SED 964 Transcript

EPISODE 964

[INTRODUCTION]

[00:00:00] JM: Kubernetes has created a widespread system for deploying and managing
infrastructure. As Kubernetes has been increasingly adapted, companies are thinking about how
to leverage that common layer of infrastructure. With the common infrastructure abstraction of
Kubernetes, it becomes easier to adopt other abstractions that are uniform across the entire

company, and this has created a market opportunity for products such as a service mesh.

A service mesh consists of sidecar containers that get deployed alongside services in a
distributed system. These sidecar containers often get deployed in the same pod as the other
Kubernetes containers. A pod is something that contains multiple containers or just one
container. Each sidecar container is used as a proxy for all the communications that go through
the service that is deployed with. This consistent proxying layer provides each service with
benefits such as security, and routing, and telemetry, and policy management, and we've done

many previous shows about service mesh.

Istio is a service mesh that was created and open sourced by Google. Istio is built around the
Envoy service proxy sidecar and a control plane that manages the Envoy sidecars. Since the
launch of Istio, some of the Google employees who were working on Istio have started Tetrate,

a company with the goal of commercializing Istio into a product that enterprises will pay for.

The market demand for service mesh has been proven, but there are many competitors to
Tetrate. Istio is open source and can be commercialized by other companies as well as cloud
providers such as Google and AWS. Linkerd is a service mesh built by the company Buoyant,
which was the first company to focus exclusively on this space. There are other companies that
are expanding existing products into becoming a service mesh. These are companies like Kong,
and NGINX, and HashiCorp.

Zach Butcher is a founding engineer with Tetrate and he joins the show to discuss the market

for service mesh and the plan for Tetrate to build a business around lIstio.

© 2019 Software Engineering Daily 1

SED 964 Transcript

Quick announcement; we are hiring for two roles, a content writer and an operations lead. If you
like to write about software engineering and you have some familiarity with software
engineering, maybe you’re a computer science student, maybe you're an experienced engineer,
send me an email, jeff@softwareengineeringdaily.com, and also the operations lead role is for
somebody who's interested in learning more about how to run a business, how to run a podcast
and who wants to help us improve our operations. You can also send me an email if you're just

in that, jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]

[00:02:54] JM: | love software architecture. Software architecture is the high-level perspective
of how to build software systems. Much of Software Engineering Daily is about software
architecture, and if you're interested in software architecture, there's no better place to go to
discuss and learn about software architecture than the O'Reilly Software Architecture
Conference, which is coming to New York February 23rd through 26t of 2020.

If you are interested in software architecture, you can go to oreillysacon.com/sedaily. That link is
in the show notes, and you can get 20% off your ticket to the software architecture conference.
The O'Reilly Software Architecture Conference is a great place to learn about the high-level
perspectives and the implementation details of microservices, cloud computing, serverless and

also systems like machine learning and analytics.

If you've been listening to Software Engineering Daily for a while, you know that these systems
are hard to build and they take engineering details at both the high-level and at the low-level.
Whether you're a seasoned architect or an engineer that is just curious about software
architecture and maybe you want to become a software architect, you can check out the
O'Reilly Software Architecture Conference at oreillysacon.com/sedaily. Use the discount code
SE20 and get 20% off your ticket.

There are lots of reasons to go to the software architecture conference. There's networking
opportunities. There are plenty of talks and training opportunities, and you can get 20% off by
going to oreillysacon.com/sedaily and entering discount code SE20. I've been going to O'Reilly

conferences for years and | don't see myself stopping anytime soon, because they're just a

© 2019 Software Engineering Daily 2

mailto:jeff@softwareengineeringdaily.com
mailto:jeff@softwareengineeringdaily.com

SED 964 Transcript

great way to learn and meet people. So check it out, and thanks to O'Reilly for being a longtime

sponsor of Software Engineering Daily.

[INTERVIEW]

[00:05:12] JM: Zach Butcher, welcome to Software Engineering Daily.

[00:05:14] ZB: Thank you. Thanks for having me. I'm excited to be here.

[00:05:16] JM: | want to start with the subject of microservices, because we’re at KubeCon, and
| know that most people here believe that microservices is something that everyone should work
towards having. The idea of putting a lot of effort into building a microservices architecture, this
has a cost. So if you put a bunch of effort into re-platforming your entire architecture into
Kubernetes, in a CI/CD workflow that's kind of complicated and you adapt a service smash. If
you want to do all that —

[00:05:52] ZB: It’s a lot of complexity. Yeah.

[00:05:54] JM: Not only is lot of complexity. It's an opportunity cost, because you're giving up
building business logic, and customers may or may not want a microservices platform. They
probably don't even care. All they want is more functionality, and re-platforming doesn't really
help with that. Why should we spend so much time or who should be spending time building our

a microservices architecture?

[00:06:19] ZB: Yeah. So just like any technology, you don't want to go — In our industry, as
software engineers, we really like to grab the new shiny toys, because they’re new and shiny

and exciting, right? It doesn't really work for a business, right?

So as we look at what actually matters with respect to this decision, am | going to take my
monolithic or whatever my current architecture is that I've been running that | hopefully am
pretty comfortable running and fundamentally change it and add in probably a lot of complexity.

It's a really tough thing to weigh.

© 2019 Software Engineering Daily 3

SED 964 Transcript

By and large, the overriding factor that we've seen from our customers and just talking across
the industry is this kind of idea of development agility, right? We want to go faster is kind of the
calling card, and the idea is this; my customers want features. They don't care how I'm running
my infrastructure. They don't care what | — But they want to do more things in my software
today. So | try and get my developers to do more things in the software today, but they wind up
because of the way that we’ve decided to deploy our software is like one bundled unit together
and maybe we haven't invested in things like high-level traffic control. Maybe we’re only doing —
We don't have fine-grained control be able to do things like canaries or gradually deploy new

traffic.

So changes are kind of risky, because this big blob that 10 or 20 different teams have
contributed to, this big monolithic thing, has to go out. | know | made some changes from my
part of it. I'm sure some of the other teams made changes to their parts, but hopefully it all plays
well. So this becomes a very risky thing, right? Really, the result is some ossification, right? |
can't — Because it's risky to change and its — My customers want new features, but they want to

be able to use the product first.

So if I'm having outages, if I'm not able to serve my products because | am updating, and
updates are risky and they go bad, then I'm not in a good state. So | have to be able to de-risk
change. | need to be able to decouple my teams from each other so that they can move and
operate independently, right? Not everybody needs to change at the same rate. But some
pieces of the product probably need to undergo a very rapid rate of change, and you don't want
them to be gated on everybody else, and you don't want to force everybody else to go up-tempo

because of the one team.

So this is really where the idea of splitting these components apart at a deployment level,
literally taking the code and splitting it into separate pieces that run separately and that
communicate with each other, and because you’re splitting them apart now — So that is the
fundamental challenge, right? We need to split them apart so that teams can go faster, and that
introduces effectively all of the complexity that KubeCon here we’re talking about Istio, the
project we'll talk about in a minute that | work on that helps to address the fact that suddenly
now because I've decoupled my programs to decouple my teams, the network is a fundamental

part of my application now.

© 2019 Software Engineering Daily 4

SED 964 Transcript

[00:09:22] JM: So this is a nice story. I've definitely heard it before, and | know it has been
applied successfully at Google, at Netflix. Maybe at Uber, although | think Uber has — | spoke to
an engineer there who is a little bit remorseful about the microservices decision. | mean, |
honestly don't know really what the alternative is to microservices architecture. | mean, it’s
maybe like being comfortable with having five or six giant monoliths and then other smaller

services.

[00:09:53] ZB: Yeah, the reality is | think it's some mix. So Larry Peterson is the guy that is the
CTO of the Open Networking Foundation, and they’re responsible for a bunch of telecom
networking standards, but they also played a really big part, for example, in the development of

software defined networking, and that is one of the key enabling technologies of cloud, really.

He, | think, actually gets a kind of a little bit of what you're talking about in a very succinct way,
which is he talks about we disaggregate to innovate, but we have to re-aggregate to
operationalize. This starts to get some of this kind of core idea of why do we have to do this

process. We see this repeated across the industry.

As software engineers, we complain about the cyclic nature of our industry, right? We complain
that Kafka looks a lot like service buses and we learn that enterprise service buses are bad. So
why are we back into this architecture again? The answer is that we’re not really back into the
same architecture. We’ve learn and made changes along the way. We go through this cycle
where we have a system. We really only know how to operate holistic systems. That's why

monoliths are so nice, because they’re one piece. So they’re easier to understand and operate.

When | disaggregate it, when | break it apart, | can change it more rapidly, but it's so hard to
operate. We're really, really bad. When | say we, | mean like across the board, not just talking
about microservices, but in general in software engineering and, we’re not as good at dealing
with disaggregated pieces than we are with holes, right? We’re used to lumping things together

so that we can mentally treat them in one way.

So this is kind of some of that fundamental tension, | think, that we see in our software

development is this cycle of, “Well, we want to microservices and we had to do that, because

© 2019 Software Engineering Daily 5

SED 964 Transcript

we had to innovate, because we had to disaggregate so that individual pieces could move
faster,” but now it hurts. So you talk to a software engineer who goes, “I don't like the service

mesh. | don’t like this micro service idea, because the operational tools aren’t there.”

