
SED 979 Transcript

EPISODE 979

[INTRODUCTION]

[00:00:00] JM: NoSQL databases provide an interface for storing and accessing data that

allows the user to work with data in an unstructured fashion. SQL databases require the data in
the database to be normalized, meaning that each object in the entire database has an entry or

a null value for each field.

One advantage of NoSQL is that the different objects are de-normalized, meaning that the
different objects in the database can have unique fields. There’s a widely held belief that NoSQL

databases do not scale or that there is some significant penalty the developer will pay for using
a NoSQL database as soon as their app becomes popular.

The truth is much more subtle than that. NoSQL databases can perform as well as or better

than SQL databases if the developers know the query patterns that their applications make.
SQL databases will be a better choice in the condition where the database has a very wide

spectrum of access patterns. But in many cases, an application actually has a narrow range of
different requests for the database, and a NoSQL database can perform very well if the

database is structured and optimized for these requests.

Rick Houlihan is an executive with Amazon Web Services who works with database teams and
engineers to optimize their products and their database infrastructure. Rick joins the show to

discuss the tenants of NoSQL and describe the fundamental contrast between NoSQL and SQL
database limitations.

We are hiring a software engineer who can work across both mobile and web applications. This

role will include work on softwaredaily.com, our iOS app, and our Android application. We’re
looking for someone who learns very quickly and can produce high-quality code at a fast pace.

We’re looking to move beyond the world of just being a software podcast into more of a platform
of information about software. If you’re interested in working with us, send an email to

jeff@softwareengineeringdaily.com.

© 2020 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com

SED 979 Transcript

We’re looking for somebody who is hungry and wants to learn quickly and wants to build lots of

software. If you are that person and you’re hungry, it doesn’t matter what your experience level
is as long as you have built and shipped meaningful applications. Send me an email,

jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]

[00:02:30] JM: Today’s show is brought to you by Heroku, which has been my most frequently
used cloud provider since I started as a software engineer. Heroku allows me to build and

deploy my apps quickly without friction. Heroku’s focus has always been on the developer
experience, and working with data on the platform brings that same great experience. Heroku

knows that you need fast access to data and insights so you can bring the most compelling and
relevant apps to market.

Heroku’s fully managed Postgres, Redis and Kafka data services help you get started faster and

be more productive. Whether you’re working with Postgres, or Apache Kafka, or Redis, and that
means you can focus on building data-driven apps, not data infrastructure.

Visit softwareengineeringdaily.com/herokudata to learn about Heroku’s managed data services.

We build our own site, softwaredaily.com on Heroku, and as we scale, we will eventually need
access to data services. I’m looking forward to taking advantage of Heroku’s managed data

services because I’m confident that they will be as easy to use as Heroku’s core deployment
and application management systems.

 
Visit softwareengineeringdaily.com/herokudata to find out more, and thanks to Heroku for being

a sponsor of Software Engineering Daily.

[INTERVIEW]

[00:04:04] JM: Rick Houlihan, welcome to Software Engineering Daily.

[00:04:06] RH: Hey, great. Thanks for having me. I really, really appreciate it.

© 2020 Software Engineering Daily 2

SED 979 Transcript

[00:04:09] JM: You’ve said that the history of database technology is a history of a data

pressure. Explain what data pressure is and how it relates to the databases that we use today.

[00:04:19] RH: Yeah, sure. That’s a great question to start with. I always like to startup with that
kind of analogy of we’ve always had these series, like I said, peaks and values of data pressure.

What that really means is it’s the ability of systems that we’re asking to process our data to
process that data in a reasonable cost or in a reasonable time. When one of those dimensions

is broken, that’s what I’d like to refer to as a technology trigger. Over the years we’ve invented
many things as we’ve encountered these technology triggers and data pressure.

[00:04:49] JM: There are several explanations for why NoSQL rose in popularity after SQL had

been the predominant database type. We’ve explored some of those different theories on this
show. Give me your historical perspective for why NoSQL became popular.

[00:05:07] RH: Well, sure. I mean, really what it comes down to, again, as people started to

process volumes of data, the relational database that we’ve used for so many years turned out
to not scale so well. That really points back to the reason why it was invented in the first place,

and the relational database came into being because, again, we’re experiencing data pressure,
it was the cost of processing data that was preventing us from scaling, and the relational

database decreased the pressure on the storage systems, because the normalized data model
de-duplicated that data and allowed us to free up storage, so to speak, which was really the

most expensive resource in the data center 3 or 4 years ago.

But now, today, fast forward, we pay pennies per gigabyte and we’re paying dollars per our CPU
minutes, and really the CPU is no longer just this fixed asset that’s kind of spinning in idle loop

when it’s not doing anything else. It’s an asset that we can use to do other things. So joining
data and running complex queries is really not something that we’d like to spend our money on,

so to speak.

NoSQL databases allow us to use a de-normalized data model that’s finally tuned to the access
pattern. It allows us to use simpler queries that don’t burn up the CPU so much, but it does this

at the cost of the storage, which is actually today quite fine, because storage is so cheap, and
really the CPU is where we want to drive the efficiency.

© 2020 Software Engineering Daily 3

SED 979 Transcript

[00:06:29] JM: With that said, is it a free lunch given infinite storage space? The decision to
choose between a SQL and a NoSQL database, or are there penalties in terms of latency or

some other penalties at a high level while we’re talking to high level?

[00:06:46] RH: Yeah. No. Absolutely. NoSQL database do really well when we have a very
predictable access pattern. When something is a repeatable process and we’re thinking kind of

a transactional application, online transaction processing or OLTP apps. These are great
applications for NoSQL databases, and that’s because, again, if we have a well-understood

access pattern, then I can structure the data that’s very specific and tuned to that particular
pattern.

Relational databases, they’re agnostic to the access patterns, right? But that really means

they’re optimized for none of them, but that’s okay because they have a really good purpose in
life, and their purpose is to satisfy the need for an ad hoc query. That kind of application is what

we would typically call an OLAP style application, right? Online analytics processing.

For those types of applications, you don’t really know what kind of questions you’re going to be
asked. What the access patterns are going to be. They might be different today than they are

tomorrow. For those types of applications that normalize data model with an ad hoc query
engine makes the most sense. There’s a small set of applications, those OLAP applications,

that still makes sense for the relational database. But for everything else, we should really be
thinking NoSQL first, because it drives a lot of efficiency into the system and the cost of scale is

so much lower that it’s well worth the consideration.

