
SED 898 Transcript

EPISODE 898

[INTRODUCTION]

[00:00:00] JM: When a new employee joins s software company, it is often unclear where that

employee should begin. Do they have a mentor? What are they working on? What are the
expectations for how fast that employee should be contributing? The early period of

employment is often referred to as onboarding.

During the onboarding period, an employee will learn the basics of the company that they have
just joined. These basics include the work procedures, meeting schedules, expectations and

technical software tools that an employee needs to become productive. A poor onboarding
process can slow an employee own and it can even cause them to quit the company entirely.

Conversely, a good onboarding process can accelerate an employee towards a rapid

contribution within the organization. A scalable onboarding process can be a difference in
millions of dollars in productivity per year across the organization.

Kristen Gallagher is the founder of Edify, a company that help organizations define and

implement their onboarding process. Kristen joins the show to talk about the ingredients of a
successful onboarding process and what she’s doing with her company, Edify.

[SPONSOR MESSAGE]

[00:01:19] JM: Monday.com is a team management platform that brings all of your work,

external tools and communications into one place making cross-team collaboration easy. You
can try Monday.com and get a 14-day trial by going to Monday.com/sedaily. If you decide to

become a customer, you will get 10% off by coupon code SEDAILY.

What I love most about Monday.com is how fast it is. Many project management tools are hard
to use because they take so long to respond, and when you’re engaging with project

management and communication software, you need it to be fast. You need it to be responsive
and you need the UI to be intuitive.

© 2019 Software Engineering Daily �1

SED 898 Transcript

Monday.com has a modern interface that’s beautiful to look at. There are lots of ways to use
Monday, but it doesn’t feel overly opinionated. It’s flexible. It can adapt to whatever application

you need, dashboards, communication, Kanban boards, issue tracking.

If you’re ready to change the way that you work online, give Monday.com a try by going to
Monday.com/sedaily an get a free 14-day trial, and you will also get 10% off if you use the

discount code SEDAILY.

Monday.com received a Webby award for productivity app of the year, and that’s because many
teams have used Monday.com to become productive. Companies like WeWork, and Philips and

Wix.com. Try out Monday.com today by going to Monday.com/sedaily.

Thank you to Monday.com for being a sponsor of Software Engineering Daily

[INTERVIEW CONTINUED]

[00:03:11] JM: Kristen Gallagher, welcome to Software Engineering Daily.

[00:03:13] KG: Thanks, Jeff. I’m excited to be here.

[00:03:15] JM: When a software company is successful, it needs to scale. Every aspect of the
company is going to need to grow in this scaling state. Why can this be a painful process for a

company?

[00:03:30] KG: Gosh! I think there are so many reasons that scaling can be painful. One, it
depends where you’re scaling from and where you’re scaling to. So if you’re a 50% company

and you’re going to add another 25 people, you’re growing by half. I mean, that’s a huge culture
shift. Your processes are going to change. The way that you interact with each other, it’s going

to change. When you used to be able to just go and talk to somebody or Slack someone, you
might not be able to do that anymore. You might not actually recognize people.

© 2019 Software Engineering Daily �2

SED 898 Transcript

But let’s say that you’re going from 500 to 900, that’s an equally difficult scale. Even adding just

two people to a five-person team can be a challenging scale, and that’s because you’re adding
more people to the mix and the way that people communicate, the way that they organize

information, the way that they process information, all of that is different. So we have so many
tacit challenges that live in our heads, and the real sort of key to scaling in my mind is making

those tacit things explicit. So that’s one of the reasons I think it can be painful.

[00:04:33] JM: When a company starts to be successful, it’s often only two to three people,
maybe four or five people when you start to succeed. There’s no full-time recruiter. You’ve got

this small team of people and they have to do everything. Just as their customer-base is
growing and the number of things they have to do within the company is growing, the need for

talent has increased. There’s probably no full-time recruiter. What is the ideal playbook for
scaling the workforce in this kind of circumstance?

[00:05:06] KG: It’s a really good question. I think that you’re right. Most companies don’t even

get their first HR person until, say, 35, 55 people, if that, and usually then it’s even a generalist
and not a recruiter. So the onboarding question kind of gets passed around like hot potato.

Recruiters don’t necessarily have the backend knowledge to create a good onboarding and
scaling system.

Truth be told, HR doesn’t necessarily either. They do a great job generally with onboarding at

the corporate level. But what I really care about and what really matters for scaling technical
teams and software engineering teams is that functional layer on onboarding. So from a best

practice standpoint, what we’re really looking at again with the tacit knowledge is figuring out
what are some of the most critical, most crucial pieces of information about how we get work

done. What’s our engineering philosophy? What’s our software development life cycle like?
What are our tools systems and toolsets? How do we actually do our work? That’s the most

critical stuff.

So if you have no documentation, you don’t have to worry. I can yell at you later about it. But
what I really want to see is an investment of a couple hours a week maybe as you are preparing

to hire new people and thinking about how do we actually do this work and let’s try to figure that
out even if just a photograph of a whiteboard and you share that with a new hire and you walk

© 2019 Software Engineering Daily �3

SED 898 Transcript

them through that. That can actually serve as a pretty solid onboarding plan for the first couple

of years.

[00:06:38] JM: What are some common mistakes that companies make during this scaling
process?

[00:06:44] KG: Gosh! Creating an onboarding program too late. That’s number one. Number

two I think is assuming that other people will figure it out. Assuming that the manager will
onboard the person properly or assuming that you set them up with a buddy or somebody to do

some pair programming with and assuming that they will, through osmosis or through
conversation or lunch, they will have somehow explain everything, and it gets even worse when

a distributed team or a fully remote team, not that those arrangements are bad. They’re actually
great, but it makes it harder to get face time to soak up that information through osmosis.

So when you make assumptions about how a new hire is going to get information, you start to

actually just put in cracks into your foundation of your team not just for that new person. So
those I think are some critical errors that happen, is starting too late, and also making

assumptions about how the knowledge is going to flow.

