
SED 892 Transcript

EPISODE 892

[INTRODUCTION]

[0:00:00.3] JM: The service mesh abstraction allows for a consistent model of managing and 

monitoring the different components of a microservices architecture. In the service mesh 
pattern, each service is deployed with a sidecar container, which contains a service proxy. 

These sidecars are collectively referred to as the data plane. Each sidecar provides the service 
that it is deployed next to with a set of features, such as security policy, rate limiting and 

monitoring instrumentation.

The sidecars in the data plane communicate with a central module called a control plane. In the 
control plane, an engineer can operate across these individual services at scale by pushing out 

updates to them. Kubernetes has made it easier to manage large fleets of microservices and 
has led to wider adoption of service mesh. Istio is one of the most popular service mesh 

products.

In today's show, Varun Talwar it returns to the show to describe the state of the Istio project and 
the process of deploying Istio to a cluster. Varun is the CEO of Tetrate, a company building an 

enterprise-ready service mesh. Prior to Tetrate, Varun was at Google where he helped found the 
GRPC and Istio projects.

[SPONSOR MESSAGE]

[0:01:26.7] JM: Continuous integration allows teams to move faster. TeamCity is the continuous 

integration and delivery server developed by JetBrains. I've always loved the IDEs from 
JetBrains. I've used WebStorm and RubyMine and IntelliJ. Once you start using any of the 

JetBrains products, you realize that this is a company that knows how to build products for 
developers.

TeamCity gives you continuous integration and delivery designed by JetBrains. For most teams, 

TeamCity is completely free, as long as three build agents is enough for your project. For larger 
organizations, there is TeamCity enterprise. The listeners of Software Engineering Daily can get 

© 2019 Software Engineering Daily �1



SED 892 Transcript

TeamCity enterprise with a 50% discount by going to teamcity.com/sedaily. That's T-E-A-

Mcity.com /sedaily.

TeamCity supports most popular programming build tools and test automation systems, version 
control systems and cloud platforms. Whatever the size of your organization is, check out 

teamcity.com/sedaily and get started with continuous delivery.

Thank you to JetBrains for being a sponsor of Software Engineering Daily. If you want to try out 
JetBrains’ TeamCity, go to teamcity.com/sedaily.

[INTERVIEW]

[0:02:57.0] JM: Varun Talwar, welcome to Software Engineering Daily.

[0:02:59.1] VT: Thank you, Jeff.

[0:03:00.3] JM: The service mesh abstraction is something that many companies would like to 

have at this point in 2019, but many companies have difficulty setting it up and deploying it. Why 
does service mesh have a reputation as being difficult to deploy?

[0:03:19.8] VT: Good question. I think before we answer that, I think there is also a confusion of 

what service mesh is. The answer to that, I think is also a little bit confusing to people, which is 
service mesh is not a completely new concept. It's a way to connect all your services securely in 

a platform layer, as opposed to doing it in silos. It being a platform and people running different 
kinds of services in different environments, I think it is not something that is very easy to get 

started on introducing into your organization. That's actually one of the reasons I ended up 
starting this company, Tetrate, is to actually make it easy to get started, adopt and grow with all 

the complexity that you have within an organization.

To answer your question precisely in terms of why is it this reputation of it's not easy to get 
started, I think primarily it's the term is getting popularized via the Istio project that was kicked 

off at Google. I think it was centered mostly around Kubernetes when it kicked off. That 
community picked it up well and got started. I think there was interest from many other 

© 2019 Software Engineering Daily �2



SED 892 Transcript

communities on that concept, but it wasn't really designed for it to be consumable by them. 

That's one I think reason.

Second is it came – because of it being platform and the concept of it doing a bunch of things 
that are today done in code, it is rich on features. I think the getting started process of how do 

you do a specific use case, get it started, was not something that was optimized for, is getting 
better now with the projects. I think those were two reasons why the perception of hard to adopt 

grew.

[0:05:33.3] JM: What are the difficulties of setting up a service mesh today?

[0:05:39.3] VT: One thing to understand, this service mesh is a design concept. There are 
multiple projects, multiple technologies trying to – multiple implementations of that concept, 

right? The real answer to that question lies in which one we are talking about. Let's say we were 
talking about Istio, which is one of the more popular ones, then I think the difficulty starts right 

from what am I doing it for, what problem I'm trying to solve for. I think there has been a lot of 
this, “Let me just try it, because this is the next new cool thing.” Which not starting from a real 

use case with in hand, is one challenge in terms of how people are approaching it.