[00:08:05] JM: Let’s talk through the anatomy of a NoSQL table. First, explain how does a really
big table get divided up into partitions using a partition key.

[00:08:17] RH: Yeah, sure. This is fundamental premise for all NoSQL databases. They all scale

the same way. Typically what you’re going to do is you’re going to define some sort of item that
we’re going to insert into a collection. This item is going to be uniquely identified on some

attributed DynamoDB, that’s called a partition key. In MongoDB, that’s the under bar ID.

© 2020 Software Engineering Daily 4

SED 979 Transcript

 

At some point you’re going to choose to use a shard key or assign a shard key with MongoDB
that allows us to distribute this data across and arbitrary what we call key space. Now in

DynamoDB, the partition key serves that purpose. When I define the partition key in a
DynamoDB table or in any wide column database, I use this partition key value as the shard

key.

What we’re doing is we’re taking this value. We’re going to create an unordered hash index
across this logical key space and then we’re going to start laying these items out across that key

space. If I need to scale the system in either throughput or storage capacity, what I’ll do is I’ll
split the key space across multiple physical nodes. This gives me the ability when I query this

system. As long as I provide that shard key or that partition key condition within the query, I
know exactly where to go on the array of nodes that are servicing the key space. There could be

thousands of servers participating in the servicing of this key space.

But as long as I get that partition key quality condition, I know exactly which server to go to. This
is what gives me fast and consistent performance in any scale for NoSQL databases, again,

because it’s automatic. As soon as I query the system, the request writer knows exactly where
to go to get the data. I don’t have to search across the key space to find that information.

[00:09:54] JM: What is a sort key?

[00:09:56] RH: Okay. A sort key is when a wide column database, what you’re doing is you

define a primary key which consists of both the partition and the sort key. In a partition key, it
uniquely identifies an item in a partition key only table.

When I add the sort key, an interesting thing happens. The partition key now identifies a folder

or some sort of container, and the sort key uniquely identifies the item within that container, and
when I query the system, I can do two things. I query with a partition key quality condition that

says, “Go here,” and then a sort key condition which can include range queries, like greater
than, less than, or between. Things that will give me the ability to kind of filter the items that live

in this partition, and we’re going to play a lot of games when we do the data modeling, because

© 2020 Software Engineering Daily 5

SED 979 Transcript

what we’re going to use that sort key attribute and specific conditions on the sort key attribute to

limit the items that are being returned with I query a given partition.

You can think about partition on a given table in DynamoDB or any wide column database as a
collection of items, then there’s going to be sort key conditions that I’m going to use to retrieve

certain items from within that collection.

[00:11:05] JM: We’ll keep working through a few of these terms just because I want to set it up
for a more higher level or a more rich conversation. But just to continue moving through some of

this technical vocabulary, could you define the term partition overloading?

[00:11:20] RH: Sure. Partition overloading is when what we’re going to do is we’re going to
create multiple types of partitions on the table. Typically, in a NoSQL database, we’re going to

insert all of the items that we need that we’re interested in. They don’t all have to be the same
structure. That’s one of the big differences between a DynamoDB table and maybe your

traditional relational database.

When I define a table and a relational database, all of the items or all the rows on that table look
the same. In a NoSQL database, when I define a table or a collection, really what that is, it’s an

object collection. I’m going to throw a lot of objects in there. They can be all different types.

When we talk about partition overloading on a wide column database, what we’re really saying
is that certain partitions are going to describe different types of entities within your application. I

might have user partitions. I might have warehouse partitions. I might have product partitions. I
might have sales people on my table. Each one of these partitions will be identified using a

unique partition key, and when I query the system, I’m going to use the sort key conditions and
the partition key conditions that match the types of access patterns I’m running, right?

I might be interested in getting all the orders for a given user. I’m going to query the user

partition with the day range condition that’s going to say, “Give me all the orders for a user within
the last 30 days.” But then I might want to know for a given warehouse which parts are on back

order. So I might query the warehouse with a different condition that’s saying, “Hey, give me all
the parts and filter on a back ordered state for the parts that this warehouse has.” This gives me

© 2020 Software Engineering Daily 6

SED 979 Transcript

all the parts for any given warehouse that might be back ordered. There’re totally different query

conditions querying different types of partitions for different types of data, and that’s what we
mean by partition overloading.

[00:13:08] JM: Does the database accessor, like the client who’s accessing the database, do

they need to know anything about these sort keys or partition keys, or is this stuff that’s taken
care of somehow under the covers by the database itself?

[00:13:25] RH: You kind of need to understand what data you’re storing on the system, right?

When I define items, I’m going to define items that have a partition key and a sort key and I’m
going to typically use generic names for those attributes, things like PK and SK. Then every

item I insert on the table is going to have an attribute called PK. It’s going to have an attribute
called SK. The values that I insert there are going to dictate what type of item that I’m really

storing in the system.

When I query the system, I’m going to say the PK equals X. Whatever X is defines the partition
that I’m querying. Then the sort conditions I’m using will be specific to the access pattern. If I’m

querying a user partition, then I’m going to use sort conditions that are going to retrieve items
from that user partition. If I’m querying a different type of partition, I might use totally different

sort conditions, and that is definitely up to the client, the accessor, the user. These are going to
define the access patterns. They’re going to define the data that’s being stored and they’re

going to define the conditions that we’re going to use when we query the data.

This is actually a process we typically go through when we design a table. We’re going to define
your entity model. That entity model is going to really define what types of partitions leave on

your table. Then we’re going to look at and identify all the various access patterns that we’re
going to run against that entity model. Then we can go and we can start to actually model the

data, define the partitions, define the item types. When we’re done, we’re going to produce a list
of access patterns, a list of indexes or tables that need to be queried for each individual pattern

and a list of sort key conditions and filter conditions that will be applied to produce the results
that we’re looking for. That’s like a general process.

© 2020 Software Engineering Daily 7

SED 979 Transcript

[00:15:06] JM: I want to make sure I understand the partition term and access pattern correctly.

Let’s say I have a database and a ton of orders, and these orders have lots and lots of fields.
They have the name of the customer, the state that it’s being shipped to, the city that it’s being

shipped to, the color of the box that’s being shipped in. I don’t know.