We can barely debug concurrent programs on one computer, and now you're saying we’re going
to split it apart in different computers and they’re going to communicate over the network to do
this stuff. It's a real tooling problem in part, and some of that acute pain at least | think that we

hear about in — That’s that knee-jerk reaction to the architecture, right?

[00:12:09] JM: What I'm trying to understand is how successful has this microservices mass
migration been? Because | feel like there's some survivorship bias. We come to KubeCon and
we see five or six talks about Lyft's journey to microservices, or ZenDesk, breaking up our
monolith into the microservices till we have 99% of our services each occupying 1% of the
overall infrastructure and we've got it evenly distributed. Perfectly load balanced. You never
hear the stories of we spent 2-1/2 years trying to make this thing work and ended up going back
to COBOL.

[00:12:56] ZB: Yeah, totally. | can say from like the perspective of the products that Tetrate is
building and shipping, I'm building a monolithic binary right now, because it's easier to operate,
right? Again, the operational side of it is easier. | haven't hit the pain points that would
necessitate needing to split up into many different binaries yet, right? My teams are still able to
ship features independently of each other at a rate that is fast enough that we feel comfortable.

Things like that. But from an operational perspective, it's just easier.

| think that that's the case for a lot of people, right? | really do — The by and large use case for
microservices | think really is a small number of companies, a small — It's those ones that are
larger. Again, it's ones that are large enough to have the organizational pain of how do we get
these teams to operate together, right? It's really not a technical problem. Microservices do not
solve any — They do not really solve any technical problem that you have, and instead they
introduce a whole lot of them, but they solve organizational problems that you have. That's why

people are moving to them. The organizational side of it, right?

© 2019 Software Engineering Daily 6

SED 964 Transcript

The technical side is the cost that we have to overcome to enable the organization, right?
There're a lot of ideas around — You led off with what are some different architectures, for

example, that people are looking at, right? This is where there is a lot of work in this space.

So we were talking before we started recording, we mentioned just a little bit about Knative and
like open PaaS, for example. So the whole serverless paradigm is one reaction to this pain,
right? It goes maybe even more extreme, and we’re going to take our units of code that we cut
up and we’re going to cut them up even smaller. That's not necessarily required for a serverless.

So that's one reaction that people are having.

Another reaction is the return of the monolith, right? Again, | view this as part of that cycle of
disaggregation and re-aggregation, right? It's not necessarily a bad thing that we go back to a
monolithic deployment if we can maintain the advantage of having decoupled development
teams. It turns out that there’s, for example, sets of techniques that we can use to do this, right?
So | can have everybody develop independent services, but maybe stitch them together into a

one binary in the main and make it communicate locally rather than over a network, right?

Now | have some of the operational benefits of having a monolithic deployment, but | can
maybe get — Also win some of the benefits of having my teams decoupled from each other if we
can work out that sticky mess around how we do deployments and how we keep the rate of

change fast enough for the entire organization, right?

[00:15:29] JM: You're coming at this from a pretty interesting perspective, because you worked
at Google. You were working on Istio in the early days. You worked with Varun, who I've
interviewed on the show a couple of times, and eventually he left and you left. You guys were

both part of the founding of Tetrate, which works on service mesh and related technologies.

The advantage of being on your own in a startup is you are forced to go and talk to customers
and really extract the truth, because it's existential. It’s existential for you as a startup. Whereas
if you're at a big company, like I'm sure you guys were trying hard, but you don't necessarily

need to get the straight answers because your salary is going to be there whether or not.

© 2019 Software Engineering Daily 7

SED 964 Transcript

[00:16:18] ZB: Yeah, that's one of my — | mean, this is one of the fundamental takeaways about
Tetrate, the company, coming from Google, because both Varun and | came from Google, and
he’s been there for a decade, right? I'd only been there for three and half years, but I've been
there for a while. But you go talk to an Amazon engineer and almost every single sentence has
the word customer in it that they say, right? If you go talk to a Google engineer, you never hear

the word customer ever, and this was one of my —

[00:16:44] JM: Until you have the ad side of the house.

[00:16:47] ZB: Well, yes. And the one side of the house that is customer-oriented is ads, and
they’re good at it, and the rest of the organization is not, because that's fundamentally not what

they've been building —

[00:16:57] JM: Their customer is the engineer.

[00:16:58] ZB: Exactly, right? So the Al —

[00:17:01] JM: And selling directly to engineers that live inside of your organization who are not

paying you money is very different than selling to enterprises.

[00:17:08] ZB: Precisely. So this was one of my single biggest segues personally leaving
Google. Google is a magnificent place to go learn a whole bunch of different things. But for me
personally this was the most important thing that | took away, was that Tetrate had to be a

customer-focused company. It is an existential problem exactly like you say, right?

[00:17:28] JM: So when you go out and have those conversations, when you talk to these
enterprises and you say, “Look, | know there's a lot of technological change going on right now
in your infrastructure. You're looking at Kubernetes. You’re looking at three gigantic cloud
providers and a bunch of adjunct cloud providers. You're looking at a bajillion little vendors that
are selling you monitoring software and logging software and this software and that software,
and then you into security and you got another 500 grand that you’re going to need spend.

[00:17:57] ZB: That’s some pretty cheap security you’re getting.

© 2019 Software Engineering Daily 8

SED 964 Transcript

[00:17:58] JM: Okay. Sure. Yeah. 500 grand, that’s not very realistic. But your specific category
is kind of new, the idea of service mesh. When you talk to them and you say like, “What do you
actually want? We are a “service mesh” company, but maybe we can do other things. What do
you want from us?” What do they say? By the way, what kinds of enterprises are we talking
about? Are we talking about banks? Are we talking about insurance companies? What are we
talking about?

[00:18:24] ZB: Yeah. So our customer base is predominantly financial tech companies, in

particular, payment institutions.

[00:18:30] JM: Gigantic, old companies. Lots of money to spend. Good reason to spend it.

[00:18:34] ZB: Yup, exactly. So those are the groups that we talk with, and by and large when
we go talk to them, they need a couple of different things. Traditionally, the team that we
interface with is actually a new one. So exactly to your point. So, historically, these three
verticals, the security, networking and observability have been independent and they’ve been
handled independently across the organization, right? Actually, to the pain of the organization
most the time, right? How much do you go talk to people in companies with more [inaudible
00:19:04] workflows and you don't have to get around the security team to get approvals and
they’re a big roadblock and it’s like, “Oh! | can't tell you how many times I've talked with
customers, and they talk about the security team with dread, because they're the people that

say no.”

To go get a change in the network — So if I'm a service owner and I'm just trying to get my
feature to my user, | have to go get the security team to approve my new thing. | had to go get
the networking team to go make my changes. | have to go talk with the observability team to set
up all these stuff, right? So these historically have been siloed, and arguably to the detriment of

the business.
So one of the key changes that we’re seeing with a lot of the people that we’re interacting with is
that a new team is starting to be created in these organizations, which is the platform team, if

you will. So now the group has been chartered in a lot of these large organizations whose

© 2019 Software Engineering Daily 9

SED 964 Transcript

purview is go make these things coherent.” They’ll figure out, “Hey, that cloud thing is
happening.” “Hey, this Kubernetes thing is happening.” “Hey, we have these data centers now
that are in VM's. We realized that we need to modernize. We realized that our competitors are
investing in modernization. They’re building out. They’re becoming technology companies in

some sense, in payments, right?”

Right now in the financial space across the board, across most of the verticals in finance, it's a
race to become a technology company in some sense, right? So they're realizing we need more
agility, we need to be able to go faster. We need to be able to do these things. So they're
starting to build this platform team, and this tends to be a new team that is relatively recently
chartered, and they’re given this purview to interact across these pillars to start to try and figure

out how we make a coherent platform for our developers, right?

So when | go in and talk with them, typically — Obviously, because of the market, the industry,
this queue is towards security. In particular, one of the really interesting things is the idea of
application level identity, right? So today when we talk about security postures and things like
that, we tend to talk about network-based security, right? This application sits in this subnet and
we've allocated them this /whatever — They get these eight IP addresses. Those are those
nodes. We’re going to open up the physical firewall to talk to its database, which | know is

dedicated to these four IP addresses.

Maybe it's a little bit more coarse-grained than that, but by and large it is this — We have
physical firewalls connecting subnets together, and this is not amenable with a cloud world. This
is not amenable with Kubernetes, where your network — Where your identifier, your network

address, can change.

One of the key features that’s really interesting is we start try and bridge these heterogeneous
environments as we're trying to figure out how do | run workloads in cloud and on-prem together
and make them talk. Application level identity, having your job present a token that you can
authenticate and that you can authorize against that you trust the application what it is and you
don't have to trust the network is critical, is a key feature for them. That's one of the knock-on

benefit of that if you’re going to assign identity, the way that Istio does it in particular implies that

© 2019 Software Engineering Daily 10

SED 964 Transcript

you can do encryption in transit as well. So those identities that we give are in the form of

certificates.

So the another benefit is for a variety of regulatory requirements. For regulatory reasons, you
need encryption in transit, right? So those two things, “Hey, | can get identity. That gives me
policy that | can write that starts to become dependent of the network,” and this is very new for
security teams. So part of this is having the security teams start to realize that they can start a

phrase policy in better ways or in ways that are more expressive.