[00:07:42] JM: There are some newer technologies that have come out in the last decade or so
that have changed the onboarding process and the scaling process. There’s Slack, there’s

Lever. Lever is a hiring tool for people who don’t know. Does technology help solve any of these
scalability and onboarding challenges that a company might have?

[00:08:12] KG: I think it’s a yes and sometimes a yes/but question, or even to that question. I

test dozens of tools every year just to maintain my knowledge on them, and there are some
really interesting applicant tracking systems like Lever. Others, there are great HRIS’s, HR

information systems, that can automate some of the onboarding process.

Unfortunately, where I see them fall flat is at that technical functional level of onboarding where
we’re really needing to get into the more technical questions about how work gets done, the

tools that you use to get that work done. How do we actually handle code? The actual process
for managing this.

© 2019 Software Engineering Daily �4

SED 898 Transcript

Unfortunately, the tools that I’ve tested, I won’t call anybody out by name, but they don’t get to
that level and it takes more work for a manager or for a subject matter expert to actually

translate their information in their head out into documentation in those tools than I would like.
So I really would like to see some technology that helps us do that. I think that that is the future,

is a toolset that really sits side-by-side with the manager and the new hire and, say, a buddy that
walks them through their first 90 days of even a year sometimes from a technical sense. It

doesn’t replace a person, but definitely makes it easier for knowledge to be transferred.

[00:09:34] JM: We should define the term onboarding, because when a company starts to
scale, it needs to define an onboarding process. People who are listening to this may be

unfamiliar with what onboarding is. Could you explain that term onboarding?

[00:09:49] KG: Yeah. Onboarding is something I think about in a couple of different layers. So
anytime you’re bringing out a new hire, whether you have a defined onboarding process or not,

you are actually onboarding them. You just might be onboarding them in a way that is what I
would call maladaptive to the team or to the new hire.

An onboarding program can look like some pieces of documentation, a template for a 90-day

plan, or it can look like a boot camp for a couple of weeks. It can look like a lot of different
things. The learning design is the creative part of that. I build onboarding programs that were

iPad scavenger hunts and videos, but I’ve also built long-term two to three-week boot camps.

So it really can depend on what the culture of the company is and what they need and how
many people they’re hiring, because you want to make sure you’ve got a balance of time spent

building the onboarding program and how quickly the information that you put in the onboarding
program goes obsolete. If information is changing really rapidly about your product, especially

as it does in early stage startups, I actually don’t recommend heavy duty learning design in your
onboarding program.

The other way to think about onboarding is as a three layer cake. So if you imagine a corporate

layer, so a company layer. Let’s imagine we’re working at Software Engineering Daily company.
We’ve that onboarding. So anybody who comes into our company is going to get a slice of that

© 2019 Software Engineering Daily �5

SED 898 Transcript

cake. The second layer is what I think of as departmental, potentially regional, depending on

how your company is setup. So there might be a product department onboarding. There might
be in-marketing department, etc.

Then your third layer cake is your most specific and most important and hopefully tastiest layer,

which is your functional onboarding. That’s your team onboarding. Depending on that
arrangement of a team, a software engineer might have multiple teams. You can have a cross-

functional team. You could be on multiple squads. So there might be a lightweight layer of
onboarding that helps you understand the team charter, the project that you’re working on, the

toolset that you’re going to use, all of those sorts of things. So we get more and more specific as
we go through that cake. But let’s say you and I are onboarded to different teams. We both get a

slice of cake that really makes sense for our job.

[00:12:04] JM: You use a phrase everyone’s onboarding all the time. What does this phrase
mean?

[00:12:12] KG: Yeah. So it’s kind of the concept of even if you haven’t explicitly made a

decision, you still make a decision in your in-decision. The same is true for onboarding. Let’s
imagine that you and I just got hired into Software Engineering Daily company and they didn’t

have a “designed onboarding program” for us. Maybe nobody really greeted us at the door and
nobody really told us about how to prep for lunch.

So we brought our lunch, but it turns out they’re going to take us to lunch, and nobody really

came to tell us, “Here’s your laptop. Here’s the way to get into the laptop. Oh, wait. Sorry. You’re
not going to get into some of those pieces of software. That’s going to happen tomorrow.” Then

the HR will come and tell you about your benefits at some point, and you and I both end up kind
of just sitting at our desks awkwardly for a couple of hours. That’s still onboarding. It’s just not

good onboarding.

So even when we’re moving really, really quickly as happens, and all of our companies, it
doesn’t matter if it’s a 5-person company or a 500-person company, life just moves so quickly

these days that you’re still onboarding even if you haven’t created a process for it. The
importance of understanding that you are still onboarding if you haven’t designed it well is that

© 2019 Software Engineering Daily �6

SED 898 Transcript

it’s going to have ramifications in how that new hire acclimates to the team. How loyal they feel,

honestly. How much they want to invest in you as a company and you as a team and you as a
manager. Those things can be really detrimental.

If the new hire really doesn’t attach and acclimate into the team, you might lose them as 12 to

18 months, which is the worst time to lose a new hire. It’s really not at 90 days or 6 months. It’s
when they’ve spent a year. You’ve actually spent a ton of money. You’ve spent a year of salary,

a year of benefits. They’ve used up a lot of time of the existing team members, which is a whole
other conversation, the time that it takes for existing team members to help onboard a new hire.

So when you don’t have a design for your onboarding program, even if it’s the most sort of
MVP-level of onboarding, you are still doing it. It’s just not good.

[00:14:21] JM: My philosophy to onboarding in the past has been throw people into the deep

end. Basically, I’ve got maybe like a little bit of documentation. We’ve got a product. We’ve got
some code written and it’s kind of figure it out for yourself. You can look at the code. You can

look at our issue tracker. You should be able to derive what the most important thing to work on
it. What’s wrong with that approach?

[00:14:50] KG: Yeah. I’m going to actually say that it’s not the worst thing in the world, but it just

depends on the knowledge and the experience and the confidence level of the person that
you’re hiring and bringing in. This dovetails kind of interestingly with culture and building a

diverse, resilient team as well, but we’ll first kind of take the tactical element, which is the reason
that I would recommend that you try to avoid throwing people in the deep end, is that things can

get broken and assumptions get mae about how work happens and the way in which we
communicate.