[00:15:31] RH: True. All kinds of different descriptions.

[00:15:34] JM: All kinds of different fields. Let’s say I pick the partition key of state, like the
state, is it Texas? Is it California? Is it Michigan. If I pick that partition key of state, that means

that the database is going to be partitioned. It’s going to be split up physically in terms of those
different states so that – I might do that because I might have lookups where I’m frequently

perhaps getting all of the orders from a specific state. So then my database is pre-optimized. It’s
going to be laid out to be able to serve that kind of query.

[00:16:11] RH: Sure. Absolutely. That’s a valid – It depends on the nature of the aggregation or

the grouping of the data that we’re trying to produce. If we’re trying to group data by state or by
zip code or by city, absolutely those are valid partition keys. We get into the mechanics of

actually creating those aggregations. We need to understand that NoSQL databases, typically,
when I create a partition or a shard, what I’m doing is I’m saying, “Okay. Here’s a group of data

that lives in one place.” That one place is typically one server. That one server has limited
throughput.

If the workload that we’re trying to drive into that aggregation is larger than what one storage

node can handle, then we need to logically split the key space so to speak. You create like state
zero and state one and then we can split that workload across multiple physical nodes and so

on and so forth. Maybe we have to create for a whole state, aggregating orders by state. That
might require maybe 8 or 9 storage nodes to participate because of the rate of orders that would

be received by the system. These are the game we’ll play to try and get that workload to spread
out horizontally, and that’s really the key to NoSQL, right? You don’t want to pin too much work

to any given storage node. We need to get that work spread out across multiple storage nodes
in order to scale.

© 2020 Software Engineering Daily 8

SED 979 Transcript

[00:17:37] JM: Just a little more terminology and then we’ll get to the fun stuff. Another term is

secondary indexing. What is secondary indexing? Why is it useful?

[00:17:45] RH: Sure. When we create partitions on the table, we’re going to define the types of
entities in a system. We’re going to load objects or items into those partitions that are related to

those entities, and those are going to serve some sort of primary access patterns so to speak.
When I query this partition with these conditions, I’m going to get certain set of items.

Now I might have the need to create totally different aggregations of those items, and the

example here might be if I have customers and customers need to access their order data, then
my primary access patterns might be querying the table by customer ID using day range

conditions to produce orders in the last 30 days or whatever.

If I have those same orders, I might have an accounting workflow that executes on a monthly
basis and says, “I need to get all the sales reps orders for the month.” Every one of the orders a

customer places has a sales rep ID associated to it. Now if I create a secondary index, I’ll index
on the sales rep ID and that will be a partition key on the index. If I use the sales rep ID as the

partition key for the GSI, now when I query the secondary index, the global secondary index or
GSI using the sales rep ID and a day range condition, I’ll use data as the sort key again. I can

say, “Give me all the orders for this sales rep for the last 30 days.”

What I’ve done now is I have one grouping of orders on the table that’s grouped by customer,
and that’s the way we write the data into the system. If I create a secondary index on the sales

rep’s ID, then I can query that index and get the orders by a sales rep for my accounting
workflow at the end of the month. You can think of indexes as a way to create additional

partitions, to regroup the data, to support additional access patterns, and this is an interesting
thing about NoSQL, is people say, “We don’t join data in NoSQL.”

But if you think what I just described, that’s really what I’m doing. I use the secondary index to

join the data across partitions to produce a different aggregation or a different result set. So it’s
more of a modeled join than it is an ad hoc join, and that’s really the difference, right? Relational

databases have ad hoc queries. I could join data arbitrarily. NoSQL databases that I can join
data, but I have to do it on the index. I have to do it in a way that’s kind of I have to think about it

© 2020 Software Engineering Daily 9

SED 979 Transcript

beforehand and structure these storage containers in order to produce the aggregations that I’m

looking for, but it’s generally the same process.

[00:20:08] JM: Do these secondary indexes, do they copy the data that already exists or are we
just making lookups that are going to be pointing to a data that we already have?

[00:20:21] RH: Yes. That’s up to the user. We can choose when we define the index to project

all of the data from the original items, to project just some of the data, or to just project the
attribute keys that we want to index, right? It’s up to you when you define the access pattern.

You could say, “It’s a very infrequent pattern. Maybe I just want to know the items that match. I
don’t expect those result sets to be really large.” So we’ll create an index that’s keys only that’s

going to be very lightweight from a storage perspective. You’re not going to have to pay a lot for
that.

Then when you get the items that match, you’d go back to the table and do maybe a batch get

item and get the data that you need from those items. You might say, “Well, no. My access
pattern is a little different. I actually need all that data when I access off the index, and I do this

with high frequency and high velocity, and I want low latency. So let’s project the items
completely on to the index that’s going to double my write capacity cost, that’s going to double

my storage cost, but it’s going to optimize my read.”

This is the question. When you create the index, do I optimize for the read? Do I optimize for the
write? That decision is informed by the nature of the access pattern, right? What’s the velocity of

the data? What’s the shape of the data? How much does it cost me to optimize for that read? Is
that a cost I want to bear or would I prefer to optimize for the write and pay less? That’s a

decision the user makes where they analyze the access pattern.

[00:21:45] JM: In order to scale, databases need to be sharded often times. In DynamoDB,
does the database designer have to figure out how to do this sharing, or is sharing taken care

off by the database implementation?

[00:22:02] RH: In all NoSQL databases, there’s a condition that we call hot keys, and hot keys
really are about how much throughput am I asking to give in logical key to provide? In

© 2020 Software Engineering Daily 10

SED 979 Transcript

DynamoDB, we use relatively small storage nodes, and the reason we do this is so that we can

scale the system quickly. Legacy technologies like MongoDB and Cassandra, they’ll use very
large storage nodes because they’re essentially an entire server.

The downside using large storage nodes is that the scale becomes expensive because the

more shards I have, the longer it takes to add a new shard. The reason why is because I have
to actually replicate some data on to the new shard before it becomes available. When my

system becomes large, that replication process can literally take weeks and even months. I’m
working with some of the largest legacy technology deployments from MongoDB and

Cassandra in the world today, and the largest cluster I’m aware of is 45 shards for MongoDB.
They started replicating shard 46 in July. They expect it to be done in February sometime. This

is not an uncommon experience.