[00:22:41] JM: So let me see if | understand you correctly. So the security product that people
are asking for is a way of assigning identity to applications, first of all, and | think that's

encompassed in the spiffy inspire project also

[00:23:00] ZB: Totally. It is too. Yeah, exactly. Istio used spiffy, for example, the spec. Spiffy is
the specifications, fire the implementation. Istio also implements spiffy to do identities, for

example.

[00:23:10] JM: Right. Okay. Great. It's basically a spec for here's how you assign an identifier to
an application that can be used throughout your infrastructure for various things, such as
security policy. You need to assign certificates to those applications so that they can do TLS

handshakes, right?

[00:23:31] ZB: Yeah, exactly. So this is where like — So, Spire, what Spire does and what the
certificate rotation side of the Istio control plane does is take care of giving you those

certificates that have your identities inside.

[00:23:43] JM: So when | talk to the console service mash people, basically like Console, they
took a key value system and kind of rebranded it as a service mesh. But basically they said that
the reason that they did that was because when they talk to people, like HashiCorp, they’re
super smart. They're figuring out what do people actually want from a service mesh. Service

mesh sounds like something we should do. We’re like the kind of nebulous, but unicorn —

© 2019 Software Engineering Daily 11

SED 964 Transcript

[00:24:11] ZB: They’re able to do it, right? They have the technical chops to be able to sell it
legitimately. They’re one of those few companies that they can come out with one and people

would believe it.

[00:24:19] JM: Exactly. Exactly. They have technical jobs. People respect them. Yeah, it is
perfect for them. But when they looked at like, “Okay. There's all these things that these service
meshes are doing.” When you go and talk to the Istio people or you go and talk to the Linkerd
people. There’s this laundry list of things they do, the load balancing, A-B testing, green-blue
deployments, red-white deployments, black-orange deployments. This and that and sliced
bread. Ultimately, what people want is security. What does security boiled down to? Policy

management and application identity.

[00:24:56] ZB: So maybe one of the dirty secrets of networking is that networking has always
been a security sell, right? | mean, VMware arguably is — The big thing that they did was make
software defined networking a mainstay for people, right? How did they do it? Micro-

segmentation security.

Networking has always been a security sell to some degree. Now | do want to say though, you
asked what's the driving use case for my set of customers, right? So what we hear from them is

| want all of them, but is what hurts most now.

[00:25:23] JM: This is at the top. Right. Okay.

[00:25:24] ZB: Right. This is actually | think a pretty key point too, because adaption is really
hard. One of the keys for adaption is pick one, exactly one pain point, right? Because basically
the delta, the increase in complexity to add a feature, not that big. But the increase in complexity
to start using it for the first time, big. So you need something that's sufficiently painful to
overcome that initial adaption pain. Once you've done that initial adaption, the incremental

addition of features is pretty easy, because the delta to learn is pretty small.

[00:25:57] JM: So that platform team. Let’s say the platform team at an insurance company or a

bank that's developing. Their mission is to figure out infrastructure that fits across the entire

© 2019 Software Engineering Daily 12

SED 964 Transcript

organization that they can sort of slot into uniformly across the organization?

[00:26:16] ZB: To some degree. Maybe the charter is not so much uniformity as figuring out
how we’re going to develop all new software and then figure out how we’re going to take what is

legacy and bring it into the new world.

[00:26:28] JM: Okay. So they’re saying for all greenfield applications, we want to have some

standards. So the greenfield applications don't have the problems of the legacy stuff.

[00:26:35] ZB: Yeah. So like, “Hey! You're not going to deploy your Greenfield into a VM. We’re

on to Kubernetes now.” So new applications go there, right? For example.

[00:26:43] JM: And then as they prove that out, maybe they can apply it to older applications

too.

[00:26:46] ZB: Exactly, because there's a strong desire. Right. It's not like just because the
teams run on legacy land that they're not totally happy there, right? They would like to be able to

go faster. They would like some of the features of the service mesh, for example.

It’s really funny to me, a lot of times we’ll go in and talk with customers and one of the things
we’ll show is like some of the observably side and they go, “No! We have observability. We have

some sort of vendor name.”

[00:27:09] JM: [inaudible 00:27:09].

[00:27:10] ZB: No, but like insert a telemetry vendor, right? SignalFX, whoever. We’re not really
interested in that. Then you saw, “Oh! But we can actually have high-level metrics.” They go,
“Whoal! | didn’t know that that's even a thing that we can have, and now | can give it to my

default.” So it's a really exciting — It's an exciting thing.
[00:27:27] JM: Right. Okay. So they have this platform team, and the platform team can win
over the security team and have standards going forward, and the security stuff that you give

them, how hard is it to create a service mesh or a platform system for deploying stuff that has

© 2019 Software Engineering Daily 13

SED 964 Transcript

those security properties, the policy management properties that they want. Is this a reality

today or is this something you're working towards?

[00:28:02] ZB: So it's a reality in some environments, and we’re working towards another. Part
of this is just the security teams themselves need to convince themselves a new model, right?
This application- based identity is fundamentally a different model for implementing policy and
security, right? There's a whole lot of complexity in there, right? So as soon as you start issuing
these identities, you run into the problems of how do | authenticate the workload? How do |
know that I'm issuing the right identity to the right thing? There’re all these knock on problems,
right? That's why Sitel exists. That’s why Spire is a product that — And all of that. It's a really

challenging problem. So it’s in a state of flux, right?

So security teams would be negligent if they dropped their existing security policy and went
whole hog into this new thing. What regulator? That would be crazy to do from like a regulatory
standpoint, for example. Because this is a new uncharted world where — But an auditor knows

the controls for traditional network security.

So the reality is that today it's starts to be a mix, right? A lot of the things that we wind up
discussing with a lot of these is how do we do things like in the new world? We use application
identity from Spiffy in some form with this [inaudible 00:29:13] Spire or something like that. But
when | go talk back to legacy land, we need to do a swap of identity so that | can integrate in
with the legacy view of the security model, right? So that's one of the transitory states that
people —

[00:29:24] JM: What is that? Is that like a translation layer or something additional?

[00:29:28] ZB: That’s one of those things that winds up being pretty like organization specific,
because your network is one of those things that solve — It’s always a special snowflake, right?
I've seen a bunch of different things from different users that take — Some of them, it's simple
things like VPNs or NATing and stuff like that. Some of them, it’'s more sophisticated. We're
going to go in through ingresses and we’re going to do “real”, but we’re going to do as if it's an
end-user. We’re going to treat them as end-user, clients calling in, and the whole spectrum

between, right?

© 2019 Software Engineering Daily 14

SED 964 Transcript

I guess your original question though was how real is it today?

[00:30:01] JM: Yeah.

[00:30:01] ZB: So these policies exist today, you can offer them. It's fine. We enforce them at
runtime. That's great, and really the hurdle becomes getting the security team to buy-in to an

updated model.

[SPONSOR MESSAGE]

[00:30:19] JM: Cox Automotive is the technology company behind Kelly Blue Book,
autotrader.com and many other car sales and information platforms. Cox Automotive transforms
the way that the world buys, sells and owns cars. They have the data and the user base to

understand the future of car purchasing and ownership.

Cox automotive is looking for software engineers, data engineers, Scrum masters and a variety
of other positions to help push the technology forward. If you want to innovate in the world of car
buying, selling and ownership, check out cox autotech.com. That's C-O-X-A-U-T-O-T-E-C-

H.com to find out more about career opportunities and what it's like working at Cox Automotive.

Cox Automotive isn't a car company. They’re a technology company that’s transforming the

automotive industry.

Thanks to Cox Automotive, and if you want to support the show and check out the job

opportunities at Cox Automotive, go to coxautotech.com.

[INTERVIEW CONTINUED]

[00:31:36] JM: The platform solution that you're selling these people, or advising them on, or

consulting with them on, are they using Kubernetes and Istio and like sidecar containers?

© 2019 Software Engineering Daily 15

SED 964 Transcript

[00:31:51] ZB: Yeah. Yeah, typically. So most of these platforms teams that we talked to want to

use Kubernetes for the new platform, right?

[00:31:59] JM: The Greenfield application.

[00:31:59] ZB: Yeah, the greenfield, and all the ones that we have already have substantial
workloads in Kubernetes because it was greenfield two or three years ago, right? So they
already have a pretty big split footprint between those two. I’'m sorry. What was the first part of

your question?

[00:32:14] JM: Well, no. That answered it. | mean, | was basically kind of hinting back at the
beginning of the conversation like have these old legacy enterprises that have tons and tons of
infrastructure and tons and tons of greenfield mileage ahead of them, are they going into

“microservices”? It sounds like they are, and it’s a reality.

[00:32:32] ZB: Yeah, for sure. So those companies are exactly the ones that need the
organizational —So those companies have historically been the ones that are pretty ossified,
that are hard to change, right? So again they see that it's an existential problem for them. They
have to become nimbler. They have to become technology companies in some sense, right?
Companies like Square and Stripe are phenomenal examples that put the fear and they look at
— So payment processing companies on the East Coast look over at those and they go, “I need

to — That's what I'm playing against.”

So they look at it from a holistic perspective, “I need to skill up my developers.” Part of it is just
even hiring side of it, right? To some degree, if | really want some of the best people, | need to
be using some of the cool technology, because the best people want to do that, right? It's a
hiring tool. It's a combination, right? It's this holistic, “From the perspective of my company, |
need to make this transition, and there's many different pieces that belong to that, right?” This
actually addresses — This move to this adaption of cloud native technology, let’s move to
Kubernetes. These things enable that transition, that strategic goal, across a bunch of different

dimensions; hiring, culture.

