
SED 978 Transcript

EPISODE 978

[INTRODUCTION]

[00:00:00] JM: Amazon EC2 or Elastic Compute Cloud is a virtualized server product that

provides the user with scalable compute infrastructure. EC2 was created in 2006 as one of the
first three AWS services along with S3 and simple queuing service. Since then, EC2 has

provided the core server infrastructure for many of the companies that have been built on the
cloud.

A large scale virtualization product like EC2 requires its engineers to have a deep understanding

of scheduling and multitenancy. In previous shows, we’ve touched on subjects such as
hypervisors, the noisy neighbor problem, the cold start problem and other aspects of multitenant

infrastructure. To make EC2 successful, these issues must be continuously revisited and
resolved at different areas of the stack.

Dave Brown joined the EC2 team in 2007 and now leads the EC2 compute, networking and

load balancing teams as a vice president. Dave joins the show to discuss the history of EC2 and
the canonical problems of virtualized server infrastructure.

We are hiring a software engineer who can work across both mobile and web applications. This

role will include work on softwaredaily.com, our iOS app and our Android application. We’re
looking for someone who learns very quickly and can produce high-quality code at a fast pace.

We’re looking to move beyond the world of just being a software podcast into more of a platform
of information about software.

If you’re interested in working with us, send an email to jeff@softwareengineeringdaily.com.

We’re looking for somebody who is hungry and wants to learn quickly and wants to build lots of
software. If you are that person and you’re hungry, it doesn’t matter what your experience level

is, as long as you have built and shipped meaningful applications. Send me an email,
jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]

© 2020 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com

SED 978 Transcript

[00:02:04] JM: If you are a SaaS or software vendor looking to modernize your application
distribution to gain more enterprise adoption, checkout replicated.com. Replicated provides

tools to deliver your Kubernetes-based application to enterprise customers as a modern on-
prem private instance. That means your customers will be able to install and update your

application just about anywhere.

Bare metal servers in a cloud VPC, GovCloud and their own Kubernetes cluster, vSphere. This
is a secure way the your customers can use your application without ever having to send data

outside of their control. Instead of your customer sending their data to you, you send your
application to your customer.

Now, this might sound difficult and maybe you’re not used to it because you're a SaaS vendor.

You’re a software vendor, but Replicated promises that recent advancements from tools like
Kubernetes make it far easier than before, and the Replicated tools can help vendors

operationalize and scale this process.

The Replicated tools are already trusted by noteworthy customers like HashiCorp, CircleCI,
Sneak and many others. As a result, over 45 of the Fortune 100 already have an application

deployed via Replicated in their infrastructure. That’s a strong sign of adaption.

Go to replicated.com for a 30-day trial of the full Replicated platform. You can also listen to an
interview with Grant Miller, the CEO of Replicated, that we did a while ago.

Thank you to Replicated for being a sponsor of Software Engineering Daily, and you can check

it out for yourself at replicated.com and get a free 30-day trial.

[INTERVIEW]

[00:04:12] JM: Dave Brown, welcome to Software Engineering Daily.

[00:04:14] DB: Great, man! Thanks for having me on.

© 2020 Software Engineering Daily 2

SED 978 Transcript

[00:04:16] JM: You were one of the original laborers on EC2. EC2 was originally built on the

Zen hypervisor. What kinds of modifications did you have to make to Zen to fi t the spec for what
you wanted out of EC2?

[00:04:29] DB: Yeah. When we first started building EC2, one of the last thing we actually did

was really look at modifications of the hypervisor. There was a lot to do. How do I build a
distributed system that could actually run virtual machines at scale, take requests from

customers? Remember, back then there was nothing like it really on the internet that allowed
you to host machines and run service.

We kind of wanted to simplify things initially, and so we just took pretty much standard Zen and

used that. That was what we launched back in August of 2006. As we sort of over the next few
years, we started to make few modifications. So there were a number of things we did across

Zen. One of them was run the scheduler as sort of scheduling. The largest changes we did
there was for our T1 instance type when that came out, which is an instance type that allows

you to burst. Most of our instance types today give you – We kept the capacity. You get exactly
what you’ve asked for. Without T-series, you’re actually able to get – Be able to burst. So we did

a lot of changes to the Zen scheduler there.