I like to tell people, when we’re trying to assess out what the professional expectations are for

software engineers when we build onboarding programs, I ask people to tell me, “What do you
fire people for? What do you get upset with people for? What makes it so that you don't want to

work with them anymore even though you never communicated that?” It’s kind of a hard set of
questions, but it really reveals a lot of the stuff about the ways people work. Not just the how

they do it, but the way in which work happens. The way in which they code, the way they

© 2019 Software Engineering Daily �7

SED 898 Transcript

communicate, all that. When you throw somebody into the deep end, you sort of neglect that

opportunity to communicate the ways that you do these things.

So it can be just find to throw somebody in the deep end as long as you couple it with the
opportunity to give feedback to the new hire or the opportunity for them to give feedback to you.

The other sort of more I guess sinister side of that is that when you throw people in the deep
end, they often don't have an historical context for why certain technical decisions were made.

Then they want to critique those decisions.

Those of us who’d been at the company for a while, we understand why that happened or why

that’s built that or, yes, that’s legacy, but we’re going to change it and we can move past that.
But a new hire may not have that context. So they went to make decisions or they want to bring

things up in meetings and it can slow down the process. There is a double edge sword there to,
because you want new eyes on old things. But you also want them to know the time and the

place to bring that up.

[00:17:03] JM: What kinds of tooling do you recommend to have a successful onboarding
process? What are the tools that every onboarding experience should include?

[00:17:15] KG: A great question. So, for tooling, I always try to make sure that a team is using

what they already use. I don't want to introduce new tools if I can help it, because that requires
a behavior change and new patterns of clicking and new patterns of entering information. The

reality is that most teams are straddling Confluence, Jira, Google Docs, Dropbox, all of these
tools, Zendesk, they’ve already got those workflows in place. They may not be perfect

workflows, but they are what already exists and there's muscle memory there.

So the tooling part is an opportunity to kind of question the process in general, “Is this working
for us as far as using it for other communications, other conversations inside our team and

outside of our team.” But it’s also an opportunity embed onboarding within a workflow that you
already know and that already makes sense to you.

© 2019 Software Engineering Daily �8

SED 898 Transcript

So, for example, I will put onboarding as a workflow in Jira or in Zendesk sometimes, or in

Confluence. So you don't have to exit a tool to do a good job with onboarding. I think that's a
really critical question for people that ask when you're looking at software that you can buy to do

this, which sometimes there is a really good use case for that. But ask yourself, are you going to
make sure that the change management of actually switching to that tool is going to happen.

Because without training, without support, without motivation and reward, switching on to a new
tooling set is really not going to be successful for you and then people will be change fatigued

and you’ll be out some money, and that’s frustrating.

[SPONSOR MESSAGE]

[00:19:04] JM: Continuous integration allows teams to move faster. TeamCity is the continuous
integration and delivery server developed by JetBrains. I've always loved the IDE's from

JetBrains. I've used WebStorm and RubyMine and ItelliJ, and once you start using any of the
JetBrains products, you realize that this is a company that knows how to build products for

developers.

TeamCity gives you continuous integration and delivery designed by JetBrains. For most teams,
TeamCcity is completely free as long as three build agents is enough for your project. For larger

organizations, there is TeamCity Enterprise, and listeners of Software Engineering Daily can get
TeamCity Enterprise with a 50% discount by going to team city.com/sedaily. That's T-E-A-

Mcity.com/sedaily. TeamCity supports most popular programming build tools and test
automation systems, version control systems and cloud platforms.

Whatever the size of your organization is, check out teamcity.com/sedaily and get started with

continuous delivery. Thank you to JetBrains for being a sponsor of Software Engineering Daily.
If you want to try out JetBrains TeamCity, go to teamcity.com/sedaily.

[INTERVIEW CONTINUED]

[00:20:34] JM: As you’ve said, a new hire is going to have a limited contextual understanding of

what is going on inside of a company, and throwing somebody into the deep end, again, there
could be insufficient documentation around why a certain past decision has been made. A new

© 2019 Software Engineering Daily �9

SED 898 Transcript

hire may gather their own context and be mistaken. How can the company improve the level of

context that a new hire has, especially when a company may have been around for two or three
years. There may be all these institutional practices that are not written down or codified

anywhere. How do you give that level of context to a new hire?

[00:21:20] KG: A good question. The best way that I do whenever I come into a new company
is I act like a new hire and I ask the dumbest set of new person questions I can possibly ask and

I gradually work up to more complicated questions. Even if you don't hire somebody to help you
do that, you can actually have one of your team members do that for you by playing that role

and just continually asking why. Why do we do this? Why is it like that? How did it become like
that?

The other way to do it and to gather up some of that context, especially in a young company, is

to think about the people that you would send a new hire to. So all of us have probably been in
the situation where we’re like, “Go meet with this person. They'll tell you everything,” and then

we send them over to that meeting. It's an hour long or 90 minutes long, and we hope that
somehow they got some critical information from our CTO or from our architect or whatever.

We just assume that that information actually was delivered well, number one; and that number

two, it made sense; and number three is actionable for the new hire, which is a terrible
assumption to make, because most people I think are not always very confident in their teaching

ability, and that's what you're doing in that 90-minute meeting. You’re teaching a new person
something.

So when you have the urge to put a new hire with somebody and to sort of lock them in the

room together and see what comes up on the whiteboard or in conversation. The next time you
do that, try, number one, to batch it. So put a lot of new hires in that conversation. Number two,

it’s great if a manager or somebody else can come and sit in on that conversation writes notes.
Not just record it, but write notes about the structure of the conversation and what actually

happened. That person can then add some more context into those notes. Then you actually
have documentation available right there.

© 2019 Software Engineering Daily �10

SED 898 Transcript

[00:23:17] JM: You describe two strong goals of a company's onboarding strategy. The first goal

is increase productivity immediately. The second is to cut long-term attrition rates. Describe
these two goals in more detail.