© 2019 Software Engineering Daily 16

SED 964 Transcript

[00:33:46] JM: Absolutely. | think again at this point. | mean, you're making a very strong case
for the idea that microservices is something that you go for because of organizational reasons,
and then it creates technical difficulties, but the technical difficulties are worth overcoming,
because you will get a stronger organization out of it and ultimately better technology out of it,

because of the better organization.

Very specific question, let's say a company adapted Kubernetes three years ago. The footprint
has been growing since then. Some enterprising set of engineers got Kubernetes of the ground.
They started saying like, “Look, here's our platform plan. We got this platform plan for
Kubernetes,” and everybody throughout the organization going forward has implemented new

applications using Kubernetes, using containers.

Let's say three years into this, this company starts to say, “We want to start having a sidecar
proxy. We want to start having Envoy sidecar proxy, and then eventually we want to have Istio.
So we want have Istio in addition to the Envoy sidecars that are going to be proxying all the
traffic between each other.” How hard is it to deploy sidecar containers throughout that kind of

organization?

[00:34:58] ZB: Yeah. So this is actually one kind of the key pain points of Istio, right? It's one of
these things that we still have not really addressed fully, which is the day zero is still kind of

tough.

[00:35:10] JM: Day zero of Envoy.

[00:35:11] ZB: Of Istio in particular. Envoy too. Just be clear for listeners. So Envoy is a
component in Istio. Envoy itself open source project very successful is used by a bunch of
different service mesh implementations, is used by a bunch of people building their own
bespoke “mesh”, because the degree to which it’s a mesh or not depends on their organization.

But a lot of people are using this is a proxy independently.

Istio basically provides the batteries to a program on voice, right? So your original question was

how hard is it?

© 2019 Software Engineering Daily 17

SED 964 Transcript

[00:35:42] JM: Was how hard is it? Specifically, thinking about the Envoy deployment process.

But | guess most of the people who are deploying Envoy, it's in service of Istio.

[00:35:50] ZB: Yeah. Well, and a lot of them are deploying it themselves. Depending on your —
If you're in Kubernetes, like you said, for example, that's pretty easy, right? Because the

primitives are already in place to be able to do in a platform, right?

[00:36:01] JM: So just throw them in Istio.

[00:36:03] ZB: Right. | put the container in my pod spec. Hey, it turns out the pod spec can
have many containers. You just put a second one, right? That’s the mechanics. The challenge
becomes is the semantics right? Have | programed Istio to be able to work with my service

correctly and not break it? That’s the pain point today with Istio.

Maybe the most classic historic example has been port naming. | want my — | would like to be
able to proxy HTTP traffic in my application. It turns out that if you want to do that in Istio,
historically, we have always required that you explicitly name your Kubernetes port HTTP—

something. Don't care what it is. But we use that as a signal.

So one of the classic pain points was, “Hey, | wanted to try Istio. | went ahead and just deployed
the sidecar on all my services and none of the traffic works.” We go, “Oh! Did you label all the

ports?” “No. | didn’t know | need to.”

So there's these tripping hazards, right? So one of the most acute pain points for the project for
the past two years or so has been these day zero, day one pain points around how do we
actually enable adaption, right? Unfortunately, it's taking quite a lot of time to get there, but
especially from 1.4, which just came out last week, Istio 1.4 and then some of the —And 1.5
should have even more changes, that start to alleviate a lot of these introductory problems, a lot

of these stumbling blocks that you would typically hit on these initial adaption journeys, right?
But it turns out, it is quite a bit of work to adapt this, right? Again, | think | said earlier, the most
successful adaptors | see pick exactly one pain point. The most successful adaptors | see

additionally start gradually, right? You don't just turn it on everywhere. You pick your victim or

© 2019 Software Engineering Daily 18

SED 964 Transcript

your volunteer carefully first, right? And you do this gradually. This is how — But this is really how

any large change in any organization happens, right? So it’s not really — That’s not a novel,
right?

[00:38:08] JM: The example | always remember is the classic Netflix migration to
microservices, which began with the jobs board, the Netflix jobs board. Netflix had a monolithic
architecture, and the first thing that they — Oh! No, I'm sorry. This is Netflix moving to the cloud.
But -

[00:38:25] ZB: Yeah. It’s the same idea. Yeah.

[00:38:27] JM: Same idea, this because the same idea is any big technological shift, you start
with something that has low service area and low risk to the organization. If your jobs board
goes down, it doesn't matter. If you want to deploy a service mesh, you probably start with the
jobs board also. Who cares? You get the jobs board up and running. You get the — Whatever.
Test the number of jobs board instances you can set up. Are they all observable through Istio?
Can you change their security policy? Oops! We made a mistake. The jobs board is offline for

five minutes. Nobody noticed.

[00:38:59] ZB: Precisely, and then you roll it out incrementally from there, right? Yeah, that is
what we have seen as far and away the best way to adapt.

[00:39:08] JM: So when Istio came out, | guess two or three years ago. When was the big —

[00:39:15] ZB: 2017. Gluecon in March of 2017.

[00:39:18] JM: Okay. March of 2017. Then was it the KubeCon that summer where they really

made their big launch at KubeCon?

[00:39:26] ZB: Yeah, that KubeCon U.S., where it felt like IstioCon almost.

[00:39:31] JM: IstioCon, right.

© 2019 Software Engineering Daily 19

SED 964 Transcript

[00:39:31] ZB: Yeah. That was maybe the peak. | was actually just talking with some people
about that exact event maybe 30 minutes ago. Maybe the peak difference between Hype and

Istio, the project, versus where the capabilities of the project actually were.

[00:39:44] JM: It was so hilarious, because —

[00:39:46] ZB: It’s painful. It’s so bad.

[00:39:47] JM: It must have been really painful for you, because something went — What went
wrong? Something went wrong with the marketing function. It was like somebody in Google
marketing got too much budget for Istio, or like maybe it was the IBM marketing folks actually.

[00:40:01] ZB: Exactly. Yeah, it just took off. Yeah, for whatever reason, at that particular event,
there are quite a few contributing factors, Concept Radio at that time that led into this, into kind
of the B start KubeCon that year almost, right? Yeah, | think actually that was probably the most

detrimental thing that could have happened to the project. Period.

[00:40:22] JM: It was a total banana peel.

[00:40:24] ZB: There’s a company that | talk to pretty regularly these days to try and help out
with some of their Envoy adaption in particular. | say, “Hey, if you all are using Envoy, you all

should really look at Istio.”

[00:40:36] JM: They're like, “We’ve been reading Twitter.”

[00:40:38] ZB: Well, no. No. Even worse, they said, “Oh! We already tried it back at 03. I'm
never touching that again.” Right? So it’s like, “But, no. That was three months into the lifecycle
of a project. 03 — Istio is six months old then. It’s three years old now almost. Actually, it will be

three years in two weeks, | think.
[00:40:59] JM: Just real quick to tell the story for people who don’t know. Just basically, Istio
was given a ton of fanfare, a ton of promotion at this KubeCon, and this was when it was at

whatever.

© 2019 Software Engineering Daily 20

SED 964 Transcript

[00:41:12] ZB: | mean, it was like 03, | think actually —

[00:41:14] JM: 03. It didn’t work.

[00:41:14] ZB: Yeah. It was super early days.

[00:41:15] JM: It was really hard to deploy, and this was being advertised as the infrastructure

solution of the future.

[00:41:20] ZB: The next Kubernetes, right? It’s like —

[00:41:24] JM: This is a thing, definitely the thing you want doing your TLS handshakes and all
your other security management and your traffic routing and everything, and people, “l can’t

install this.”

[00:41:31] ZB: Yeah, they got so excited, right? Because they were like, “Oh!” You go to the talk
and you hear the laundry list of features, the pages and pages and you go, “I need exactly that. |
need exactly the observability.” As a developer you sit there and you identify with it deeply and

try and use it and burn yourself, right?

[00:41:46] JM: The other thing that made it look really bad was that the conference was
promoting Istio so much and Linkerd was over there in the shadows, and Linkerd was like

people actually uses it in production.

[00:41:57] ZB: Yeah. | know. | have so much respect for William, right? He is on a phenomenal
job with Linkerd and with Buoyant. Especially now that | have left Google, | have so much more
respect doing the startup game. It’s hard, right? So | have a lot of admiration for him having to
navigate that, right? He was saddled with this big gorilla that came in. Again, the hype really was
painful for him too even though they had a product that works. Because Istio became — Because
of the marketing function there, because Istio became synonymous with service mesh in so

many people’s mind and failure, hard to use —

© 2019 Software Engineering Daily 21

SED 964 Transcript
[00:42:31] JM: It actually ended up really good for him.

[00:42:33] ZB: Well, yeah. Exactly.

[00:42:35] JM: In the long-run.

[00:42:35] ZB: Yeah. But in the short-term there, he was up against it trying to tell, “No. It’s Istio.
That’s hard to use not”. That was exactly some of the kind of subtext there in that KubeCon, is
people were looking around going, “Well, why are they talking about Istio when Linkerd is the
one?”