The other area we’ve invested massively in Zen has been around how do we do security
updates and be able to perform updates to the hypervisor without actually impacting customer

workloads. For the most part when update Zen you would normally have to affect the customer
workload or reboot the machine. We’ve actually been able to improve Zen and make changes

that allows us to do those updates what you call live update where it never impacts the
customer workload at all.

Some of those things have now actually made their way upstream into the current version of

Zen. Obviously, we still have a large Zen fleet. Nitro is our new hypervisor. We still have a lot of
the Zen instances. Some of those things have made their way upstream now as well and we

work very closely with the Zen community. Initially, not much, but over the years, obviously,
we’ve changed quite a bit.

© 2020 Software Engineering Daily 3

SED 978 Transcript

[00:06:05] JM: How do you choose between making a change in Zen itself versus maybe

building some kind of new system or a module or a scheduler on top of Zen?

[00:06:15] DB: I suppose it just really comes down to what needs to be done to actually get the
job done. What are you going to do and what’s the most efficient thing to go and where to make

the change. With like the scheduler, there’s really no other place to do that. With the security
updates, no place to do that.

Ultimately what happened overtime is we’ve realized that we needed to move a lot of our

components to hardware, because we knew that we would get much better performance there
than continuing to run with inside a software hypervisor. That’s where we ultimately went and

built a lot of components outside of Zen and both on hypervisor, which ultimately became the
Nitro system.

[00:06:47] JM: What was the hardest engineering problem in starting to build hardware-based

hypervisors.

[00:06:54] DB: We got into it sort of relatively slowly. I mean, it’s an enormous project. So when
you think about taking the hypervisor for EC2 and replacing that, that’s a multiyear project and

it’s literally changing almost every single component both within the EC2 data plan and across
the EC2 control plane.

Where we started was in 2012. The first thing we wanted to address was to get better network

performance. Back then we were struggling with sort of tail latencies on network. So the network
latency itself wasn’t bad, which we get from a software hypervisor like Zen. The tail latencies

were a challenge for some customers. What I meant by that is you see jitter. So you’d have sort
of a baseline of latency, but then you’d get these spikes every now and then of latency that we

couldn’t find a way to solve. That just comes down the fact that our hypervisor was sharing the
same physical core, the same server as the customer workload. Anything that’s putting a load in

that core is going to affect other components and can give you jitter.

That’s where we decided back then was to offload the networking to a physical card. We
essentially got a card we could run Linux on, and we wrote our networking stack to run on that

© 2020 Software Engineering Daily 4

SED 978 Transcript

card, and that became part of the NICs. The network packets would come into the NIC, with the

whole entire networking, the processing that we need to do, which includes encapsulation of
those packets to make sure that it can work within a VPC, and we’d run our own software-

defined network there and there are a lot of stuff that has to happen before it gets to your
instance. That all happened on hardware.

We launched that with our C3 instance at Reinvent in 2012. So our first Reinvent actually. That

have massive improvement in network latencies. That Jitter we were speaking about just
completely disappeared. That was the sort of first sign that this hardware was the right path to

go.

Then from 2012 through to end of 2018 or 2017, sorry, which is when we launched our C5

instance. It was really this ongoing process of offload. We started with networking and we did
EBS, so offload for EBS storage. Then we did NVME drives, and so control for NVME drives

with our I3 instance. Then eventually we said, “You know what? This has moved everything.
Can we get to a place where the actual core that the customer is going to use, the processor

that we make 0% of their core.”

If you go back to what we had on Zen, about 20% of their core was dedicated to EC2
processing, and 80% given to the customer. Where we’re on today is 0% is dedicated to EC2

and 100% of their core is given to the customer. That’s why we’re able to do things like bare
metal. Bare metal is essentially running an EC2 instance without a hypervisor. We’re able to run

our entire Nitro system and then remove the hypervisor completely. So you literally have bare
metal access to the underlying hardware, which has been quite a big step forward.

It was a journey. I think one of the biggest challenges was just honestly committing to that

journey and the amount of time you think about it as a business and you literally want to rewrite
honestly every single component. It’s quite daunting. I’m very happy we did it. I think it’s given

us an incredible advantage, and our customers. It’s just an amazing performance obviously to
instances today.