[00:23:32] KG: Yeah. So, attrition/retentions. So, attrition, what we’re really talking about here is

nonfunctional attrition, meaning when we don't want somebody to leave. They were theoretically
a valuable contributor and they left our company. Like I said, that typically happens between 12

to 18 months or so of a new hire starting. A good onboarding programs should reduce that
number. Reduce that to a number.

Industry-standard right now is about 15% a year for nonfunctional turnover, which is a pretty

high number wherever you put it, but it is industry-standard. But a good onboarding program
should help a new team member feel comfortable. It should help them feel able to leverage the

skills and knowledge that they have, that they came into the job having. It should help them
learn how to ask the right questions and learn how to contribute on their own two feet.

Once somebody is able to do all of those things, they are more likely to stick with a company. It

is also true that people are making the decision about whether to stay or go within their first 3 to
6 months. What happens is they usually sit on it for a while, especially if they’re stock involved.

So they’ll often wait until the first vesting of some stock, and then no go. Oftentimes, that the
reason for going is a mix of I didn't get the right training. I didn’t get the right context. The culture

is weird. I don’t like my manager. So you're mixing some variables in here, but your onboarding
program can actually sooth and smooth over many of those things. So that's the number one

goal.

Number to goal is time to productivity, and this is such a slippery one, especially in engineering
because we’re not measuring, we’re not looking at how many lines of code did you write or how

long did you work on that, because those are inaccurate measures of engineering productivity.
But we are looking at, from a benchmark standpoint, how long does it take an engineering at a

certain level, let’s say a junior engineer or a principal engineer. How long does it take that
person typically to get to a place where they’re really working on their own and they’re not

asking repetitive questions?

© 2019 Software Engineering Daily �11

SED 898 Transcript

What I have found, my experience is it's usually about nine months and people are always very

optimistic. So I will often hear, “Well, oh, it takes about three months or six months,” and then I’ll
go in and actually do pull some data and do interviews and talk to managers and new hires and

compare that data, and it actually takes 9 to 12 months.

So we are optimistic and rosy-eyed about how long we think it actually does take to get
productive, and your onboarding program should definitely play a key role and bringing that

number down as well. So you want somebody be able to stand on their own two feet,
theoretically, metaphorically, in about three months. That's a really good timeline. That's what

we all think that we have, but the reality is different than that.

[00:26:32] JM: Long-term attrition. Could you describe how attrition is exhibited at a good
company and how attrition would look at a really not so good company?

[00:26:44] KG: Yeah. So attrition in a positive sense can mean that a culture is doing a good job

of saying, “Here’s what we stand for, values-wise, behavior-wise, technology-wise,” and allowing
people to opt out of that. That's a positive thing in my mind, because nobody wants to waste

each other’s time. The company doesn't want to waste your time and waste money on you if
you're not a good fit for that, and you shouldn't want to waste your time if you're not a good fit for

that company.

So that’s a functional thing, and if you are turning people over in say 3 to 9 months because of
that, that’s positive. If you're turning people over at an alarming rate, that’s a cause for a

concern and we should look at that. Another way to think about attrition in a positive sense is
that as your company scales, the people who were good for you at 25 people are not going to

be the same people who are good for you at 250 people. I won’t say too much on this, because
lots of smart people have written about this.

But, in general, there are kind of startup-y people who are comfortable with risk. They are

comfortable with lack of structure. They like volatility. They like ambiguity. Then there are people
who are systems people who are a little bit more risk-averse, or they are focused a little bit more

and instituting systems, and that can just feel like pouring concrete on people who are startup-y
people. So that’s a culture shift actually. When the company scales to a point where the systems

© 2019 Software Engineering Daily �12

SED 898 Transcript

and the ways of doing business that that company now requires because of the size that they’re

at of their revenue, that they’re at of the type of customers that they serve, then it’s no longer
really about the technology. It’s about the working environment.

Some people would rather just like jump in a lake than have to deal with two layers of

management. The reality is that most companies that scale, you're going to have two or three
layers of management. So having people opt out because of that I think is really positive. I don't

see this happen as much as I would like, but I would really love it if companies operated on the
sense of succession plan from the moment you onboard a new hire.

Let's just assume that at some point you're going to want a different job, and my job as the

manager or the person who’s representing the company is actually going to help you thrive as
long as you can here at this company and then help you find something else where you’ll thrive

elsewhere. So you don't muck up to the culture here, because what happens when people stay
too long, again, with contribute attrition. If they stay too long and it's toxic, they can ruin the

culture of that team, and that’s really problematic and that means that other people will leave as
well.

[00:29:29] JM: Interesting. You encourage a class-based onboarding system. What is an

onboarding class?

[00:29:38] KG: Yeah. You might call it a class, a cohort, a group. This is where you are basically
batching new hires. I think it's always tough for people to want to lean into this at first because

we always want to hire somebody right now to solve the fire that we have right now. All of us
know deep inside that adding more programmers to something is not actually going to solve it in

the short-term. In fact, it’s probably going to make it a little bit worse for a while.

So it's hard to give up that ability to hire and onboard somebody immediately, because mentally
we think, “Oh! As soon as I get this person onboard, they're going to help me solve this problem.

It's going to be great,” and reality is they can’t do that. They can't be productive because they
don't have enough context to even help you solve the problem at all. So by onboarding in

cohorts or classes, number one, you give people other people to work with and other people to
learn from. Number two, you are optimizing for efficiency.

© 2019 Software Engineering Daily �13

SED 898 Transcript

So earlier we talked about when you send people to go meet with your CTO or your architect or
whomever depending on the size of your company, when you send that person, the new person

to that subject matter expert, you are basically wasting very expensive time when you send
them in a one-off perspective. From a purely business sense, you're wasting expensive time.

From a technical sense, you are putting somebody, that subject matter expert, in a situation
where they might not thrive and it’s a sort of friction-filled environment for them.

When you batch people and you have a group of 2, 3, 5, maybe 10 new hires together, you are

creating efficiencies for the subject matter expert in the business and you’re giving the
opportunity for actually recording and creating documentation of that knowledge.

[00:31:28] JM: You’ve mentioned the buddy system for an organization. Describe what the ideal

body system would be.