[00:42:54] JM: But at the same time, it was easy to tell that this thing was going to work out.
Even back then, it was like, “Well, okay. We all know Envoy works really well, and we all know

that people want this service mesh stuff at some point.”

[00:43:11] ZB: Of course, we were in the heady highs of Kubernetes just winning the
orchestrator wars, right? Now Google has the next thing.

[00:43:19] JM: What was it like being at — So you were at Google during the container

orchestration wars?

[00:43:23] ZB: Yeah. Sure. But | wasn’t really working in that side of the house as much. | was
in GCP doing enterprisey things there.

[00:43:29] JM: Okay. What was it like seeing that war?

[00:43:33] ZB: | mean, | got my popcorn and watched, because | didn’t have horse in the race
then, right?

[00:43:36] JM: Same here.

[00:43:38] ZB: | enjoyed it. | thought it was so cool. Yeah! | enjoyed talking — Looking at it just

as a software engineer. I'm fortunate that | live in San Francisco, so | have good friends that are

© 2019 Software Engineering Daily 22

SED 964 Transcript

SREs that at a bunch of different places. So | got to hear some pretty first-hand accounts of the

war. For me it was always really entertaining to see.

[00:43:58] JM: Did you go to conferences during that time?

[00:44:00] ZB: No. | didn’t go to conferences at all either.

[00:44:01] JM: Man! It was hilarious.

[00:44:02] ZB: Oh! I'm sure.

[00:44:02] JM: The funniest part was like walking around the Expo Hall and just seeing the
deep confusion. Just like to talk to Mesosphere, they tell you —

[00:44:10] ZB: Like service mesh today.

[00:44:12] JM: Well, actually not really like service mesh today. Today it’s like pretty well-
defined. It’s like you’ve got Linkerd over here, you got Istio over here, you got a million Istio
providers and you got one Linkerd — Well, | guess —

[00:44:23] ZB: There’s Mesh traffics —

[00:44:26] JM: Oh, yeah. The new thing.

[00:44:28] ZB: And Kumon. Yeah. There’s more entries coming into the field for sure. | think it
will be interesting to see if there is confusion or not. | think you’re largely right. | think, in
particular, the fact that Google is behind it. Coming out of Kubernetes in particular in that timing
there with the project did a whole lot with respect to exactly what you just said, which is the
general perception that Istio was going to be the one. The other side of it is just look at the

money behind it, right? It's Google, IBM. Who else is going to come along and fund the thing?

The only other players in this space that would legitimately be able to fund this competition there

are going to be the other cloud providers, right?

© 2019 Software Engineering Daily 23

SED 964 Transcript

[00:45:08] JM: Yeah. | mean, the other difference between the service mesh wars and the
container orchestration wars is container orchestration wars, it felt like for as long as there was

a container orchestration war, none of the banks and financial companies —

[00:45:22] ZB: Wanted to move.

[00:45:22] JM: They didn’t want to move. They’re like, “No, we’re not going to invest in
Mesosphere. We did this with open stack. We made this mistake with open stack.”

[00:45:29] ZB: Yup. Again, in the same way that | think some of the halo of Kubernetes
extended to Istio with respect to people perceiving that it will be the winner, the same thing
happened with decision maker. At least, my perception is the same thing happened with
decisions makers looking at the mesh, right? Because a lot of them are literally — Because a lot
of these people are the Kubernetes team now, right? They looked at it and they said, “Well,

that’s what | be on, and now I've got my job here.”

[00:45:57] JM: Right.

[00:45:58] ZB: | think that, yeah, that halo effect again of Kubernetes —

[00:46:01] JM: People are not going to shy. People are not deliberating between different
[inaudible 00:46:05].

[00:46:05] ZB: No. Not in my experience, right? Certainly, people have looked at different ones.
But by and large — Again, part of this is just bias if you’re going to come talk to Tetrate. To me,
you’re probably going to ask us about Istio. Certainly, there’s some bias there.

[00:46:20] JM: I'm talking to William later this week, and | am going to ask him like, “How are
you going to compete with the Kubernetes community that seems like they’re all-in on Istio, and
if they’re not all-in on Istio, Google will spend money until they are.”

[00:46:38] ZB: Yeah.

© 2019 Software Engineering Daily 24

SED 964 Transcript

[00:46:39] JM: How are you going to compete with that?

[00:46:41] ZB: Yeah. This is one of my favorite war games, right? Because | happen to be
intimately familiar with this space, and now being at a startup, | have kind of an appreciation
there. | think it’s a really fascinating question. | am very excited to see what they decide to do
and what tactics and strategies they decide to use there. | actually think that there are quite a

few different avenues that they could take that would be very successful.

[00:47:03] JM: Like what?

[00:47:05] ZB: In my opinion looking at it, | think that — | don’t have super insight into their
business, but | look at it and go, “There are two clear ways that you can win right now.” One of
them is talk about usability. Talk about usability from dawn till dusk. Like, usability, usability,
usability. Then the second thing | think —

[00:47:24] JM: Wait. Meaning that Linkerd is more usable than Istio.
[00:47:26] ZB: Exactly. My thing is usable. You can it deployed, right? That’s pretty fair. They
have put a lot of effort into solving those problems. That is one of the bigger indications I think of

maturity in a project, right? Production readiness and maturity are very different things.

[00:47:42] JM: Totally. People may not understand this, but building software that is usable is
really hard.

[00:47:46] ZB: Exactly. They’ve been doing it for years longer than — Right? A lot of the core of
Linkerd is original functionality came out of Finagle, right? So like a lot of — It had been vetted
and done.

[00:47:58] JM: Yes, iterated on many times.

[00:48:01] ZB: Anyways, so usability | think. Then | think that there still a lot of room actually to
target verticals, especially in Kubernetes. | think that you’re going to see a proliferation of

© 2019 Software Engineering Daily 25

SED 964 Transcript

vendors that are starting to target verticals and they’re starting to — That will start to tailor

offerings towards specific [inaudible 00:48:15] industries.

[00:48:16] JM: HIPAA compliance or something.

[00:48:18] ZB: Yeah! That maybe is one. | think maybe the ML stuff is pretty interesting, right?
So the Tensorflow and the — So that’s a perfect example of a project that’s doing a vertical,

right? We have machine language and model serving on Kubernetes.

[00:48:33] JM: The Kubeflow stuff.

[00:48:33] ZB: Yeah, Kubeflow. Exactly. Sorry, the name escaped me there. So Kubeflow is a
perfect example of a vertical product on a platform, right? We built this product around shipping
machine learning. | think that there is a lot of room to do that style product using a mesh, right?
That’s a place that | will use my educated opinion here and say | don’t think that the cloud
providers are particularly going to — They’re going to move into those spaces last, right? They’re

going to take their time going for those —

[00:49:06] JM: The verticals.

[00:49:07] ZB: Yeah.

[00:49:07] JM: Well, they got so much other stuff to work on.

[00:49:09] ZB: Exactly. From my outside view of Buoyant, | would love to see them do that. |

think that that would be a way that they could be really successful. They even just announced

their product today actually.

[00:49:20] JM: | didn’t see it went live yet.

[00:49:21] ZB: Yeah. | don’t remember what the link is offhand, but you can put it in the show

notes.

© 2019 Software Engineering Daily 26

SED 964 Transcript

[00:49:25] JM: What is it? What did it do?

[00:49:26] ZB: They’re doing basically management over top of a mesh. So some visibility,
some process, that kind of stuff, right? That’s a whole — | think that’s actually really where we
need a lot of tooling built out, right? That’s right in the vein of what Tetrate itself is doing, right?
So we’re really focusing on the management side. We talked about mesh is really a people
problem. It’s not a technology problem. So management is really — Management planes and the

management of this infrastructure is really where the technology side meets the people side.

[00:49:55] JM: Okay. This is the idea that whatever service mesh you’re doing, you’re using,
from a performance perspective, from a deployment perspective, Linkerd will figure it out. Istio
will figure it out. This stuff will get figured out. Where the real battle is going to take place is the

developer experience at the control plane.

[00:50:14] ZB: Exactly, right? And how can you actually make that tractable, right? Because
again, like we said, no business — My customers don’t care about the fact that | moved from
monolith to a bunch of microservices. Customers care about the fact that they get to see
features faster. The way that | do that is | make it easier for my developers to build and deploy

software that my users can touch.

[00:50:36] JM: So we know that developer experience matters a lot, but you look at AWS and
the developer experience is — | think Google cloud, the developer experience is significantly
better than the AWS developer experience. But of course AWS has just more traction, more

footprint and it’'s more well-developed. Maybe it's more sturdy.

[00:51:00] ZB: AWS has a phenomenal job of meeting customers where they’re at and giving
them things that are familiar to them already. It is a lot easier to be a network admin with all my
CISCO certifications and go do my same job in AWS, because | still need to configure VPCs,
because we still need to do some of those things, than it is to come to Google where Google

says, “No. It’s good. The network is flat. You don’t need those things. We do it different way.”

So this is actually | think some of the fundamental tension, right? It’s a fundamental strategy

choice between those two cloud providers, right? We talked earlier, Amazon is fundamentally

© 2019 Software Engineering Daily 27

SED 964 Transcript

customer-focused. That manifests as not really being the player that’s driving forward the

bleeding edge. Amazon is not known for their bleeding edge innovation. But what they do do
better than any other company in the entire world is commoditize software, right? They take
software that has been proven, that has been built out and they bring it to the masses better

than any other company in the entire world, | think, right?