The second is that it is in order to – if you're setting it up for greenfield applications, I'm building 
new things, it is easier to assume this platform and start building. For brownfield, it's not as easy 

to inject something like service mesh safely, reliably, securely. I think that's the other part of the 
challenge, making it – the promise is there for brownfield, but because it's somewhat of an 

intrusive concept, right? You're having proxies take over your data plane, people need it to trust 
it, it needs to be super reliable, it needs to pass all the checks and balances within an 

organization for it to be really put to production.

I think the projects are evolving to that. The technology is evolving to that, but there are no clear 
guidelines in terms of how you make it happen for brownfield applications, what applications, 

what are the applications you actually do not try this on, or what are they not ready for, versus 
what they are ready for. I think those are some of the real-world translations, or those are some 

of those how adoption happens in real-world and what are all the things that need to happen on 

© 2019 Software Engineering Daily �3



SED 892 Transcript

top of this technology, in terms of best practices, parts of adoption. Those need to happen and 

they haven't happened yet.

[0:08:02.9] JM: Let's talk more specifically. Let's say I've got a company with a bunch of 
services. I have my infrastructure on Kubernetes. If I want to deploy sidecar proxies that are 

envoy to all of those different nodes, what do I need to do to actually get those sidecar set up 
and deployed?

[0:08:24.2] VT: There's not much in Kubernetes actually. With Istio, you it's you can set up auto-

sidecar injection, in the sense that every time a service comes up on a part, sidecar is 
automatically injected and it takes over – that traffic interception takes over your traffic and then 

you're up and running. The vanilla case in Kubernetes with your sample apps this is pretty 
straightforward and easy.

I think the challenge comes when you have specific use cases like, okay, now this service spans 

not one cluster, but 10 clusters. This service talks to not just within Kubernetes clusters, but 
outside the Kubernetes clusters, to different other computes. I think those are the scenarios 

where it's not clearly laid out to people on how to do it.

[0:09:18.6] JM: Does envoy itself have a control plane for interacting with the different envoy 
sidecars?

[0:09:26.0] VT: Envoy project on its own comes with basic Java and Go control plane that you 

can extend on and many companies have done that. Yeah, so the short answer to your question 
is yes.

[0:09:41.6] JM: What does Istio give you in addition to that envoy built-in control plane?

[0:09:47.8] VT: Yeah. Istio was designed for – so one, it was designed primarily for Kubernetes 

first. It's one thing to just manage the fleet of envoys. It's another thing for your control plane to 
be aware of the environment you are running in, right? What Istio did was yeah, I'm aware of 

what services are running in Kubernetes. I'm aware of Kubernetes API server. I'm aware of what 

© 2019 Software Engineering Daily �4



SED 892 Transcript

those are, what their names are, which namespaces they are living in and it tied all that with the 

envoys, such that within Kubernetes, you get one holistic experience, right?

Second one was it added a whole lot of features and configuration mechanism, such that you 
are defining constructs in terms of what you want from your services and not what you want, not 

configuration knobs of envoy, right? If I want retries and timeout policies for service X to be full 
in bar, then that's what I define in a way that I'm used to in Kubernetes environment. Istio does a 

bunch of the translations into the right envoy configurations, making sure it is understood by 
them, it reaches them, they have those things.

The reality is that this experience that Istio first tried is primarily given for Kubernetes today can 

be given in other environments as well, right? One of the things that we as Tetrate are trying to 
do is extend the same concepts to different kinds of compute, right? Because the concepts are 

very generically applicable for application developers and for where they would want to do is 
just define what I want from my application and service behavior, in terms of my networking 

capabilities, runtime security capabilities and default observability that I want for my application. 
Those are all true, even if you are running some other computes other than Kubernetes.

Mesh is really designed to take a whole bunch of capability that was being written up in code 

and bring it into this platform piece, make it part of the DevOps platform layer, such that whole 
lot of cross-cutting concerns around these areas, like reliability and security are built into it. 

DevOps, network admin, security can all participate together to make this platform running, 
right?