[SPONSOR MESSAGE]

© 2020 Software Engineering Daily 5

SED 978 Transcript

[00:09:55] JM: Looking for a job is painful, and if you are in software and you have the skillset
needed to get a job in technology, it can sometimes seem very strange that it takes so long to

find a job that's a good fi t for you.

Vettery is an online hiring marketplace to connect highly-qualified workers with top companies.
Vettery keeps the quality of workers and companies on the platform high, because Vettery vets

both workers and companies access is exclusive and you can apply to find a job through Vetter
by going to vetter.com/sedaily. That's V-E-T-T-E-R-Y.com/sedaily.

Once you’re accepted to Vettery, you have access to a modern hiring process. You can set

preferences for location, experience level, salary requirements and other parameters so that
you only get job opportunities that appeal to you.

No more of those recruiters sending you blind messages that say they are looking for a Java

rockstar with 35 years of experience who's willing to relocate to Antarctica. We all know that
there is a better way to find a job. So check out vettery.com/sedaily and get a $300 sign-up

bonus if you accept a job through Vettery.

Vettery is changing the way people get hired and the way that people hire. So check
outvettery.com/sedaily and get a $300 at bonus if you accept a job through Vettery. That's V-E-

T-T-E-R-Y.com/sedaily.

Thank you to Vettery for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:11:45] JM: The engineering challenge is that you’ve seen evolve with the popularization of
containers. How closely have those engineering challenges mirrored what you saw prior to that

with the maturity of virtualization?

© 2020 Software Engineering Daily 6

SED 978 Transcript

[00:12:06] DB: I’m not sure I would draw many parallels there. I think virtualization back in the

day, I think everybody just accepted that it wasn’t going to be as performant as running on
actual hardware. There was a big challenge there.

I don’t really think that’s translated a lot into containers. I think where we struggled more of how

to think a little differently about containers and obviously the serverless space as well is the rate
of change, right? If you think about where we started when we first started to virtualize, you

would maybe launch on instance on VMware or some other virtualization system and you’d run
that instance with some period of time.

When EC2 came around, you would launch an instance and run for a period of time. You would

shut it down. Your instances became a lot more immutable. I think in the container space, when
you get to the serverless space, things are just becoming more and more immutable. You

launch them, you run them for a few seconds because you need to have a task and you shut
them down as well.

That’s where we’ve had to think a lot in terms of the hypervisor and how much time does it take

us to actually boot an instance, for example. If that takes too long, you can’t run these sort of
very ephemeral workloads that you’d want to be running with containers and serverless

transactions. Hypervisors changed a lot to become a lot faster to be able to support container
workloads.

But then also things like Firecracker, which is a new hypervisor we built specifically for

serverless and container workloads is sort of built on top of Nitro hypervisor but allows you to
launch some machine in literally a few hundred milliseconds. That’s allowed us to even support

more of these ephemeral workloads. I think you’re going to continue to see that workloads are
going to be more ephemeral where you don’t have a machine learning until you absolutely need

to sort it up, make use of it and shut it down again, and that’s really sort of where the container
space is going as well.

[00:13:46] JM: The cold start, are you basically saying that the cold start problem was not as

much of a big deal when people were more focused on virtualized server infrastructure because
those VMs were longer lived than the containers?

© 2020 Software Engineering Daily 7

SED 978 Transcript

[00:14:05] DB: Absolutely. I think back in the day, VMs did run for a longer period of time.
People tended to launch a machine and make use of it. They weren’t thinking about this idea of

launching machines and shutting them down when you didn’t need them anymore.

I actually remember the first time I saw a customer really do that at scale I believe was back in
2008. I remember it was a Thursday and there was this company called Animoto. Do you

remember them? I think it’s called Amimoto, Animoto, and they had this thing where you could
basically – I think it was you point them at your Facebook stream and they would generate like a

video of – If you’re to music with crazy graphics and interface. It’s this cool little gimmick.

On a Thursday afternoon, because I remember, they started doing this thing where they would
launch a new instance for every movie that somebody subscribed too and they went viral. We

certainly saw this massive spike of launches on EC2, and we kept it up, but I won’t lie. I’m not
lying when I say there were a number of us behind-the-scenes making sure that then early EC2

wasn’t going to fall over with a sudden increase in load.