Google does a fundamentally different strategy, right? They say we want — It's because they
have a fundamentally different view because their customer is the internal engineer, first and
foremost, and not the external customer. They don’t care about needing an external network
admin where they’re at at the knowledge that they have today, because that’s not the alternative
they have and that’s not what their customer needs. So you wind up part of where this manifest

is in the U.S. and in this set of primitives that you deal with in a platform, right?

[00:52:33] JM: Yeah. Google Cloud UX is great in my experience.

[00:52:36] ZB: Yeah, me too. Now | no longer work for VCB, and I've had to be a client of both
and | can say for sure | much prefer the [inaudible 00:52:45] GCP, right? It blew my mind that
AWS, | couldn’t have one console. Well, | didn’t have one console to see all my stuff. Why is the
console spoke to a region? What? There were a bunch of things | look at and I'd go, “Wow!
That'’s kind of weird.”

| think this difference in approach in strategy is pretty fundamental, and | actually think that you
can look at — And there are some interesting parallels there bringing us back to a service mesh
discussion between like Linkerd strategy versus Istio strategy, for example. Istio is very much a
manifestation of how Google likes to do engineering, right? It’s complicated, but it’s really

powerful. There are a lot of sharp edges to cut yourself with, right?

Linkerd is much easier to use, right? But maybe it doesn’t scratch all the itches that you need.
Maybe it doesn’t cover all the cases. It’s less feature full in some capacities, right? It certainly is
not going to do things outside of Kubernetes for you, for example, where Envoy was built to run
on EC2 originally. Lyft ran — Right. The original incarnation of Envoy is as edge ingress proxy on
EC2 VMs to handle Lyft dropping, right?

© 2019 Software Engineering Daily 28

SED 964 Transcript

[00:53:48] JM: So that’s right. So like if | have some Pivotal Cloud Foundry installation that’s all

on VMs, | could adapt Istio. | could have Enjoy proxies on my —

[00:53:59] ZB: Yeah. So if we’re doing like PCF, there are maybe some extra caveats there.
That’s because of the environment that Cloud Foundry sets up. But like Cloud Foundry actually
is an interesting example, because they’ve been early Istio contributors from the beginning,
specifically with an eye towards using Istio in the implementation of Cloud Foundry to do some

of the routing and networking things that end users see.

[00:54:23] JM: Okay. Well, we don’t have to go down that rabbit hole. So when you were at

Google Cloud, you were straight up engineer.

[00:54:31] ZB: Yeah.

[00:54:32] JM: It seems like you’ve really enjoyed the shift towards more of a go-to-market kind

of strategist and sales engineer. | mean, you have to wear a lot of hats.

[00:54:41] ZB: Yeah. A small company wear a lot of hats, right? Definitely what makes me
happy is sitting down and getting to do some hard design and ideally writing some node. But
yeah, | enjoy the other aspects of it, right? | enjoy getting up and talking with customers and
talking with users and hearing about the problems that people have. | enjoy some of these
talking like we’re doing now. It’s always kind of run, right? It’s an interesting and different thing,

right? Yeah, a small company wear a bunch of hats. That’s just kind of how it goes.

[00:55:11] JM: What'’s the hardest part of building an infrastructure company?

[00:55:13] ZB: | mean, | can speak for us | think. So we made some pretty interesting decisions
with respect to how we build Tetrate, the company, right? I’'m sure you've talked a little about this
with Varun in past episodes. But this is typically how | talk about it. When we talk about tech

startups, every company needs to take risks.

The whole premise of a startup is that you take a risk. That’s how you make money. Most

technology startups, the risk that they take is the technology that they’re picking. | feel like we’re

© 2019 Software Engineering Daily 29

SED 964 Transcript

pretty secure there. | don’t feel like it’s very risky. Now, obviously, it’s a little self-serving. But |
look at Envoy. | think it’s pretty rock solid, right? | look at Istio and I’'m pretty happy with where

we’re at.

There are things that need to be fixed, but from the perspective of | need to enable large scale
enterprise customers to use this stuff, Istio is in not a bad spot today, right? | feel good about our
technology picks. | think the real risky pick that we have is a company, and so the hardest thing
for us with respect to this build out and this thing is the fact that we’re totally remote. So we’re
globally distributed, right? | have 27 people in 11 countries and in 10 different time zones. So

maybe not quite the answer you’re looking for with respect to infrastructure.

[00:56:22] JM: Tell me more.

[00:56:23] ZB: But that’s a fundamentally different thing. | actually firmly believe that that will be
how basically all companies work in the future. It really is awesome for sure. But it’s so hard,
because so much of human interaction is predicated on body language and just being [inaudible
00:56:41].

We’re recording this podcast in the same room together, because a podcast recorded where we
can look at each other while we talk is way better than one where we’re recording it over a
phone and not just because the recording equipment is better, but because the whole
conversation is better because we can see each other, because we can interact with each other

in a more tangible way, and humans are just built to do that, right?

So one of the key challenges for a totally remote company then is how do you start to enable
that? How do you enable intentional interaction between people? There’s no water cooler to go
chat about the weekend, right? Because you’re in India and I’'m here. So if we want to chat, if
we just kind of want to shoot the shit about our lives, we have to intentionally take time to do
that, right? That manifests in a bunch of different ways. So in general, communication has to be
incredibly intentional. That’s a hard and different challenge | think than any other companies,
right?

© 2019 Software Engineering Daily 30

SED 964 Transcript

So then on top of that, there’s just the engineering side — There are plenty of other things that
are hard about an infrastructure company, right? The engineering part is challenging. The
problem space itself tends to be a little bit deeper and more technical than many other problem
spaces, right? There are all these knock on things. But at least from — That any infrastructure
company has to deal with, at least from our perspective, the thing that makes it hardest but is
also | think maybe one of our single biggest benefits as a company full stop is that we’re totally

remote.

[SPONSOR MESSAGE]

[00:58:14] JM: If your product has dashboards and reports, you know the importance of making
those analytics products beautiful. Logi Analytics gives you embedded analytics and rich

visualizations. You don't need to be a designer to get great analytics in your product.

According to the Gartner Analyst Firm, the look and feel of embedded analytics has a direct
impact on how end-users perceive your application. Go to logianalytics.com/sedaily to access
17 easy changes that will transform your dashboards. That’s L-O-G-lanalytics.com/sedaily. Logi
Analytics is a leading development platform for embedded dashboards and reports, and Logi

gives you complete control to create your own analytics experience.

Logi Analytics has been a sponsor of Software Engineering Daily for a while and we’re very
happy to have them. So thanks to Logi Analytics, and go to L-O-G-lanalytics.com/sedaily to find
17 easy changes that will transform your dashboards. You can get better dashboards and

reports inside your product with embedded analytics from Logi Analytics.

[INTERVIEW CONTINUED]

[00:59:45] JM: What do you think is going to happen to all of Google’s napping pods and lunch
buffets and like bouncy castles and like buildings all over the world as people realize all of these

perks don’t add up to the level of happiness | get from sitting at my —

[01:00:09] ZB: Exactly.

© 2019 Software Engineering Daily 31

SED 964 Transcript

[01:00:08] JM: In front of my own computer.

[01:00:11] ZB: Yeah. So | can actually speak to this in a very real way, because | had all those
and now | sit at home and | joked with people, but | wasn’t really joking. The thing that | miss the
most is the food, man. Really good food. So there’re definitely pluses and minuses to both,
right? | think that it’s not really for everyone to sit at home and work at home all day. | think a lot

of people have a hard time doing that.

We certainly had some people that have had a hard time doing the transition to totally remote.
In general, we hire only open source developers or primarily open source developers, because
they’re used to working remotely. It can be a tough change to navigate, right? But | do think that

the freedom is massive, right?
I love that | can go — If | don’t have a meeting in the middle of the day, it's super easy for me to

go see a movie, and | have a theater to myself, or more likely | — Yeah, but I’'m a big biker. So |

love biking around San Francisco, right? I'll go do a ton of midday bike ride.

[01:01:07] JM: Yeah. | go for a run in the middle of a day.

[01:01:09] ZB: Exactly. The quality of life —

[01:01:11] JM: It’s so much better.

[01:01:12] ZB: Exactly. | think that the steady state that we’re going to land in is that there’s
going to be a mix of — And we have some office space, because some days you just got to get a
pass, right? Some people don’t work effectively from home. So you need a space. | think it
definitely does devalue some of those perks, for sure. But the other side of that is the number of
companies that offer those crazy perks like that is basically like 5. It’s the [inaudible 01:01:37]

companies, right? There’s not outside of that pool. It’s not —

[01:01:41] JM: | don’t know, man. San Francisco.

© 2019 Software Engineering Daily 32

SED 964 Transcript

[01:01:43] ZB: Sure. But most startups are doing like — Right. Google is like all three meals a
day for free. It’s like egregiously over the top, right? Certainly, there are. It definitely does
devalue at some. One of the interesting perks that you can have as a company. As a company,
one of the biggest expenses that you have especially if you’re in San Francisco, for example, is
your office space, right? We don’t spend money on office space. So it makes it much more

feasible to start to do things to address some of those perks if we want to, right?

We haven't really needed to. But like we can still easily do that and our costs are so
substantially lower than if we were all in-person just because we’re not paying for the privilege

of having a space, having a door that we can lock, that we can share.