With MongoDB, or with DynamoDB, we use very small storage partitions because we want to
be able to scale quickly from zero to a million request per second, but this comes in a cost. It

comes with a throughput. There’s an issue with throughput with DynamoDB partitions, right?
You have to be aware of this. Write sharding in DynamoDB is something that the user does

need to become aware for scaled out workloads.

But generally speaking if we select the right partition key, that’s not something that the user has
to be aware of, because that partitioning occurs under the covers for NoSQL databases. As long

as I’m not trying to pin too much workload to a single logical key, then we can go ahead and get
the system take care of that. I hope that’s a good answer.

[SPONSOR MESSAGE]

[00:24:07] JM: When I’m building a new product, G2i is the company that I call on to help me

find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you

can trust. Whether you are a new company building your first product, like me, or an established
company that wants additional engineering help, G2i has the talent that you need to accomplish

your goals.

© 2020 Software Engineering Daily 11

SED 979 Transcript

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also

done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.
These are engineers who know about the React ecosystem, about the mobile ecosystem, about

GraphQL, React Native. They know their stuff and they run a great organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product

development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners

and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to

softwareengineeringdaily.com/g2i.

[INTERVIEW CONTINUED]

[00:25:55] JM: Now, I think we’ve given people the proper building blocks mentally to
understand why databases get tuned in different ways, because a database is, at a high-level,

just a ton of data, and we simply don’t have the tools today, the futuristic tools to be able to just
say, “Look, we’ve got a big lump of data and we’ve got a magical API that’s going to figure out

the best way to always query that data.” This magical API is going to turn your data into the
correct database and it’s going to give you all the correct ways to query it and there’s going to

be minimal cost and everything. This is just such a huge optimization problem that we as an
industry are going to figure out overtime with new databases, new things that are built on top of

those databases.

The state of database design and choice today, a lot of it depends on the read and the write
paths of your application. If you have an application that’s writing time series data at a very, very

high-volume, but that data is very rarely accessed, then you have a certain kind of application
that you may have a certain kind of database need for.

© 2020 Software Engineering Daily 12

SED 979 Transcript

On the contrary, if you need a database that suits a ridesharing application, maybe you need a

different kind of application, and the point is that different clients are reading and writing to that
database in certain ways, and the patterns of the reads and the writes are often – There’s also

the shape of the data. That’s a third dimension that we can explore here.

Are there some certain read and write patterns that you can illustrate to help us understand how
we should be making these choices that we’ve outlined earlier, things like sort key and partition

key?

[00:27:53] RH: Yes and no. I mean, there are general guidelines. I don’t know if there’s any kind
of general guidelines that we can deliver, but there are certainly some decisions that the

developer needs to make when they’re designing their schema, because there are tradeoffs in
cost and performance, right?

You mentioned the velocity of the data, the shape of the data, really, the frequency of the

queries. I can use an example to talk to this. I had a customer who is maintaining a secondary
index so that they can find exception conditions on their table and the exception condition that

they were looking for they need to check for once a week. They had about 1-1/2 terabytes of
data on the table. They created a nice, efficient global secondary index. They could query the

global secondary index for the exception condition and retrieve the two or three items every
week that we’re actually in that exception condition.

The problem with this implementation was that they were projecting all of the data on to the

index which duplicated their storage cost and it duplicated their write capacity cost. They have
barely sizable items. The items were around 12 kilobytes. In DynamoDB, that’s 12 WCUs per

item write. I think their write capacity on the system was about 150,000 steady state, 150,000
WCUs. It’s a pretty expensive table, and they were essentially doubling their cost by writing

those items to the index.

The first optimization they went through was to say, “Well, since there’s only two or three items
that we need,” they just went to a keys-only index and they stopped projecting all the extended

data, and that was good. That dropped their write capacity by about 70% or 80% requirement,
but they were still running at about 15,000 to 20,000 WCUs fairly steady state.

© 2020 Software Engineering Daily 13

SED 979 Transcript

The cost I think was somewhere around $2,000 or $3,000 a week. I basically said, “Look, why
don’t we just once a week we table scan this table. We’ll put the WCUs on your table up to or

RCUs up to a million RCUs? We’ll spin up a couple of EC2 instances. We’ll table scan this thing.
It will take us about 20 to 30 minutes. We’re done. You’ll pay – I don’t know, $100 total cost

during this 20 or 30-minute window while we’re table scanning, and it will drop your weekly cost
by thousands.”

I mean, long story short, it’s not so much always that we want to most efficient way to read the

data. That end solution was the grossly inefficient read, right? Table scan the entire table to find
two or three items, but we’re only doing it once a week and the cost of maintaining the index

was in the thousands a week. The net tradeoff to the customer was huge savings.

This is what we’re really going to do when we start to look at how do we choose to structure the
data. We’re going to make these types of decisions based on the frequency, the velocity, the

shape of the data that we’re trying to store and whether or not we want to optimize the read or
the write. It’s really going to be so access patterns specific that it’s hard to say what’s the

general guideline. Long answer, but that’s kind of where it has to go.

[00:31:12] JM: That’s a great answer. We have a lot of episodes about exploring the query
patterns of transactional processing versus analytic processing. Transactional processing being

like a write or a read to a single record or some specific small collection of records perhaps, or
just I guess more accurately just a write to the production database in many cases, although

even that’s kind of a crude way of putting it.

Then OLAP being these analytic processing systems where you have really high volumes of
data. You’re off doing aggregations, like maybe you’re summing the profits that you’ve made

from all the orders across the entirety of a gigantic ecommerce website.

Are NoSQL databases specifically better suited to OLTP applications or is there a way to use
NoSQL databases as OLAP applications?

© 2020 Software Engineering Daily 14

SED 979 Transcript

[00:32:09] RH: Okay. Yeah. I mean, that’s a great question. Generally speaking, NoSQL strong

suit is the OLTP app. It’s a well-defined access pattern. It’s a repeatable predictable way to
access the data. That’s what you’re going to expect from an OLTP type application. That’s what

I’d say. That's how I would describe OLTP, right? It’s a repeated process. It happens the same
way every time. It's like the shopping cart at amazon.com, right?