[00:15:01] JM: They’re spinning up a new VM for each video?

[00:15:04] DB: Yeah, we’ll spin up a new VM for each video, which I think we later found out it
was actually a bug in their code, but that was the first time that we actually saw this idea going

from literally almost very little capacity to thousands and thousands of machines suddenly
starting up. That was the first time we saw it. Obviously we’ve seen VMs load for shorter

periods of time. Then when you get to serverless and the cold start thing, you want those
Lambda functions to start up instantaneously.

We’ve been working a lot as EC2 with the Lambda team, the secret, we shouldn’t tell anyone,

but serverless actually has a server behind-the-scenes. That server for Lambda is EC2. We’ve
been working with them to solve the cold start problem and there’s really two things we had to

do. One was give them a hypervisor that has a very, very fast start time. That was Firecracker,
which we actually ended up open sourcing as well.

© 2020 Software Engineering Daily 8

SED 978 Transcript

You can go look at Firecracker out there, and it’s really designed to be incredibly lightweight.

Give you the same security boundaries that we have with the Nitro VM, which is something
we’ve never compromised on. We’ll never compromise the boundary between customers VMs,

right? We never want to take any changes there, but can start up a VM in a couple of hundred
milliseconds, 100, 200 milliseconds a time. That solves one part of the problem of Lambda.

The other part of the problem was for customers using VPC with Lambda, how quickly can I

instantiate the networking resources? How long does it take to attach an ENI, for example?
We’ve done some work with the Lambda team to get that down to a couple of milliseconds as

well. I believe Lambda is actually – They’ve announced and they’ve rolled out to most of their
fleet sort of a solution to cold start. Lambda functions are now starting a lot faster and

supporting those very ephemeral workloads again, which is where the world is going.

[00:16:37] JM: How does the Firecracker-based vision for serverless infrastructure compare to
– I don’t know if you’re familiar with this stuff, but like the Knative suite of projects from the

Kubernetes community?

[00:16:52] DB: Yeah. I don’t know too much about Knative, but we have been working a lot with
a number of those vendors. What happened with Firecracker is we built Firecracker and we did

use a number of those tools. Not Knative. The name of the other one, I’m losing it right now. I’ll
remember shortly. But we ended up building it and launching it and it was also at Reinvent last

year. It was the number one GitHut project for two days. It’s pretty insane. We couldn’t believe it.
It just showed the desire and the community with something in that space, right? We’ve been

very excited to contribute there from an open source point of view.

My Firecracker team, which is actually based in Bucharest, Romania, I have an amazing team
up there that built Firecracker. They’ve been very engaged in the community. So a lot of those

teams are working together. I’m not 100% sure if Knative is involved. But then we’ve also had
another project called rust-vmm, which is sort of building a VM management system on Rust,

which obviously everybody loves Rust at the moment. There’s a lot of engagement there.

Again, with these serverless project, what’s been really great is sort of the whole
competitiveness kind of goes out the window and it’s all community coming together and saying,

© 2020 Software Engineering Daily 9

SED 978 Transcript

“Hey, what can we actually build?” Whether it’s ourselves as the cloud provider, any of the other

cloud providers or any of the other chip manufacturers and that sorts of things all coming
together and working on that project. Early days on all of that stuff and we’re excited to see

where it goes.

[00:18:10] JM: Does Firecracker mean hard dependencies on specific hardware?

[00:18:15] DB: I don’t believe so. Obviously, I think at the moment – I believe we’ve just
finished one [inaudible 00:18:18]. It’s an x86 processor and it’s obviously a hypervisor set as run

on bare metal. You can run it on – We have a lot of customers that run it on EC2 bare metal
today. But there are also customers that run it themselves on any other hardware that they’d like

to use. We’ve had people even look at using it in like small devices, embedded devices and
things like that. It is very, very lightweight. If you need sort of virtualized environment, it’s

something you can definitely look at.

[00:18:44] JM: The workflow for using Firecracker is you spin it up on an EC2 instance and
then you spin up your own serverless infrastructure on top of it or are you spinning up AWS

Lambdas on top of it? Can you help me understand what the use case is?

[00:19:01] DB: The way that it works with Lambda is Lambda uses Firecracker, but you don’t
actually see Firecracker when Lambda uses that. Your interface is talking to Lambda and

starting up a – Creating a function and then executing the function.