[00:31:36] KG: Yeah. The buddy system I think is a great one. It doesn't have to be the same as
pair programming. Although that can definitely be part of the buddy system, but a buddy is

somebody who's not the new hire’s manager who can basically show them the ropes. When we
say something like show the ropes, what we’re really talking about is the unspoken, unwritten

cultural language of the company., or the team, or the way that we work.

A buddy is a person who might be the same job title. They might be just a few months,
potentially a few years, more senior than this person, and they have enough context to share

the sort of what's happening in between the lines. So I’ve buddies be extremely effective, but
only when they are prepped. So you can't just assign a buddy a week before a new hire shows

up and expect the buddy will actually know what to do for that new hire.

So you do need to take some time to let the buddy know, “Here's what I'm hoping you'll do. I
want you to take him out to lunch. I want you to check on him on Slack. I want you to ask him

these kinds of questions. Show them this kind of stuff.” So buddies can relieve some of the
pressure of onboarding from the manager, which is awesome and really important. But they're

not going to be very successful if you don't give them guideposts.

© 2019 Software Engineering Daily �14

SED 898 Transcript

[00:32:58] JM: You encourage companies to have a policy where a new employee will ship

something on day one. What kind of product or feature would be good to have a new hire ship
on day one?

[00:33:12] KG: Gosh! It’s a really good thing. I’ll probably say not a product or a feature.

Nothing that has to do with customer-facing product, because they’re so likely that it's not going
to go well, and that's okay. That's actually part of the process. So, go back in your Jira or in your

issue tracker wherever you are and pull sort of those dusty tech debt things and start assigning
those to your new hires. Stuff that you don't get very frequently. The stuff that is not mission-

critical as much as you can find it just so that they can actually get into the process. If you don't
have stuff like that, it might behoove you to actually create a different sandbox environment to

let them play in and actually create some issues for them to work on.

[00:33:57] JM: Your writing uses Facebook boot camp as an example of a good practice. What
is Facebook boot camp?

[00:34:05] KG: Well, I can’t necessarily say that I know every single thing that happens in

Facebook’s boot camp, but I do like the way that it's laid out from what I understand about it. I’ve
built similar boot camps and many companies have similar things like this. The value of a boot

camp style program is that you are putting people in a cohort together so they do get to learn
together, which also means that it decreases the time that they have to go and ask their

individual managers those same questions, because they’re self-solving and they’re looking for
answers together. So that’s a really valuable component.

The other thing that I like about that type of program is that it doesn't have to be and it shouldn't

be all education all day. So there should be opportunity for actually listening, learning, hearing
from other people, hearing from product owners, hearing from project managers, different

teams, different squads, but also understanding what's going on with the business and how the
customer uses that product and how an engineer should interface with a customer if there's an

opportunity for that.

But you should mix that learning time and educational time with application time, and that's one
of things I do like about the boot camp model, is there's usually a lab opportunity. Then right

© 2019 Software Engineering Daily �15

SED 898 Transcript

after that lab, there’s feedback. So you’d get to actually go through what you just did and talk it

through and figure out what went wrong. That is a great way to prepare before setting
somebody free after their first week or two.

[00:35:39] JM: One important tool to have in a toolbox for onboarding is the employee

handbook. What should be the process for crafting an employee handbook?

[00:35:54] KG: Very good question. This is landing more HR land, which is fine, but your HR
team should really, even if it’s just one person, should be thinking about both from a legal and a

risk standpoint how the company needs to ask employees to behave so that we can live and
work in a safe environment, in a productive environment, but also so that we can decrease

friction.

I’m a big fan of very lightweight employee handbooks. One of my favorites is Valves employee
handbook, because, number one, it’s illustrated. I think that’s awesome. Two, it really shows the

tone. So your employee handbook doesn't have to just be a sort of solid black-and-white
document that's 40 pages long. There is going to be some legal lease in there, but it can really

show employees what do we talk like, what do we sound like what do we tend to look at. How
do we operationalize our values and our way of being as a company? That's a really interesting

way I think to engage people in the HR process, because I think a lot of times we onboard
people into their role. We don't really onboard them into understanding the company as a

connected unit.

For a while, it was onboarding in a job I had. It was onboarding people, about 10 people every
other week. I would always know when I had engineers and salespeople in the room, because,

number one, they would dress differently.

Number two, they would sit on opposite sides of the table and have different perspectives on
who was the most important in the company, because engineers in that situation would always

say like, “Well, we build the thing,” and sales would always say, “Well, we sell the thing.” The
reality is that you can't live without either of them. Your handbook is an opportunity to let people

know, “Here's how to work together.” It does not have to be, in my mind, shouldn't be this boring
legal lease document. Using that onboarding is also a way of acculturating people.

© 2019 Software Engineering Daily �16

SED 898 Transcript

[00:38:06] JM: How should it be used in onboarding? Should there be a dedicated 16 hours of
indoctrination where the person reads the handbook – Of like a person reads the handbook, or

has it read to them.

[00:38:20] KG: Gosh! I’m debating how sarcastic to be here. Aside from like locking somebody
in a room by themselves with the printed copy of the employee handbook and like an ink pen,

which I don't think you should do. I really like to see a couple of standard programs that
everybody at the company, not just engineers, but everybody at the company gets.

One is about cultural context and the history and the origin story of the company, because that’s

your opportunity to really engage people in the company that they’re joining. People want to
know that they have joined a company that is doing work that matters, whatever that work is,

that it’s affecting customers positively. They want to know that they’re going to be able to affect
people positively.

They also understand like how did we get here? What had to happen in order for this company

to be where it is today where I had just joined? So that program or that opportunity is a place to
talk through all of that information. The second program is a more HR-focused program, and I

think you can really do fun experience with this. This is actually where I mentioned earlier, that
scavenger concept. They actually had people go physically around the building and find

examples of things from the handbook. So they could put two and two together. Meaning, they
were sent a copy of the handbook to sign ahead of time. Then in teams, they got to go out and

actually see that in action and they could check it off and win prizes for that.

So you can be as creative as you want to be and as creative as you have bandwidth to be, and I
would just really implore you not to have people sitting for more than 25 minutes at a time. Just

get them up, get them moving, especially, especially if you have people calling in from remote
offices. Because being on an 8-hour Zoom call is not awesome.