[01:02:31] JM: Now, much of what Google got out of that in-person feeling, and | worked at
Amazon for a while, and a bunch of what Amazon gets out of this in-person stuff is this cultural

cohesion.

[01:02:47] ZB: Yeah, that’s a big part of it for sure.

[01:02:49] JM: Like the spreading of values, and some values which I’'m not sure could

permeate and exist strongly in a remote.

[01:02:59] ZB: Yeah, and that’s definitely part of the challenge, is how do you successfully —
What is company culture other than some of the interactions that you have together? So when
those are disparate and you don’t have the perk of being in the same office together is that we
get to see many of those other interactions that don’t involve us. That is what informs our own —

How we act, right? Because that is the norm. That is what is accepted in this space.

Yeah, that’s another place where, again, you have to be very intentional as a remote company.
Intentionality is a really, really critical concept | think just across the board. You have to have
intentional communication. Part of that intentional communication is consciously enforcing the
values in interactions. You have to do these things more and more cognitively. They have to be
more in the front of your mind than in a traditional environment, because you have to take those

rare opportunities to drive home that this is how we do it.

© 2019 Software Engineering Daily 33

SED 964 Transcript

Then the other side of it is just communicating more. So part of it is writing down norms and

expectations, right? that’s a good thing for a company anyway to have to start. As long as those
are living documents that can breathe and change as the company grows. That’s a big thing. So
we have a mix, right? So it’s a mix of document more make available communications more with

each other and be intentional about how we set culture, right?

| think about this, because | was one of the first engineers. I’'m in more of a leadership position.
So | think about this constantly with respect to how | present myself in meetings. Any leader
does to some degree. You have to. But again, with a remote, you have to be even more
cognizant of it. You have to be even more — You have to be mindful, right? Intentional.
Intentionality, mindfulness, however you want to say it. That | think really does boil down to
being one of the critical features, and that’s challenging on a team. We are not humans or tend
to be pretty selfish by nature. We don’t tend to be very good at mindfulness and that. So it has

to be a practice, right?

[01:05:17] JM: Right, totally.

[01:05:18] ZB: | would argue maybe that the set of values that you have to have in a remote
company, maybe you wind up being a little different than the set of values that you have in an
in-person company, especially because of things like that. Mindfulness and intentionality is a
very important value that does not tend to appear in many traditional companies sets of values,
right?

[01:05:40] JM: Lots of stuff we could continue to explore there. | just want to wrap up, long-

ranging question. How do GCP, AWS and Azure in the limit strategically differ from one another?

[01:05:53] ZB: Yeah. | think that’s really interesting. We talked about this a little bit, right?
Amazon continues to do what they do best, which is we’re going to listen to what our customers
say. When a sufficient number of them say that they want this button, we’re going to add the
button. | think they’re going to continue with that march. | don’t really — Unless some
organizationally scaring event happens there or there are some large change in leadership, |
don’t think that that would change. From their position, why would it? They’re the dominant

player right now, right?

© 2019 Software Engineering Daily 34

SED 964 Transcript

Like we talked about before, Google is fundamentally a technology-oriented company, right? If
Amazon is fundamentally a customer-oriented company, Google is fundamentally a technology-
oriented company, right? So they’re going to continue to have really awesome tech. | would
argue that App Engine today is probably still ahead of its time, and App Engine was released in
2008, right? Obviously, it’'s changed in that intervening 11 years, but it was a decade — It's

arguably 5 — Maybe it was ahead of time and it’s a decade old.

[01:06:51] JM: It’s hilarious how characteristic that is of Google Cloud’s presence in the market.

[01:06:56] ZB: Exactly.

[01:06:57] JM: It’s like this is the future. Google Cloud is the future. So it’s additionally funny

when you see —

[01:07:03] ZB: If you can walk customers there, because again that’s the thing, is that Amazon
meets them where they’re at. So it’s comfy. Google doesn’t. That is the — If Google can figure
out how to bridge that gap and they’re trying with some of the — They’re trying to do that from an
organizational perspective of like [inaudible 01:07:20] and with the growth of the sales side of —
[01:07:24] JM: Well, Firebase, | thought was interesting example.

[01:07:27] ZB: Yeah, Firebase is a good example of that.

[01:07:28] JM: People love Firebase, and Firebase is a new — It feels like a newish technology.

It feels like a fresh technology, but it’s exactly what the hipster developers want.

[01:07:37] ZB: Yes. But critically it’s an acquisition.

[01:07:40] JM: Right.

[01:07:41] ZB: So Google took that technology and they’ve built it and they’ve made it better
and they’ve made it cool and —

© 2019 Software Engineering Daily 35

SED 964 Transcript

[01:07:47] JM: They have these cross-sells into the Google ecosystem from Firebase. So

maybe they’ll do the same with Looker and whatever.

[01:07:53] ZB: Yeah. You can probably rest assure that that will continue to do this strategy,

right? They want that interdependence between things.

[01:07:59] JM: It’s kind of an interesting strategy.

[01:08:00] ZB: It’s a natural. Yeah. So they’re going to run that down, right? | think that they will
continue to get more traction. There’re a lot of small things that manifest there. One of the really
nice things about using Google APIs is that they tend to be pretty consistent. | know somebody

did an analysis of like the AWS APIs, and in particular they were looking at —

[01:08:19] JM: All million of them.

[01:08:20] ZB: Exactly. They were looking — Now, to be fair, Google has hundreds of that. | was
on the API survey. | was on the APl team here. So Google has hundreds of APIs too. They’re
public too, and many less than AWS obviously. But somebody did analysis of the AWS next
page token and how do you paginate through a list of APIs in AWS, right? There’s a table and
it’s like the capitalization is different. How many of them have a different field between the return
and the next one? So it’s not next page token into page token. It’s like this mismatch. Google
APls don’t have that.

[01:08:56] JM: They’re consistent.

[01:08:56] ZB: They’re consistent. The reason they’re consistent is because there’s an internal
process in place to do these reviews that mandates that consistency. That is a phenomenal
feature that nobody really talks about, but that usability goes through. So | think that in the long-
run what will happen is that as developers, where they’re at, moves closer to the things that

Google is shipping, it will start to make more sense and they’ll start to get more traction, right?

© 2019 Software Engineering Daily 36

SED 964 Transcript

Of course, we’re also very, very early into the cloud race and that we’re not 10% in yet, right? |
think that will work out well for Google continuing forward, right? Then of course there’s Azure.
What does Azure do? They know enterprise sales more than any other thing. | haven’t used

their cloud. They had to use their cloud. That’s not quite the right connotation.

But either of the other two, they understand the enterprise sales motion and they already have
their foot in place particularly in the middle of the country.

[01:09:57] JM: Okay. Right. The middle of the country. That’s the key, and probably in a lot of

like international places too.

[01:10:04] ZB: But there are so many people that will never touch Amazon, but Microsoft,

they’re already using Microsoft. So they’re already like — They’re already in the door.

[01:10:12] JM: They’ll never touch Amazon, because —

[01:10:14] ZB: Well, for a bunch of different — Right. So maybe they take their — Maybe they

think they’re competing against. That side of it or for whatever reason.

[01:10:23] JM: Oh! Hilarious.

[01:10:25] ZB: There are a variety of reasons.

[01:10:25] JM: | think Walmart has like a deep partnership with Azure for that very reason.
[01:10:30] ZB: Yeah. So Walmart was the most famous instance of this, because they tried to
make their vendors not do it. So no, | think that Microsoft will continue to rundown that
enterprise sales side. They’re very good at that. | think that concurrently they will continue to
bulk up their operational side and build out, right? So it’s kind of funny, because Microsoft in
some ways — | worked in a .NET shop for years. In another life, | would have loved to have gone
to Cambridge, gotten a PhD in type theory and had gone and worked for Microsoft Research.

[01:11:01] JM: Right. Go hang out with Anders Hejlsberg.

© 2019 Software Engineering Daily 37

SED 964 Transcript

[01:11:02] ZB: Yeah. Exactly. Right. Anders was one of my heroes, right? As a younger
engineer reading about — So in so many different ways, Microsoft does really cutting-edge
technologies and really visionary things. In a lot of ways, the do Microsoft Office and Outlook
and these institutional things that have the weight of an institutional enterprise thing and they’re

not new and fast. But they get the job done.

| think their challenge is going to be how do we kind of bridge these two worlds together,
because that’s where | think they get the really compelling things that neither Google nor AWS
will do. So their challenge is going to be — So they have the sales motion. Like if I'm going to
build the dream cloud, | would take the enterprise side of Microsoft and | would combine it with

the technology side of Google and we would go conquer the world, right?

[01:11:56] JM: Well, what about AWS? What happens to AWS? You'll just like throw it out?
Throw it all out.

[01:11:59] ZB: No, they’re phenomenal, but it’s not the — | don’t think that fundamentally they’re

[01:12:03] JM: You can use AWS Lambda to stitch your two sides together.

[01:12:07] ZB: Yes. | don’t mean to disparage AWS or anything, but if there are realist and
idealists on the engineering perspective, I’'m much more an idealist, right? | want the world to
move into the better UX. | think that it’s absurd that | have to like peer VPCs. This is 2019. |
want these two things to talk. | told you | want these two things to talk. Why do | have to — Why

do | have to do —

[01:12:34] JM: So you’re not enamored of these serverless AWS — | think the serverless stuff is

pretty futuristic. So that was totally novel.