When I process my order, it’s the same process that runs when you process yours. It’s no

different than anyone around the world processes their shopping cart every time they hit the
button. The same thing happens. That's OLTP. That is a sweet spot for NoSQL.

Now the other side is the OLAP application, and I would really qualify that into two buckets.

You’ve got kind of operational analytics, which is almost a repeatable process. It’s something
where I'm looking for summary, KPIs, key metrics that are driving the information back into my

system. Things like current request rates, current order rates, total sums, counts, downloads, all
these types of things that we try to generate as a kind of report metrics.

For those times and workloads, NoSQL can be a very interesting choice. As long as you have a

mechanism to do change data capture processing, right? As I insert items on the table, as I
update items on the table, I want those writes to appear on some sort of a change data capture

pipeline where they can be processed and I can actually write back summary information to top
level metrics into items that I reinsert back on to the table. In this way, we can offload the

pressure of the compute of having to drive those things like counts, sums, averages, top in, last
in. Most of max-min. Most of the type kind of KPIs that people are trying to calculate can be

done in this CDC pipeline.

This is actually something we found at Amazon that we started doing very early on before we
even chose to migrate off of our Oracle systems to NoSQL. We are creating rollup tables in our

Oracle databases to hold these KPIs because the cost of doing those queries in real-time, the
compute cost was just too high right.

We would maintain rollup tables for sums, averages, like downloads per song or whatnot for

your Amazon music. Don’t calculate that in real-time. It was too hard and too expensive. So
once we did that, we’re kind of starting to realize these are kind of eventually consisting KPIs,

© 2020 Software Engineering Daily 15

SED 979 Transcript

which is fine and actually works really well with time series data, because if you think about it,

time series data loads into a time bound partition and once it's loaded it doesn't change. If I
calculate the total sums, averages and whatnot, I’m looking to write that back as a summary

item. It's a lot cheaper to select that item than it is to compute that value every time somebody
needs it, and the reality is the data hasn't changed. So it works really well.

Now, the other type – Again, long answer. But the other type of analytics is that ad hoc analytics,

right? Kind of think like a market analyst is coming in and who knows what happened today, and
he summoned data on different dimensions. He’s grouping on different aggregations every day.

Those types of applications has definitely the realm of the relational database. Again,
predictable access patterns, predictable analytics.

I would say operational analytics, things that allow us to kind of compute using a CDC pipeline.

Those are great use cases for NoSQL. The third category of kind of the ad hoc analytics, I
guess you'd say ad hoc OLAP, that’s the relational database.

[00:35:50] JM: Since you are such a diehard NoSQL advocate and you have just made an

advocacy for SQL, we have to go a little bit deeper there. When you're talking about an
application where SQL actually is relevant, are you talking about a situation where you would

need to use a data warehousing system or are you saying that there is a conceivable scenario
where you would advocate somebody using a relational database like MySQL or Aurora?

[00:36:20] RH: Absolutely. I’d go MySQL or Aurora. For example, if you were to walk-in, if I was

considering application to migrate to NoSQL, first thing I would do is look at the server logs.
What are those queries look like? Do I see a log that says, “Hey, I run these 15 queries 20

million times a day.” That's probably a really good candidate for NoSQL. That workload might be
considered an OLTP workload. It might be considered an operational analytics workload. But

that's what the query log is going to look like. It's going to be a same set of queries running all
the time.

If I walk in there and I look at the query log and over the last week who the heck knows what's

happening. Every day is different, right? Then that's probably something I’d want to consider a
relational database for.

© 2020 Software Engineering Daily 16

SED 979 Transcript

Now, you mentioned data warehousing. That really starts to speak to what is the nature of the
workload. What is the scale of the data? When you start to kin of pick a database for a particular

workload, you really have three dimensions. You have what's the need for pattern flexibility?
That's really ad hoc queries. Do I understand my patterns, or are they all over the map? What’s

the need for scale? Do I need to have infinite scale of this system for all practical purposes and
throughput and storage?

The last definition, the last dimension is really efficiency. How fast do I need these results to

come back? That’s kind of like an triangle of data. I call it the pie theorem, right? You can pick
two. If I need pattern flexibility and infinite scale, then I'm really looking into your data

warehouse, your decision support system. This could be like a Red Shift. This might be
Amazon's Athena. But this is where I don't expect queries to come back quick and I need to run

these ad hoc queries on large datasets.

If I'm looking for infinite scale and efficiency, now I'm talking about NoSQL. I’m talking about
DynamoBM. I’m talking about predictable access patterns. If I need that pattern flexibility, that

ad hoc query engine and I need efficiency, then I’m really not looking to scale, then that's your
relational database. That's what we really got to understand here, is that relational database is

going to operate very rather efficiently when I need ad hoc queries, but only at a limited scale.
So this is where our tradeoffs get into – If we start to scale beyond with the relational database

can handle, then we’re looking at – We better be looking at a different type workload, which is
that data warehouse to that decision support system. That's going to run better on a Red Shift or

an Athena.

[00:38:51] JM: It sound like to boil down what you're saying, if you know the query pattern of
your application, NoSQL is a good candidate. If you have such a diverse range of different

queries that people are running, you’re not going to be able to pick partition keys and sort keys
and secondary indexes that are actually going to make sense. You’re just going to – If you try to

do that, you would have so much bloated database infrastructure that would just not make any
sense.

© 2020 Software Engineering Daily 17

SED 979 Transcript

So, you’d be spending way too much money. You’d be spending way too much time maintaining

this thing. It’d better off with just the simple – Maybe you could go through some normalization
process and get your data in a SQL database.

[00:39:32] RH: Correct. Absolutely. That's really what it comes down to. If I can predict the

access pattern, let's go NoSQL. If I can’t, then let’s try and get this thing in a relational footprint
somehow.

[00:39:41] JM: Yeah. I was watching a talk you gave and something that I guess I didn't realize

was that if you do know these access patterns, NoSQL can actually be more efficient to query
than a SQL database. Is that accurate? The query efficiency is actually going to be better?

[00:40:02] RH: Oh, yeah. No. Absolutely. I mean, if you think of a NoSQL database, what is a

NoSQL databases? It’s a distributed hash table, right? This is what we’re doing. We’re taking
that partition key. We’re creating [inaudible 00:40:11] hash index. When I need that thing, what

am I doing? I’m querying the hash index for that particular key value. That's a time constant
function, right? I mean, querying a hash table.