[00:40:17] JM: Okay. Since you brought it up, how should these practices of onboarding apply

to purely remote teams?

© 2019 Software Engineering Daily �17

SED 898 Transcript

[00:40:28] KG: It’s a great question, and I think it's going to become more and more critical as

we’re teams become more remote or companies just go fully remote and not have offices at all.
Though the only change that I really suggest to companies is that you break it up over time, that

you actually have more space between it.

So if you were going to have a boot camp and you were going to put people in sort of
educational scenarios, plus a lab. Then, what you're actually doing is sending – You might send

all of your new hires to a webinar or a Zoom call or what have you in the morning or whatever
time zone makes sense, and that’s your educational component. Then you send them off. They

work on their own. Do that lab exercises and then you bring them back. So you’re breaking up
the day a little bit and really trying to respect different time zones while that's happening.

The other way that I see remote onboarding work really well is the use of tools like Loom and

other video recording software so that you can actually walk somebody through what's
happening while you are doing it or just after especially if the time zones don’t match up that

well. So if somebody's doing one of those labs, trying to actually work through a problem and
the person who’s going to have to respond to that is on 12-hour differences, then you can

actually have your Loom going in the background so that you can share with that person what
your process was like and they can ineffectively debug your process as a new hire.

[SPONSOR MESSAGE]

[00:42:11] JM: When I’m building a new product, G2i is the company that I call on to help me

find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you

can trust. Whether you are a new company building your first product, like me, or an established
company that wants additional engineering help, G2i has the talent that you need to accomplish

your goals.

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also
done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.

These are engineers who know about the React ecosystem, about the mobile ecosystem, about
GraphQL, React Native. They know their stuff and they run a great organization.

© 2019 Software Engineering Daily �18

SED 898 Transcript

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product

development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners

and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to

softwareengineeringdaily.com/g2i.

[INTERVIEW CONTINUED]

[00:44:04] JM: You founded Edify, Edify EDU. Describe how you work with companies and what
your company does.

[00:44:13] KG: Yeah, Edify, it's a learning design company and we focus on building technical

onboarding programs for software engineering and product teams. We – Gosh! I founded edify
almost 5 years ago, which is a little crazy to realize sometimes. We’ve built onboarding

programs for companies like Elemental, and AWS, OpenSkies, Zuvoda, Puppet. All kinds of
amazing companies we’ve gotten a chance to work with.

Our focus is, as we talked about earlier, really try to make sure that teams are getting up to

speed faster in a more humane, dignified way, because to be honest, it really sucks as a new
hire to feel left out of the conversation and to feel not necessarily socially left out, but technically

left out. How am I supposed to engage with this? I came here because I wanted to contribute. I
thought I had great interviews. They seemed to like me.

But more often than not, when I go and do interviews with new hires, I find out that this new hire

has been sitting basically on their own for weeks. It's not a good feeling, and that's one of the
reasons you lose people, is because they weren’t given an opportunity to really use their skills

and to ask questions and to deploy knowledge and to gather new knowledge. It’s basically
wasted money for the company and wasted time for the team.

© 2019 Software Engineering Daily �19

SED 898 Transcript

We didn't really talk so much about the impact to an existing team when a new hire joins, but
there's no if, ands or buts about that. You are going to impact your team. Productivity will go

down on a team level, especially if you're onboarding a lot of people at once, because that team
is going to have to absorb the cost of helping that new hire get up to speed and your onboarding

program should decrease that challenges as well. Should make it a little bit easier for the
existing team to do that.

So that's really a passion of ours, and we try to balance that with the fact that things do change

in our industry so quickly that while documentation is critical, not everything needs to be
documented in the same way that sort of more long-term or concrete processes do. So we love

teaching and building capacity within engineering and technical teams to figure out what should
be taught, what should be whiteboarded, what should be written down and how should it be

organized to make everybody's life easier?

[00:46:37] JM: Why did you start this company? What gave you the inspiration?

[00:46:41] KG: Well, honestly, I've always been a learning designer. My background is in
musicology, which basically means learning design in museum. So I've always been very

curious about how people categorize information. How they use new information, and I kind of
didn't realize that I was doing onboarding in all my different jobs and I was helping people

onboard them to a new job, or help them onboard it to new information that they wanted to be
curious about or wanting to understand.

When I was working, I was working at a web development company. So that was sort of first

taste in 2013, 2014 of what it was like for technical people to onboard into a new company. I just
saw how awful it was, unfortunately. Started hanging out more at user groups in more technical

meet ups and realizing that everybody had this problem. So there was something happening.
Companies are not doing a good job where they weren’t five years ago.

So I realized that I could use my skills to fix that. Edify, as all companies do, has had different

iterations. I had all kinds of aspirations when I started the company, that I was still going to do
museum work and nonprofit education work, and gradually that all sort of fell away and we’ve

© 2019 Software Engineering Daily �20

SED 898 Transcript

just really focused on this technical onboarding piece, because I think that this is – Every

company is going to become a software company. Every company was sort of array moving in
that direction, and we are going to have to figure out how to make this transition in our whole

economy work better and in a more dignified way.

[00:48:22] JM: Agreed. What's your long-term vision for the company?

[00:48:26] KG: Well, to be honest, I actually want to build that software that you and I talked
about, and I've been really disappointed in a software that I've tested and seen clients use. So

I've been sort of brewing that in the background. So my long-term vision is to build that and who
knows what the exit strategy for that is.

[00:48:47] JM: So talk in a little bit more detail. What is the kind of software that you want to

build and what’s your vision for it?

[00:48:53] KG: Yeah. So I want to build software that sits on top of some of the other software
tools that folks are already using in their regular work flows. So it would sit on top of your issue

tracker. It would sit on top of your Confluence or your Google Drive or etc., and it would prompt
you actually to create onboarding plans with really, really simple questions and really, really

simple processes. So it's not an invasive tool that you have to sit down for eight hours and
actually enter all of your knowledge into it, because that's a really challenging way to do it.