What Lambda is doing behind-the-scenes is they’re taking a bare metal EC2 instance and
they’re installing Firecracker on to that instance and then they manage it in Firecracker as if it

was a VM. Much the same way you would have done with Zen, they’re creating their necessary
VM instances or containers, whatever you want to call them, [inaudible 00:19:30], within

Firecracker.

So, they could put thousands of machines, servers instances on that physical machine, and
each one of those will be tied to a customer function. When the function executes, it’s running

inside that Firecracker VM. That’s how you would manage it. If you run Firecracker yourself, you
would download it from GitHub and then install on the machine as a hypervisor essentially, and

© 2020 Software Engineering Daily 10

SED 978 Transcript

that’s the same way as Zen does, and then interact with the Firecracker as a set of APIs that

allow you to create images and instances and use it as a hypervisor.

[00:19:59] JM: Okay. Firecracker is a hypervisor.

[00:20:02] DB: Yeah.

[00:20:03] JM: Okay. Got it. What went into the design that allowed you to spin up images
faster and reduce that cold start problem? What were you able to strip away or what kind of

performance areas were you able to improve?

[00:20:17] DB: Yeah. In the case of Firecracker, it’s making incredibly lightweight, and in
reducing the number of devices that you actually emulate. One of the challenges is –

[00:20:25] JM: No USB.

[00:20:26] DB: Probably no USB. There’s certainly no printer. What happens to a lot of these

hypervisors is they emulate pretty much early devices being out there in the past, right? If you
look at what’s happening with Zen and QMU, it’s just a massive lot of time in the emulation. A

number of other optimizations as well, I’ve done all the details on all of them, but it’s really
stripping that away and getting it to boot. Obviously, making sure that the image you’re booting

can also be started out very, very quickly. Thinking about the operating system and what are you
bringing into memory there?

The other side of it was just making sure that the network performs a lot faster and at the state

of VPCs being pushed out a lot faster. That got us down into the sub-second time range for cold
start times on Amber.

[00:21:04] JM: That seems like a really good approach to the cold start. There’s also an

approach I’ve heard some people talk about where you preload or pre-warm a bunch of
containers with like Node.js or with Python on it so that as soon as a workload comes in that

requires Python on a container, you can just schedule that workload on to the container that’s

© 2020 Software Engineering Daily 11

SED 978 Transcript

pre-fi lled with Python, and boom! You run it really quickly. Do you think that’s also viable

approach to reducing the cold start?

[00:21:38] DB: It’s certainly a process we’ve looked at, and we’ve definitely done pre-warming
in other parts of EC2 and AWS, right? There are a number of services that will pre-warm servers

and use them. It depends a lot on – There are a couple of things you want to think about there.
One is the cost. How low does your pre-warm pull need to be? Because you’re essentially

keeping capacity around that you may use at some point in the future.

You want to have enough capacity, because when you don’t have capacity in your pre-warm
pool, you end up with a slow list start time if you’re using that model. But if you have too much

capacity in your pre-warm tool, you’re spending money that you shouldn’t be spending. That’s
one of the things.

The other one is from a security point of view. Where is the security boundary? When you have

a pre-warm pull, there’s going to be nothing in that pre-warm pull that you wouldn’t want to give
to any random customer. When you spin that machine up, is it ready for that customer or is it a

pre-warm pull and then allocated to a customer?

You’re also going to think about with your account boundaries. You can’t move a machine
between accounts. So if you do have a service where each uses actually on a different AWS

account, it doesn’t work in that arena. There are a number of things – Many services have used
pre-warming. One of the teams that’s in my organization is the Elastic Load Balancing team as

well, and they had used pre-warming. We’ve used pre-warming on Elastic Load Balancing for
some of our older load balancers where it also runs on EC2, and when we need to have a new

machine or a new node for the load balancer, we’re able to pull it from our pre-warm pull, and
then you really avoid the boot time. You’re able to get another machine into a service a lot

faster. There’s definitely a place where we’ve used that very effectively. I’m sure our customers
do it as well.