This is why it's an interesting and a different operating model for companies, because adoption 

is not just what their technology is, it's how do I adopt it? What do I need to change in my 
organization to actually make it real? How do I take step one? How do I take go from there to 

step two? That is the journey that service mesh is going through right now.

[0:13:07.7] JM: One of the goals of Istio is to help you manage security policies. Describe how 
security policy management works in Istio.

© 2019 Software Engineering Daily �5



SED 892 Transcript

[0:13:20.2] VT: Yeah, people I think loosely say security. Security is a large multi-layered 

concept. The piece that Istio deals with is the run app security, runtime app security layer, which 
is all of your securing all the communication between services. There are two parts to it; there is 

the authentication and then there is authorization.

The first part of encrypting all your requests and traffic from between all of your services without 
you having to write code in every service to do it is frankly one of the biggest things that still 

today attracts many people to Istio. How it works is pretty well, straightforward from a high-level, 
but deep from a technology level. How Istio works is basically as it injects envoy in front 

between the two services, basically all of your service-to-service communication now is taken 
over by the envoys on either side. Then you can define okay, I want TLS communication 

between these services, or in the entire cluster.

There itself, you can see A, how powerful that is, but B, that is also the reason why it can be – 
it's a little bit intrusive and scope-wise, it can bring a fleeting change, right? Imagine if one of the 

services there was let's say, running a protocol that envoy did not understand, or let's say it was 
a storage system where the injection of sidecar caused a performance issue. I think those are 

the areas where Istio needs to evolve to give more choice and give more incremental adoption, 
because people try it. They do it. Because you have the choice of cluster-wide, they do it 

cluster-wide and then something or the other goes wrong and then the user perception is, “It did 
work,” right? That goes back to your first question of why that perception exists. I think there are 

powerful knobs exposed to more widely, needs to be more caution behind exposing them.

The other part, to continue this answer, is authorization, which is one of the big needs in 
organizations is to say centrally, which service can talk to which other service. Within Istio, you 

can define our back style that authorization policy and you can extend it by other authorization 
adaptors to define the authorization policies and then and force who can talk to whom, okay. 

Those are the two big security aspects of Istio.

The concept, if you extend that again to a mesh, which can span across environments, data 
centers and potentially – and clouds is very, very powerful. It starts to make this application 

aware networking layer, which is what I like calling meshes. It's this network layer, but now it's 

© 2019 Software Engineering Daily �6



SED 892 Transcript

aware of all the requests and all that are going through it. I think that is a very, very powerful 

concept. That is where I think mesh needs to go.

[SPONSOR MESSAGE]

 [0:17:14.0] JM: SQL has been around for a very long time. The basics of SQL might not 
change very much from year-to-year, but the underlying technology that implements those 

queries is undergoing constant innovation. The Distributed SQL Summit is a full day of talks 
about building and scaling distributed SQL systems in the cloud.

The Distributed SQL Summit is September 20th, 2019 in San Jose, California. Distributed SQL 

databases can globally distribute data and elastically scale, while also delivering strong 
consistency and asset transactions. The Distributed SQL Summit includes speakers from 

Google Spanner, Amazon Aurora, Facebook, Pivotal and YugaByte DB.

To find out about the latest innovations in large-scale distributed systems infrastructure, mostly 
with a focus on distributed databases, check out the Distributed SQL Summit, September 20th, 

2019 in San Jose.

[INTERVIEW CONTINUED]

[0:18:24.7] JM: You were at Google as a product manager of Istio and GRPC before that. What 
was Google's go-to market strategy with the release of Istio?

[0:18:37.9] VT: Interesting question. From Google's standpoint, there were a couple of things 

were coming together; one is Google had the experience of running an architecture like this in 
their own API platform back-end. A lot of Google API serving works on an architecture like Istio. 

It's not actually still, but it's a very similar architecture of sidecar proxies.

The second thing was as Kubernetes was getting adopted within community and Google, there 
were certain gaps which were evident within that Kubernetes community. Joining those two is 

how Istio came about. My personal experience from GRPC was also, it worked well for people 
adopting that as for greenfield, like if this is how I build my services based on protobuf and code 

© 2019 Software Engineering Daily �7



SED 892 Transcript

generation. If I subscribe to that pattern of building services, it worked well. For a lot of existing 

services where I can't change, or cost of change is too high, there wasn't a clear answer.