So, basically, I am working on taking my five years of experience pulling this, doing this for

thousands of companies that it takes 3 to 6 months to build out a really great onboarding
program for companies. I think that there's a way to that in a much shorter timeframe. Again, not

leaving out people. You still want your managers. You still want your buddies to be engaged. But
a tool that really facilitates that process is what I want to build.

[00:49:52] JM: Very cool. There's a phrase I wanted to ask you about that I’ve heard a couple of

times in various podcasts. The phrase is higher fast and fire fast. Would do you think of that
phrase?

[00:50:07] KG: So I often hear hire slow, fire fast.

© 2019 Software Engineering Daily �21

SED 898 Transcript

[00:50:10] JM: Yeah. You hear all the different permutations of this.

[00:50:13] KG: But there’re different permutations. Yeah.

[00:50:16] JM: Actually, I don't hear hire slow and fire fast. I think that’s the one – Or hire slow
and fire slow. I guess you don’t hear those. Anyway, sorry. Go ahead.

[00:50:25] KG: You do hear different ones. I mean, the one I do here frequently is take your

time, basically, with hiring, because it is expensive. It's a huge investment actually for
companies to even hire just the one person. People don't often realize that. Actually, I built a

calculator to help my clients understand the cost of not onboarding. Having that sort of
onboarding but not good onboarding, and also the investment that will change that equation for

them that will bring that retention and attrition down for them. It's a very expensive proposition to
have a bad onboarding program.

So the relationship I think between the hiring and firing is that you want to spend your time

making sure that you know exactly what you're hiring someone for and that you have the space
and capacity to bring them on and to really actually share their context. If you're not ready or

your company or your team is moving too quickly and you have no choice but to let somebody
just sit there for a while, you should not have hired them. We’re not ready to hire them.

So I think being intentional about when you hire people and how quickly you hire them as long

as you can actually share that information and provide that context, I think that's critical. But the
firing part of it, I don’t necessarily know about firing fast for the sake of firing fast. I think it's

important to communicate always. It’s critical to make sure that people know what expectations
they’re being held to and that we’re not any assumptions about what either one of us knows or

expects as a manager and as an employee. That's another key component of your onboarding
program is to basically illuminate all of those assumptions and expectations. Here's what I want

you to get done in 30 days. Here’s what i want you to get done in 90 days, etc.

If we haven't done that, then tensions will rise and conflict will show up and we won't want to
work together anymore. Then I’ll go to HR and I'll say, “I need this person to be on a

© 2019 Software Engineering Daily �22

SED 898 Transcript

performance improvement plan.” By the time, I don't want to work with them anyway. So that’s

not a positive situation, and that person is probably not thriving either. This might not be a good
fit for them, or this is not the right tech stack for them, etc., etc.

So you do want to go ahead and let people opt out quickly if this is not for them, and an

onboarding program can also do that. I see it is a win for my clients when we get turnover rate
from the 12 to 18 months down to like 3 to 6 months where they’re like, “Yeah, this is not for me.

You know what? I went to this program. I’m out.” That’s a success in my mind.

But I would say that you should not fire fast if you have not communicated those things. You
should always take an opportunity to see what actually did get communicated. What have I

shared? What have I not shared? That’s probably way more information that you want to know
about hiring and firing.

[00:53:34] JM: No. I think it’s a really crucial explanation you just gave, because you hear both

sides of it. I mean, you hear people that say, “I let this person linger at the company three
months longer than I should've. I hired them, and after two weeks I knew this person was not

going to work out and I couldn't bring myself to tear off the Band-Aid.”

But then you hear the opposite case where somebody will say, “I hire this person. At first I
thought they were kind dense. They couldn't really seem to figure out how things work, but they

were so persistent and then two weeks in I thought I was going to have to fire them. Then like
two months in, I'm like “How do I ever live without this person?”

You definitely hear both sides of it, but I think what you put so eloquently is that when you frame

things in – I think this like what draws people to KPIs and OKRs, these like codified objectives
and key results and key performance indicators. So that you can – The thing about the KPI and

OKR system is you sit down and you say, “Okay. What are OKRs? What are the like high-level
goals? Then you say, “What are the KPIs? What are the measurable components that abstract

into the goal either being accomplished or falling short of it?”

It gives you a quantifiable and a qualifiable framework for determining whether somebody is
meeting or falling short of their expectations. That's really important, because otherwise you will

© 2019 Software Engineering Daily �23

SED 898 Transcript

feel a sense of guilt when the time comes to sort of like pass judgment on this employee a

month or two in. If you haven't said those OKRs and KPIs and whatever your framework for
success is, then your conversations could be so much less data-driven. It's going to be so much

more touchy-feely and it's going to be harder to convince yourself you really need to execute
this like severance situation.

[00:55:34] KG: You're totally right. Yeah. I see just so much of that where nobody's been clear

about what the expectations are. How can I hold you accountable to something if I didn't tell you
what the something was? The second layer of that is how do I hold you accountable even if I

told you, but I didn't provide you the tools that you need to actually get it done right. That's
where the learning and the onboarding really comes in.

Not just the saying of the KPIs and the saying of the OKRs, because those are critical, right?

Those are your 30-day, 90-day objectives, etc. However you build out your onboarding plan. I
do like to see – That’s a literal plan, a document, that it is crucial. Whether it's a Google

template that people use or something on Confluence or what have you.

If you haven’t explained what those things are, then how can you possibly know with certainty,
as you say, data-driven. How could you know that they are performing that or not? Again, there's

an intersection here with when we go on our gut and only on our gut, we make decisions that
are biased and we can sometimes exit employees or make it difficult for employees to thrive

when they didn’t necessarily deserve that. Maybe it was a slower ramp up time for whatever's
going on.

Let’s imagine this happens actually frequently with code school brats where it does take them 2

to 3 months to really figure out just the lay of the land and then another two to three months to
really get into the product and really understand it. But they can be such amazing team

members and they really thrive when you are clear about the expectations and you’re clear
about what they’re getting toward. Because I can poke around all day and not really getting

anything done if you just told me to get – I hear this a lot, “Be familiar with the product” I’m doing
air quotes here. What does that even mean be familiar with the products? Especially if it's a

product that has just 3, 4 different ways that you could possibly use it. I think clarity in
expectations is – Maybe you don't take anything away from this conversation. It’s that.