[01:12:40] ZB: Yeah. Serverless | think is really, really fascinating. | think that’s it’s a really

immature architectural pattern today and that we need — The transition from monoliths to

© 2019 Software Engineering Daily 38

SED 964 Transcript

microservices is already incredibly hard in large part because tooling does not exist to cope with

that, and now you’re going to do even more? You're going to take it to an even bigger extreme?

[01:12:59] JM: No. But it’s something different. The serverless paradigm —

[01:13:01] ZB: It isn’t. So | look at serverless as being largely two categories of thing that are
conflated or that are frequently conflated together. One of the categories of thing is | want to
write only business logic. That’s been a goal of software engineering since we invented
programming language, right? We invented the first one and then we said, “Oh, this is real bad.

| want to write,” right?

Whether or not we ever get to that goal, | don’t think any particular architectural or deployment

paradigm is going to solve that problem. Then there’s the other half of what serverless platforms
are today, which is the operational side. | want it to have logging and monitoring and alerting out
of the box. | want it to have the visibility. | want to have scaling to zero and automatically scaling.
These are all things — Ideally, | want to be able to scale up and down and hopefully | could scale

to zero, because that would be really nice if | could.

So if you look at those two sets of things — So let’s discount the business logic only. | don’t think
that that’s a realistic goal in the near term. Then we start to look at that platform that is
serverless, right? A large majority of the features that are there look very similar to the mesh
features. So then in my mind, it comes down to, “Okay. So then what is the — So what are the
differences here?” And they boil down to a couple of different things.

This focus on small deployment units, and in particular, the requirement that basically you
rewrite code. Any new architectural pattern that says, “Hey, if you want to use me, you need to
rewrite everything that you have,” is a non-starter.

[01:14:40] JM: What are you talking about? Like we’re writing in Lambda sense?

[01:14:42] ZB: Yeah. | can’t take my monolith and split my monolith into Lambdas. It doesn’t
decompose that way, right? Instead, you get told, “No. Go re-implement it,” right? But | mean

thanks we’re still running COBOL mainframes. They’re not going to re-implement everything to

© 2019 Software Engineering Daily 39

SED 964 Transcript

go to Lambda. So you need something that gives the feature set of that platform, right? You
want the auto-scaling. You want the operational things out of the box. | don’t think that that
should be coupled with the deployment units that is that small.

[01:15:15] JM: | mean, | appreciate what you just said. | think what is interesting about the
Lambda model is it’s basically like, “Look, if you’re all in on AWS, here is a very smooth
interconnected developer experience.” You get DynamoDB, you get Amazon Elastic this and
Elastic that and it’s all connected with Lambda functions. It all works fairly smoothly. Yes, you

have to interface it.

[01:15:39] ZB: So that was the App Engine too, right? App Engine was this whole — If you write

Python. It was. It was this walled garden.

[01:15:46] JM: It was super walled garden, but it was also like just not as expansive as the AWS
version. It’s vision is like we give you everything in the kitchen sink and tons of other stuff and
like it’s just super interconnected and it’s super diverse, and Google App Engine back in the day
was like, “Yeah, just a Python application,” which was fine for a lot of people. That was more of
a marketing issue, but AWS has good marketing so people can actually adapt this — Anyway, |

mean —

[01:16:07] ZB: No. | think it’s — Yeah. No. | think it’s really interesting.

[01:16:16] JM: Reinvent is next week. It’s not Reinvent. | forgot. Oh God! | thought it was at

Reinvent.

[01:16:21] ZB: Yeah. Look, Lambda and engine roll, this serverless idea, is really compelling,
right? The idea that we need to be able to —

[01:16:31] JM: It’s super proprietary, super blatantly like we’re locking you in and you are never

getting out. You’re going to love it.

[01:16:37] ZB: Yeah. | just think that — And then that aside, just the mechanics of it today, the
units about it are wrong. | do a lot of API design. That’s part of what | did in Istio, and a lot of

© 2019 Software Engineering Daily 40

SED 964 Transcript

modeling. | like type theory, like | said, right? Unit of edit. What is the thing that | have to change
and that | have ownership over is one of the things that we think about a lot with respect to API

design.

Even vetted in Lambda as it is today just isn’t right and it doesn’t conform with the tooling and it
doesn’t really conform with deployments. So | totally agree that you want this heavily
interconnected thing. That’s the nirvana that we want to get to, right? It's all the cool stuff that |
need to in my app just works right there, and | don’t really have to think about it. It’s that idea of |

get to fill this on the business logic.

[01:17:20] JM: That’s what it’s like working at Google, right? You just import a library and it all

works magically. No? Okay.

[01:17:25] ZB: Yeah, exactly.

[01:17:26] JM: Okay. Maybe not.

[01:17:28] ZB: Jeff Dean walks by and he types on your keyboard and then everything works.
[01:17:31] JM: Yeah. He’s like, “Oh! You forgot this import. You forgot to import the magic thing.
[01:17:35] ZB: Yeah. That’s one of the things that is most disappointing maybe to people when
they joined Google, is that it turns out the sausage — Like making sausage is a nasty business,
and it’s messy everywhere, right? | don’t know. There definitely are — Google has done a good
job of handling a lot of the problems that serverless tries to — There are like internal projects that
are how you would build software as a developer Google today internally.

| think those models that they’re using, which you can extrapolate from App Engine, if App
Engine was developed in 2008. Now, jump forward 11 years. If they’ve been developing at that

pace for the same time.

Those models centers on write the unit that you’ve been writing. Write a service. It should be

small. It should be focused on the business logic. We have a lot of those libraries that handle a

© 2019 Software Engineering Daily 41

SED 964 Transcript

lot of the other things that have been build up overtime, right? But you’re going to write — Here,
you have an object. You own that object. This service owns that object. Write all the stuff and
put it together. Then we’ll worry about how it actually gets deployed. We’'ll look at the
dependencies that you have. We'll look at what it’s using. We'll look at the things that it’s
consuming and stuff like that and we’ll figure out where we actually want to do some of the
deployments for how we want to assemble the binary, things like that. You don’t need to think
about it.

[01:18:48] JM: Yeah.

[01:18:50] ZB: That kind of a model is much more compelling, because the tooling that | am
used to dealing with is the same. How do | debug this binary? Well, I just run the binary and |
attach my debugger to it. How do you debug a distributed Lambda application on your box? This
was always the problem that App Engine had. App Engine didn’t have local debug. They had a
local debug environment, but it didn’t match the App Engine environment. So one of the most
painful things that heard from users continuously was this, “Well, it works in your App Engine
dev that | ran on my local box, it works. But then | deploy it to the server and it doesn’t work.”

This is a fundamentally hard problem.

[01:19:29] JM: Remote debugging.

[01:19:31] ZB: Well, not even just remote debugging, but how do you provide this environment?
Part of the appeal of Lambda is that it’s this highly interconnected environment with all these
services plugged in. How do | ever debug that? What’s my developer — What’s my debug

workflow? I’'m used to running in process in my terminal and attaching GDB. How do | debug it?

But if you with the more traditional deployment model but you handle a lot of the operational
pain, then suddenly you can start to unify this development experience and you can start to use
the tooling that you’re used to, but you can get a lot of the benefits that you may — A lot of the

platform benefits of serverless, right?

If | were going to revise, then my two split between — Into three, which is the third one being, to

your point, kind of that interconnected glue side of it, right? The dream platform.

© 2019 Software Engineering Daily 42

SED 964 Transcript

[01:20:21] JM: Cloud Nirvana.

[01:20:22] ZB: Exactly. Then, no. Service mesh wouldn’t address that, for example. | think that
is a desirable thing. | don’t think that that is necessarily predicated on the current incarnation of

serverless.

[01:20:35] JM: Zach, great talking to you. Great conversation. We went over, but great —

[01:20:39] ZB: Yeah. It will be a nice incendiary thing to end on. I’'m looking forward to all the

serverless people.

[01:20:44] JM: Wonderful. Thanks for coming on the show.

[01:20:46] ZB: Thank you. Thanks for having me.

[END OF INTERVIEW]

[01:20:57] JM: Email has been around for longer than I've been alive, but there's been
surprisingly little innovation in inbox management. SaneBox is a new way of looking at your
inbox that puts features like snoozing, and one-click unsubscribe, and follow-up reminders as

first-class citizens.

If you are overwhelmed by your inbox and you're almost ready to declare email bankruptcy,
tryout SaneBox. In the onboarding process, SaneBox analyzes your emails and helps you sort
them into categories. You can get a free 14-day trial and a $25 credit by going to sanebox.com/
sed. That's S-A-N-E-B-O-X.com/sed.

These days, | spend more time in my inbox than | do in front of my coding environment, and
back when | was programming a lot | would spend hours configuring my coding environment
because | wanted to maximize productivity. If you spend as much time managing email as | do,
it's crazy not to set yourself up for success with your inbox. Stop the craziness, get sane with

SaneBox. Go to sanebox.com/sed and get a free 14-day trial as well as a $25 credit.

© 2019 Software Engineering Daily 43

SED 964 Transcript

Thank you to SaneBox for being a sponsor of Software Engineering Daily.

[END]

© 2019 Software Engineering Daily 44