That process is then, we came to know of envoy and then pieces came together to form Istio. 
The rest of the go-to market was mostly to align the ecosystem of partners and support of it. 

One of the things Istio did was from the get-go, had bunch of industry partners, not just Google. 
The fact that envoy came from Lyft and then IBM was a participant from day one, and then we 

had other participants like Pivotal and Red Hat who are the key players in the ecosystem joined 
behind the project was I think very impactful from how it was perceived in community, how it has 

quickly risen to the almost one of the de-facto service mesh project of choice.

It’s found its way into most of cloud providers and past platforms already by now. It definitely 
grew way faster than I thought it would. In some sense, almost too fast. I think that is where now 

the maturity of project and the popularity are now catching up. They need to go locked instead.

[0:21:12.2] JM: Can you explain that in more detail? What do you mean that the project grew 
too fast?

[0:21:16.3] VT: I mean, in terms of popularity rate, it became way too popular way too soon, 

right? More people tried it, but it wasn't ready for such wide adoption and wide set of use cases 
from start. That's what I mean. It's gotten quite a bit better in the last six months or so, I would 

say.

Remember, this is in data path technology. People have quite a bit of questions around 
performance. At the same time, it's also very easy to adopt. One thing to understand is if you 

look back at Kubernetes when it was launched and what happened to it a year, year and a half 
from launch, it wasn't very – there was one few key differences. It wasn't this popular this fast. 

Second, the adoption path was different. You have to actually containerize your app, which 
requires for you to rewriting and you rewrite code and stuff. This one is more just inject in data 

plane and get value. It's in that sense, very easy for you to take your step one. That is another 
reason I think people – there is no entry barrier to it almost, right?

© 2019 Software Engineering Daily �8



SED 892 Transcript

The core project has to be mature enough to absorb all of that interest, from different kinds of 

people, right? Istio’s approach too by developers, by actually operators, by SecOps and InfoSec 
people, is approached from all these sets of people. They need to have a clear way to take 

incremental steps to adopt Istio. Incrementally is a keyword, safely is another keyword. I think 
that's happening more and more. It's going to be in much, much better shape by the end of the 

year. This is just a sign of how growing project. It's not very surprising. When something is very 
valuable and easy to get started, obviously more people come through the door, right?

[0:23:25.3] JM: How would that incremental adoption look like? If I'm a company, I want to 

adopt Istio, or another service match technology, how should I adopt it? What should my proof 
of concept within my organization be?

[0:23:42.3] VT: Yeah, so it should be driven by your needs. I would pick the one use case, or 

the one problem that I would want to solve with it and figure out just doing that, just deploying 
the pieces for it, just picking let's say a few teams and few applications, even maybe starting 

with one to get that problem solved for one application. I would start that way. Take something, 
which is as fundamental as for example, canary relays and safe rollouts is another popular 

feature, I would say within Istio. Where in this world of CICD and faster deployments, you 
deploy – now you deploy every few minutes as opposed to days and weeks earlier. Now you 

have multiple versions, newer code getting deployed every few minutes, but you also have to 
make sure that you are rolling out to your users and you're getting real traffic to it quickly.

If you were to pick, let's say, okay, one application. I want to have – let's say canary release is 

done, then I would pick for just solving that problem in terms of how the team can make sure 
that the right configuration, such that they can shift incrementally traffic to newer version, they 

can see the corresponding metrics and performance for that shifted traffic get confidence in it, 
dial up the percentage of traffic to the newer version, take it all the way to whatever, a 100% if 

that's what they want and view back my metrics to say, “Okay, this I feel good about.” Complete 
that journey, just for that component, just for that use case and succeed in it and then move on 

to the next capability. I think that would be my suggested path to begin.

The other one which we are seeing quite a bit is starting with Ingress. Within an application, 
there's usually if you're on microservices path, there is many, many microservices that form it. 