© 2019 Software Engineering Daily �24

SED 898 Transcript

[00:57:48] JM: Right. I've been in this situation, and I've seen a lot of people in the situation
where when you hire somebody initially, there can be this honeymoon per and you're like, “Oh,

I’m so excited about this person. They’re going to do so much. They’re going to solve all my
problems.”

Then the honeymoon can wane. If you haven't set expectations before or during that

honeymoon period, it becomes very difficult because then it's like, “Okay. Well, me and the
employee both know that things are not going as well as they should be. Do I bring it up and

sort of make it explicit that I'm like watching them now and now like they need to be meeting
these KPIs and these OKRs?” Then they're going to start to feel the sense of pressure and it’s

going to feel like they're already under performance review. So just like managing this emotional
exuberance that comes with a new hire is like really important.

[00:58:45] KG: It’s critical, and I think this is also – This conversation is really adjacent to

manager development. Just talking about managing that emotional process and that journey, it’s
about coaching. It’s about being able to coach with Socratic’s dialogue questions and get

somebody to see the logic that they used to solve a problem or the way that they're coming on a
system design or what have you. And when you're coaching somebody, they aren’t going to feel

like they're in a performance management situation. When you wait, when you sit on that issue,
then that's when it becomes really awkward.

It is not awkward when you bring it up the first time. In fact, sometimes – Oftentimes, I find that

people kind of know that something didn't go right and sometimes they just need a little help
figuring out what it was that didn’t go right and how they should rectify that situation or a little

help talking through some possible situations or solutions, different ways to think about it. That
really is a manager's job.

Unfortunately, I see frequently these great software engineers who are amazing technical

contributors get promoted into management before ever getting support on learning how to
coach. So they do wait. They don't really know how to approach these conflict situations that

really are positive conflict. Conflict is not all bad. So we shouldn’t get started on that, because
I’d keep going forever.

© 2019 Software Engineering Daily �25

SED 898 Transcript

[01:00:20] JM: Okay. Final question. We kind of mentioned this prototypical company earlier on,
like it's a company that's maybe four or five or – I don’t know, 10 to 15 people. When they really

start to hit a situation where they need to scale and their onboarding process needs to start to
be codified.

In addition to the onboarding process needed to be codified, these people will need to make the

adjustment of becoming leaders. I mean, some of them may just be able to stay as, whatever,
engineers or operations people. But, generally, as an organization grows, especially if it’s

growing really rapidly, leadership becomes a function of like have you been at the company for
a while? Do you know enough about the company to kind of like lead people?

You may have people who just kind of like stumble into a leadership position. How does the

strategy for these new leaders? How should they formulate such a strategy if they’re not only
like at this point being taxed by the rapid scalability of the company, but now their role is

evolving as well?

[01:01:24] KG: Jeff, that is a doozy of a last question. I’m just going to tell you, but it’s a good
one. So, thinking about how this does happen so frequently where it’s kind of like, “Oh! You’ve

been at the company longest. Okay. You’re going to manage that team,” and you just do grow
into it. It's almost like an unspoken thing. It’s just like suddenly you have two or three people that

you’ve hired, and then another two or three people that you’ve hired and suddenly you’re a
director of a department.

Frequently, I actually work with companies on redesigning their career ladders so that

everybody can be at kind of the right level for them. It's a fascinating thing. From a strategy
standpoint, again, I think without having a well-oiled talent development and HR side of the

business, which most of these younger 10% to 20% companies just don't have, and it does
make sense that they don't have to yet.

But without having that, I think the strategies got to just be about communication. It's got to be

that as the founder who's probably the CEO, as that person starts to entrust more and more
responsibility downthe line and they can't do it anymore, especially as it is happening with

© 2019 Software Engineering Daily �26

SED 898 Transcript

technical founders who are still getting their hands dirty in the product. That has to stop. You

have to start letting people actually take responsibility for things and come up with their
database decisions.

I don’t know if I’m really fully answering your question here. I might be going on a little bit of a

tangent, but I think it’s really about how you empower those new managers to start building out
their teams and start deploying the expertise that they do have, but it’s also the responsibility of

the founding team to start thinking through, “Well, what support do they need? Is there a
lightweight, easy way to provide some support to these new managers?”

There are some affordable and really valuable things that you can do. You can send people to

meet with an executive coach for a relatively small investment. You can send people to
management workshops and camps, and those things can be really valuable too. There’s stuff

you can do from most strategic standpoint even without having a fully built out process for how
management actually happens and works.

[01:03:53] JM: Kristen, thanks for coming on the show. It’s been great talking.

[01:03:56] KG: You too, Jeff. I appreciate the opportunity.

[END OF INTERVIEW]

[01:04:02] JM: Podsheets is open source podcast hosting platform. We are building Podsheets

with the learnings from Software Engineering Daily, and our goal is to be the best place to host
and monetize your podcast.

If you’ve been thinking about starting a podcast, check out podsheets.com. We believe the best

solution to podcasting will be open source, and we had a previous episode of Software
Engineering Daily where we discussed the open source vision for Podsheets.

We’re in the early days of podcasting, and there's never been a better time to start a podcast.

We will help you through the hurdles of starting a podcast on Podsheets. We’re already working
on tools to help you with the complex process of finding advertisers for your podcast and

© 2019 Software Engineering Daily �27

SED 898 Transcript

working with the ads in your podcast. These are problems that we have encountered in

Software Engineering Daily. We know them intimately, and we would love to help you get started
with your podcast.

You can check out podsheets.com to get started as a podcaster today. Podcasting is as easy as

blogging. If you've written a blog post, you can start a podcast. We’ll help you through the
process, and you can reach us at any time by emailing help at podsheets.com. We also have

multiple other ways of getting in touch on Podsheets.

Podsheets is an open source podcast hosting platform, and I hope you start a podcast, because
I am still running out of content to listen to. Start a podcast on podsheets.com.

[END]

© 2019 Software Engineering Daily �28

