26