[SPONSOR MESSAGE]

© 2020 Software Engineering Daily 12

SED 978 Transcript

[00:23:12] JM: As businesses become more integrated with their software than ever before, it

has become possible to understand the business more clearly through monitoring, logging and
advanced data visibility. Sumo Logic is a continuous intelligence platform that builds tools for

operations, security and cloud native infrastructure. The company has studied thousands of
businesses to get an understanding of modern continuous intelligence and then compile that

information into the continuous intelligence report, which is available at
softwareengineeringdaily.com/sumologic.

The Sumo Logic continuous intelligence report contains statistics about the modern world of

infrastructure. Here are some statistics I found particularly useful; 64% of the businesses in the
survey were entirely on Amazon Web Services, which was vastly more than any other cloud

provider, or multi-cloud, or on-prem deployment. That’s a lot of infrastructure on AWS.

Another factoid I found was that a typical enterprise uses 15 AWS services, and one in three
enterprises uses AWS Lambda. It appears serverless is catching on. There are lots of other

fascinating statistics in the continuous intelligence report, including information on database
adaption, Kubernetes and web server popularity.

Go to softwareengineeringdaily.com/sumologic and download the continuous intelligence report

today. Thank you to Sumo Logic for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:25:02] JM: Inside of Amazon, you, to some extent, get a preview of what the rest of the
world is going to be seeing in a decade. You see this in internal marketplace things that people

are building as well as, of course, in AWS, services that are in beta or services that are in alpha,
or whatever, pre-alpha. I know you can’t give too much secret sauce. Can you give me some

like broad predictions or areas, things that I should keep my eye on that in 10 years are going to
seem as inevitable as serverless or an edge computing?

[00:25:38] DB: Yeah, 10 years is a long time.

[00:25:40] JM: Okay, 5 years. Whatever your prediction horizon is.

© 2020 Software Engineering Daily 13

SED 978 Transcript

[00:25:41] DB: Three months. Is three months okay? I’m not sure.

[00:25:43] JM: Sure.

[00:25:45] DB: We could look at it. I mean, one of the things to think about is just how much
have things changed in the last 10 years. EC2 started 14 years ago. When I joined the EC2

team, we had no idea what this thing would be. Where it is today and where the cloud is going
today, I think things have changed a lot so. Things change an enormous amount in 10 years.

I think some of the interesting things, we already spoke a little bit about the very ephemeral

workloads, right? Things, you’re going to be spinning up machines and using them for shorter
periods of time. Serverless obviously is going to be a massive movement in that direction. I think

some of the other things we’re excited about is we launched our own processor at Reinvent this
year. Last year we put an Arm processor out there that was what we called our AWS Graviton

Processor. We had the A1 instance and was really just to test in the market and putting
something out there and saying, “Hey, here’s an Arm processor. You just see what you do with

it.”

Arm has been very big in the mobile space but hasn’t really had a big play in the server space.
We were very, very happy with what happened with Arm, because it provides you – The initial

one provided you with 45% cheaper price performance for your workloads. A workload that ran
on an [inaudible 00:26:47] processor, if you could put it to Arm, you could theoretically say 45%,

which is a massive saving.

What we announced this week at Reinvent is the Graviton 2 Processor, and we’ve actually been
working on this for a number of years now already, and we’re very excited about the

performance we’re seeing. It’s our very first 6 generation instance type and giving us
significantly better performance than what you can get on current x86 processors. It’s just a leap

forward in processor technology.

If we think about where we’re going to be going over the next couple of years, it’s really up to
the community now, up to our customers and engineers and developers and software engineers

© 2020 Software Engineering Daily 14

SED 978 Transcript

to think about how are they going to be – Are they going to be putting to Arm? Is Arm really

going to become a very viable server chip? I think we’ve put one out there now that is really a
leading chip in many ways, so it’ll be interesting to see what engineers do with that.

I think obviously more and more stuff is going to continue and move to the cloud. I think one of

the big challenges we’re having now that I think I’m thinking a lot over the next couple of years
and be very interesting to see is latency and networking. What’s really happened is if you think

about how far we’ve come over the last 10 years, everything basically is improved to levels that
removes a lot of blocker for our workloads. CPUs have now got into a point where they’re very

seldom the blocker for any sort of workload anymore. [inaudible 00:28:05] died about 4, 5 years
ago. So we’re really at an amazing place from a CPU point of view.