As a matter of fact, if you look at the relational database, if the relational database has no

indexes and –So let’s imagine a worst-case scenario, right? We’ve got a query, we’re joining two
tables in a relational database. There is no indexes on the sort dimensions or on the join

dimension. I’m going to have to go ahead and have a large results to that set from the outer
table. I’ve got a large number of rows on the inner table. Worst-case scenario, what does

database do? It creates a hash table. It basically does a sequential scan of the inner table and
creates a large hash table on the join dimension. Then it iterates through the results sent from

the outer table and it queries the hash table for each result to get the join. This is what it does.

If the relational database determines that the most efficient data structure to query when all
hope is lost and I have no indexes, then that most efficient data structure is a hash table, then it

seems like storing your data in a distributed hash table would be pretty ideal, right? The reason
why it does that is because it’s a time constant function to query a hash table.

© 2020 Software Engineering Daily 18

SED 979 Transcript

If you look at indexing, let’s say it’s an index query on a nested loop join in a relational

database, that’s an optimal scenario. Small results sent from the outer table. I’m indexed on the
join dimension. I'm going to go ahead and basically do – What is it? It’s an n log n time

complexity. That's the best I’m going to do in a relational join. I’ll take time constant over analog
at any time as far as big O.

[00:41:54] JM: I see you as an evangelist for NoSQL, and I don't know much about you other

than what I've seen from your talks. I can imagine you have gotten this way from too many
conversations with people who are saying, “Wait. You’re a full-time NoSQL person? NoSQL that

like non-web scale technology for like hackers and stuff? Why would you spend your career
doing that?”

I guess you can tell me whether or not that personality assessment is correct, but I'm also just

curious. Is this like a new discovery that we can actually make these NoSQL databases perform
well or have people just been confused the whole time?

[00:42:36] RH: No. People have been confused for a long time. I mean, including myself. As

matter of fact, I apologize to customers that I talked to ten years ago about SQL, because I told
people over the years to do some pretty crazy things.

What happened really in my evolution was about four years ago or so, five years ago, I was

tasked with the migration of Amazon's relational service infrastructure over to NoSQL. So we
had – What was it? I think we had it somewhere around 350 what we call tier 1 services. These

are revenue makers group for Amazon. If any one of those goes down, we’re losing money. All
of those had to go over to NoSQL. That was a mandate from the business. We had 12,000 tier 2

services, which basically run various aspects of everything.

When these go down, we’re not necessarily losing money immediately, but some of these things
are pretty critical. Most of those had to go as well, and my team was – They formed this team

called the Black Belt Team, and my team. I headed up that team and it was my job to make all
that stuff work. We went through the first year of this process. The team thought they were doing

a pretty good job. Then we started to move some of the bigger workloads across and we
realized that it's actually really easy to do things incorrectly at small scale and not know. You

© 2020 Software Engineering Daily 19

SED 979 Transcript

could really mess things up badly. As long as you’re not scaling it out, you won’t know how bad

it is.

Actually, I believe today strongly that the vast majority of NoSQL deployments out there are
exactly that. They think they're doing it right. They think they're having good results, but they just

haven't scaled yet. Once they do scale, they’re going to find out how badly their modeled. But
there is a way to make it work, and we had to do that. We had to go through the pain. We had to

figure all these things out, and we actually had to figure out that all data is relational. There's no
such thing as non-relational databases. Anyone who says that he really doesn’t understand the

way the database works – There’s not any data I’m aware of that’s non-relational. Everything
has relationships, and we need to be able to model relational data in a NoSQL database. We

just need to do it in a de-normalized manner, and you have to do it in a way that makes sense
for the application in order to make it work.

This is why I talk a lot about design patterns, best practices, when you're actually working with

your data in order to be able to optimize the model and drive the efficiency that we want from
the system, because if you’re just putting everything into a big giant blob and creating large

documents, the chances are you're actually spending more with NoSQL that you would be on
the relational database. I think that's where a lot of this opinion comes from, from people who’ve

done it incorrectly. Burn their fingers and they go back to the relational database instead of
actually figuring out a use the technology correctly.

[SPONSOR MESSAGE]

[00:45:29] JM: Being on-call is hard, but having the right tools for the job can make it easier.

When you wake up in the middle of the night to troubleshoot the database, you should be able
to have the database monitoring information right in front of you. When you're out to dinner and

your phone buzzes because your entire application is down, you should be able to easily find
out who pushed code most recently so that you can contact them and find out how to

troubleshoot the issue.

VictorOps is a collaborative incident response tool. VictorOps brings your monitoring data and
your collaboration tools into one place so that you can fix issues more quickly and reduce the

© 2020 Software Engineering Daily 20

SED 979 Transcript

pain of on-call. Go to victorops.com/sedaily and get a free t-shirt when you try out VictorOps. It's

not just any t-shirt. It's an on-call shirt. When you're on-call, your tool should make the
experience as good as possible, and these tools include a comfortable t-shirt. If you visit

victorops.com/sedaily and try out VictorOps, you can get that comfortable t-shirt.

VictorOps integrates with all of your services; Slack, Splunk, CloudWatch, DataDog, New Relic,
and overtime, VictorOps improves and delivers more value to you through machine learning. If

you want to hear about VictorOps works, you can listen to our episode with Chris Riley.
VictorOps is a collaborative incident response tool, and you could learn more about it as well as

get a free t-shirt when you check it out at victorops.com/sedaily.

Thanks for listening and thanks to VictorOps for being a sponsor.

[INTERVIEW CONTINUED]

[00:47:19] JM: I mean, there's a few reasons why there is so much confusion around this
database, like this questioning of the viability of NoSQL at a fundamental level. There're a lot of

reasons for that. I mean, databases are just hard and they’re complicated and most people don't
ever spend the time to go deep on them, because why would you? You're just using it for your

application. Who cares?

But I do wonder, are any of the things – You've talked about this, kind of this conversion of
yourself from a doubter of NoSQL or questionnaire of NoSQL to somebody who really sees the

value in it. Does this mirror how the DynamoDB team has evolved or was DynamoDB
architected in a way from day one that took all this intelligence into account? Was this just a

small quiet team that knew exactly how to make NoSQL databases work?