Memories made an incredible progress. NVME drives and SSDs have just made an outstanding

performance. The one thing that I think is limiting some workloads and what I’m starting to see
is this need for lower latency. The world is now more mobile. A lot of the stuff we’re consuming

from our phones or the LTE networks. You think about autonomous vehicles, you think about
where IoT is going, you think about robotics and what they’re doing in data centers and machine

learning vision, you’ve got things happening at a very high speed where you need to make
decisions and do inference and latency is becoming a problem.

What it comes down to is the speed of light. We’re still working on solving that problem of can

we make it go any faster? It’s a joke. I don’t think anybody can. That’s where you’ve seen us do
things like, “Well, what do we have to do to solve this problem of latency?” Well, we’ve got to

move our workload closer to our users and closer the way our customers use us all.

We spoke about a number of projects this week at Reinvent as well. One of them being
Outpost, which allows us to bring our hardware into your data center. We also spoke about local

zones, which is this idea of being able to put an AWS availability zone close to our user base.
I’m excited to be launching our first one there in Los Angeles, which is actually going to be

supporting the movie industry.

What they’re doing there is filming movies or TV shows on a daily basis. The content, which is
[inaudible 00:29:24] shot much higher resolution than 4K. That’s uploaded into AWS and then

© 2020 Software Engineering Daily 15

SED 978 Transcript

actually have designers and editors and animation artists working on it on EC2, on our G4

instance, through the night to make sure that it’s ready for the next day and then the next. This
crazy high velocity production process. So we’re putting – Latency there is very important,

because you can’t do animation without sub-ten millisecond latency. Our region in Los Angeles
has given that industry access to very low latency compute.

I think one of the things that’s going to have the biggest impact is 5G, and 5G I think is not just

the next version of 4G. It has a number of different networking features, but two of them is
obviously much, much, much higher throughput. When you get a couple of tens of megabits

from your current 4G connection, you could theoretically get up to gigabytes, 1 to 5 gigabytes
from a 5G connection from your mobile device, which is just crazy. Then the latencies is going to

go down to single digit milliseconds. That completely changes what we can do from an
engineering point of view.

If I’m suddenly able to have a mobile device that can get that sort of latency, suddenly I can

probably really do games that are hosted server-side and have a really sort of client-side
experience with that, right? Autonomous vehicles can now upload data. Potentially even make

decisions whether I should brake or not, but decisions without a remote to that vehicle maybe
pause for Audi and things like that.

Driving factories for example, could people get rid of Wi-Fi completely and really just move to

5G? So it just becomes this sort of ubiquitous connectivity that’s going to be everywhere. I don’t
think we know what low latency is going to give us in terms of software applications. I don’t think

we knew what 4G was going to give us and what the iPhones and Android phones are going to
give us and how much they’re going to change over the last 10 years.

I think that’s sort of the thing that we’re really watching, is getting latency down, and it’s going to

drive a whole lot of new workloads, and I think we’re all going to be very, very hopefully
pleasantly surprised about how that changes our lives and what new software is going to be out

there.

[00:31:18] JM: Dave Brown, thanks for coming on the show.

© 2020 Software Engineering Daily 16

SED 978 Transcript

[00:31:19] DB: Fantastic. Thank you very much.

[END OF INTERVIEW]

[00:31:30] JM: This podcast is brought to you by PagerDuty. You've probably heard of

PagerDuty. Teams trust PagerDuty to help them deliver high-quality digital experiences to their
customers. With PagerDuty, teams spend less time reacting to incidents and more time building

software. Over 12,000 businesses rely on PagerDuty to identify issues and opportunities in real-
time and bring together the right people to fix problems faster and prevent those problems from

happening again.

PagerDuty helps your company's digital operations are run more smoothly. PagerDuty helps you
intelligently pinpoint issues like outages as well as capitalize on opportunities empowering

teams to take the right real-time action. To see how companies like GE, Vodafone, Box and
American Eagle rely on PagerDuty to continuously improve their digital operations, visit

pagerduty.com.

I'm really happy to have Pager Duty as a sponsor. I first heard about them on a podcast
probably more than five years ago. So it's quite satisfying to have them on Software

Engineering Daily as a sponsor. I've been hearing about their product for many years, and I
hope you check it out pagerduty.com.

[END]

© 2020 Software Engineering Daily 17