[00:48:13] RH: That would be great. No. No. As a matter of fact, I think that – Again, the first
use case that DynamDB was really built for and it did a really good job was a key value access

pattern, right? Give me this partition key. Give me all the data that's associated with this given
partition key, and that is a valid use case for NoSQL. That is the one where most people are

succeeding with their NoSQL deployments.

© 2020 Software Engineering Daily 21

SED 979 Transcript

Think like a session data, user session data for a web application. NoSQL database makes a

really good and easy data store for that, because you have some session ID. You’ve got a blob
of data associated with that session ID. Perfect key value access pattern. I always need all the

session data whenever the user logs in. It’s no problem.

But when you get into the more subtle aspects of NoSQL and the way that we work with the
data, what you start to realize is that these entities might consist of data that lives across in a

relational database many tables. But when I joined the data together across these tables, I’m
not necessarily pulling the data from every table that has something that's related to a given

user or a given entity. That would be extremely expensive.

So if I push all that data into a big giant document that describes this giant entity, then I have the
same inefficiency with my NoSQL system. Essentially, every time I access that blob, I'm getting

all of the data that's reading everything, yet most of the time when I access data that's
associated to something or related to something, what I really want is that one row. The one row

from that one table that maybe has just a couple of fields on it and I don't want to have to read a
12 megabyte document so that I can go get that data and then write that 12 megabyte

document back to the disk when I needed to update a single image or within that document.
That's what happens with most people who are using NoSQL today, which is what drives their

inefficiency. This is where you need to start to realize how do I model this relational data that
lives across multiple objects and so on and so forth. It annoys the old database.

[00:50:14] JM: Today, if I understand your work correctly, you help people restructure their

databases or move from their current data systems to a NoSQL or improve their NoSQL
schema stuff. You’re kind of helping companies that have an existing installation work more

efficiently. Is that right?

[00:50:35] RH: Yeah, generally. I’ll help them migrate from their relational databases. A lot of
companies are looking at the same problems that Amazon had, cost of relational databases,

extreme at scale, painful to manage. They're looking to get into NoSQL databases, especially
cloud native NoSQL where they don't have to manage the infrastructure. I do a lot of work with

our more strategic customers to help get them off of the relational databases and move them
into NoSQL or build new applications on NoSQL or do exactly what you just said, is help

© 2020 Software Engineering Daily 22

SED 979 Transcript

customers that are having pain with existing NoSQL and get them running well. Not only for

DynamoDB, but I work across stacks, MongoDB, Cassandra, you name it.

[00:51:15] JM: Presumably, someone with your knowledge could work on database design. You
could go work on the Aurora team. You could go work on the Dynamo team. What is it that

makes you like to do what you're doing as supposed to database design?

[00:51:30] RH: I do that actually. I report directly to the general manager of Dynamo DB. I’m
considered a global strategic asset. So they moved me on to strategic opportunities. I tend to

move the needle pretty quick in my engagements. A lot of that is I’m helped by the fact that the –
This this isn't black magic, right? It’s not like it takes a rocket – You don’t have to [inaudible

00:51:49] rocket science to understand how to do this modeling. It’s really cool. I love it,
because when I talk to the developers, you'll see this – I call it the light bulb moment, right? It’s

like when all of a sudden, “Oh, that's how it works.”

Then it's just like a normalized data model. You weren’t born understanding a parent-child
relationship or many-to-many relationship or how to create that join table. But once it was

explained to you, it was kind of like, “Oh! Yeah, of course. That works. I see how that works.” It's
the same thing with NoSQL. Once you kind of get it, it’s like, “Oh! You don't really need me

anymore.”

A lot of my engagements with these accounts are typically I’ll fly in for a day. I’ll do a two or
three hour design pattern session. I will do a maybe a day or two, a half day or a full day of

design reviews with their teams. I get them going on their data models. I'll see a couple of guys
hit that light bulb moment. Once I see that, I know I'm never going to have to go back. They’ll

typically ask me this, “How can we –Once we get our model, can we call you back and see if it's
good?”

I'd say about half the time they give me a call and I might help them optimize somewhat. But

generally speaking, these guys, they take it and run with it once they get it. It’s just like
developers are developers, right? Once they understand the concepts, they don’t need to be

handheld.

© 2020 Software Engineering Daily 23

SED 979 Transcript

[00:53:07] JM: It sounds pretty rewarding.

[00:53:08] RH: Yeah, it’s great. Of course, your question is why don’t I do database design? I

get to help the team prioritize features, define features. The NoSQL workbench for DynamoDB
was a tool that I helped bring to market, and there is several features within DynamoDB that I

work on as well from a product management perspective. I get the best of both worlds. I have
my foot on both sides of the fence.

[00:53:33] JM: That's awesome. To address another technical subject, technical pattern, you

alluded to this a little bit earlier I think with the discussion of change data capture. Every
transaction at a DynamoDB instance is written to a DynamoDB stream. What are some patterns

for taking advantage of that event stream?

[00:53:53] RH: Okay. Yeah, sure. Yeah, I use that a lot to do these summary metrics, summary
rollups, the kind of things that you call I guess operational analytics. Maybe I need to know a top

in, a last in or max-minimum, or account sums, averages, all kinds of different calculated metrics
so to speak. So as data changes on the table, what I’m going to do is I’m going to define a

lambda function, and one of the nice things about DynamoDB is that there're a lot of guaranteed
contracts here. There is a guaranteed contract between the table and the stream that every

write that happens on the table will appear on the DynamoDB stream. It’s going to get cashed
for 24 hours.

Then if you choose, you can use Lambda to process the stream. When you do that, you get a

guaranteed contract between Lambda and the stream and that it will fire on each and every item
at least once.

Generally speaking, it will fire only once, but there is a rare condition in which maybe the

container which the Lambda was executing went offline or crashed and might it have to re-fire.
In that case, we might actually process an item twice. When you code those Lambda functions,

code them to be item potent. But as long as you do that, then you’re guaranteed the processing
from the table to the stream, from the stream to the Lambda, to wherever it needs to go.

© 2020 Software Engineering Daily 24

SED 979 Transcript

Now as far as what are the patterns people use, they’ll write that data back into those top-level

metrics and create these summary items that people can then select using a time constant
query as supposed to calculate all that data by reading it and trying to calculate it. The other

thing they’ll do is replicate that data into other systems. So a couple of things DynamoDB
doesn't support. We don’t support geospatial indexes and we don't support full text indexes. I

have a lot of customers that will sync that data into Elasticsearch when they need to run those
types of queries and then they’ll query the Elasticsearch index for geospatial, for example, and

then query those items off the DynamoDB table using batch get items. That's a valid use case
for the stream.

Other often things people do with it, they’ll role that data up into S3, create so parquet files.

They can run Athena queries on that if they have ad hoc analytics that they need for daily or
scheduled reports. Think of it just kind of, again, change data capture. Anytime you need to

change the date on the system, maybe a trigger event, right?

There could – If anything on the table ever changes state from X to Y, I want to run this process
of notify as somebody or something like that. It’s really a neat kind of – I guess you’d say stored

procedure engine so to speak for DynamoDB that scales completely independently of the table,
which is another nice aspect of the system, because it's fully distributed. We don't have to worry

about stored procedures that are running in your Lambda functions impacting the availability of
the data on your table. These two things are completely disconnected and they scale

independently of each other, which is a really nice system to give you that kind of processing
pipeline.

[00:56:47] JM: We focused most the conversation on NoSQL a little bit on SQL and a little bit on

time series, a little bit on data warehousing. We haven’t really touched on the increased
popularity of these distributed queuing systems.

So the Kafka style, Kinesis style, append only, distributed log systems. This became quite a

powerhouse of a trend in data management, and I guess – I'm wondering, well, kind of two
questions that I’ll just kind of bundle into one because I know we need to wrap up. But do you

have any perspective for how that trend is going to change data infrastructure overall? As we
are writing all of these data that kind of looks like a change data capture, but we’re persisting it

© 2020 Software Engineering Daily 25

SED 979 Transcript

as a big distributed database and any other reflections on the broader data platform vision and

kind of predictions for the future as a whole.

[00:57:50] RH: Sure. It’s interesting you talked about it. So you’re really talking about kind of
stream data processing, and I do see that becoming much more of a, I guess, front and center

component of the modern application stack so to speak. It’s what drives machine learning,
right?

I mean, we called this stuff back in the day complex event processing and pattern recognition,

and this is kind of out on steroids, being able to take the data, shove it into Kinesis, fire hose,
roll it up into parquet files. Drop into S3. Run Athena queries over the top of it. Execute stream

processing, stream aggregations, time bound queries of the event stream so to speak. Find all
the events in this time window that match these conditions and create these reports and

aggregations off of it. These are interesting types of workflows. They kind of touch a little bit on
NoSQL. I guess a backend store some of the data, but I will see that this is like the leading edge

of the input into what really will eventually be the AIML engines, right?

I kind of look at AIML today and look at what they're doing. I say it's not so much different than
what we were doing 10 or 15 years ago. We just call it different things, right? Honestly, there’s

not a lot of difference here. But as far as future of database technology, I really see the –
Amazon is pushing a purpose built solution, portfolio solutions.

I think that we’ll start to – I totally agree with that philosophy, but I believe that those solutions

are going to be – It’s not so much that we want to use different types of databases for a single
service or a single app. I want to build services that are backed generally speaking by a single

database. But different services have different requirements, and different databases are going
to have different features that are going to satisfy those requirements.

I think NoSQL databases are generally speaking going to evolve into the cloud. I think legacy

technology providers like MongoDB and Cassandra, these technologies were built to deploy on-
prem. They’re going to need to evolve those solutions. MongoDB’s Atlas is really a solution

that’s built to host MongoDB instances, and that model just does not translate very well into
cloud deployments, right?

© 2020 Software Engineering Daily 26

SED 979 Transcript

I kind of put that into the same boxes of what we call lift and shift cloud deployments, where you
take a legacy enterprise data center, you re-create the exact same thing in a virtual space in the

cloud. You deploy a bunch of instances into it. The guys login. It looks just like it did when they
were deployed at the Equinox Data Center in Virginia, right? But that's not the best way to use

the cloud, right? You’re not going to gain the efficiency of cloud deployments until you embrace
cloud native technologies that give you the elasticity and the cost efficiency of massively

distributed shared backplane services like DynamoDB. We cannot scale elastically if I'm using
dedicated server instances.

So I really look for solutions coming from MongoDB, Cassandra as NoSQL providers. If they

want to live in the next generation of NoSQL, they need to develop cloud native solutions that
can compete with the DynamoDBs of the world. We’re kind of doing that to a certain extent,

right? We launched managed Cassandra service with Amazon just recently at Reinvent. That is
a Cassandra native scale out. If you think about how we built like Aurora Postgres or Aurora

MySQL, we've done the same thing now for NoSQL. We have the DynamoDB storage engine
and we have basically a full new stack that’s sharing components of the technology and

delivering cloud native scale for Cassandra using the native Cassandra distribution as a
frontend, and it's really powerful.

So this is what we’re going to start to see if these solution providers want to survive. Now, we’re

helping Cassandra with this, because it’s fully open source. We can’t help MongoDB, because
they have a close source license and they hold on to their code. So if they want to start working

with us on this, maybe we can do it, but they need to embrace the cloud native architecture if
they want to succeed.

[01:02:12] JM: I would love to see such an armistice. I have advocated for one, but that's a

subject for another show. Rick, thank you so much for coming on the show. It’s been really fun
talking to you.

[01:02:22] RH: No problem. Thank you very much for having me. I really appreciate it. Thanks

so much.

© 2020 Software Engineering Daily 27

SED 979 Transcript

[END OF INTERVIEW]

[01:02:35] JM: Embedded analytics is the way to add dashboards to your application. Are the

dashboards that are in your application engaging your end-users or are they falling flat?
According to analyst firm, Gartner, the UX of embedded analytics has a direct impact on how

end-users perceive your application. Fortunately, you don't have to be a UIUX designer to build
impressive dashboards and reports. Logi Analytics has come up with six steps that will

transform the user experience of your embedded analytics.

Logi Analytics is the leading development platform for embedded dashboards and reports, and
unlike other solutions, Logi gives you complete control to create your own unique analytics

experience. Visit logianalytics.com/sedaily to access six basic principles that will transform your
dashboards. That's logianalytics.com/sedaily. That L-O-G-Ianalytics.com/sedaily.

[END]

© 2020 Software Engineering Daily 28