© 2019 Software Engineering Daily �9



SED 892 Transcript

Then the wider the set of services, more are the constraints around what you want from a 

protocol perspective, performance perspective, security perspective. Ingress, if you do Istio- 
Ingress, then I think that people find it as less intrusive, easier way to start. We are seeing that 

across many companies. Start with that and then loan your configuration bits, get confident in it, 
start involving your network teams to be comfortable with envoy, have developer and network 

admin teams collaborate to make sure that this is something they feel comfortable rolling out, 
they get a sense of how to configure it, they can manage that fleet, they get comfortable with its 

performance. Then go on to injecting them in sidecar deployment pattern for more service-to-
service communication.

[0:27:14.8] JM: That term, Istio-Ingress, can you explore that in more detail? What is Istio-

Ingress?

[0:27:20.9] VT: You can deploy, within Istio and within service mesh, there is two concepts, 
right? There is north-south and east-west. North-south is when you have – you actually, traffic 

coming from outside. Or another way to people say that is you don't control both sides of the 
endpoints. It's coming from an external source. East-west is when you control both sides, it's 

internal.

Typically the first pattern has been served by this API gateway pattern for many, many years. 
Kubernetes has this concept of Kubernetes Ingress that you can refine a service of type load 

balancer or group check and expose it outside. Istio basically does allows you to deploy envoy 
as your Ingress gateway, as well as your sidecar proxy. That's because envoy can act as both. It 

actually originated as an Ingress proxy at Lyft.

What that means is typically, for north-south you have slightly different requirements than east-
west. It's obviously less intrusive. You can just put it in front of a namespace, or a cluster and 

not in front of every service. Second, there is defined things you want to do in terms of typically 
you just want to do authentication or some token validation of who is allowed to come in. You 

want basic metrics of how many requests are coming in. Those are easier, well-known things 
you can start to get comfortable with envoy on.

© 2019 Software Engineering Daily �10



SED 892 Transcript

Istio as a control plane, you can drive behavior of both the Ingress proxy or the sidecar proxy. 

Then you can start doing, let's say TLS termination is common. People start to offload 
termination to envoy, as opposed to let's say the fronting, in many cases F5, or any of those 

global load balancers in front. That is a common path of how people get started. It definitely 
gives better behavior than the standard – what standard Ingress that Kubernetes comes with. In 

that sense, you move a level up from where you were used to within Kubernetes at least. The 
same things can be done for other computes as well.

[0:29:50.4] JM: You founded the company Tetrate. Explain what your go-to market strategy is 

for Tetrate.

[0:29:57.0] VT: Yeah, so Tetrate’s whole company is focused on service mesh. We want to 
make envoy and Istio really, really easy to adopt on all infrastructures, all computes, all clouds, 

on all kinds of workloads. We want to provide – so that is one step that we want to do. In that 
direction, we have recently created something called GetEnvoy, which you can actually access 

getenvoy.io. G-E-T-E-N-V-O-Y.io. Which is an easy way for somebody to just get a certified build 
of envoy and get started.

That is the starting position and we get called on, extend that to have more tooling around it, so 

you can operate a set of envoys. We want to do something similar for Istio as well, make it 
really, really easy to incrementally adopt in steps, again on any compute. Then really for us, 

long-term vision is to form this multi-cloud networking layer, which is application-aware, which 
has inbuilt security, which can adapt to most all of the workloads and provide a management 

layer on top, which developers and operators can use. It can fit into the infrastructure of different 
companies.

In terms of, yeah, go-to market, we are early. We are building this product out with certain 

design customers, rolling it out. Now we are seeing more and more companies coming to us for 
the same. It's not publicly launched, but we hope to get that done later this year and go from 

there. Yeah, so the company's about a year and – well, 15 months old at this point, so early 
days.

© 2019 Software Engineering Daily �11



SED 892 Transcript

[0:31:57.2] JM: There are multiple different companies that are building their strategy around 

becoming an Istio vendor. How do you differ yourself from the other vendors?

[0:32:07.0] VT: I think one thing is to make – I mean, one there aren't too many vendors here in 
this space who really understand on running Istio well. Second, in terms of differentiation, right? 

At least I think of mesh as a large platform play, where it needs to adapt to traditional workloads, 
as well as modern workloads. One of the things we are doing is extending Istio to traditional 

workloads as well, which is VM bare metal as well. Making it really, really simple and easy on 
those environments as well. Because, I think for people, for organizations to help them in their 

journey of modernizing, I think it is not only the right thing to do. It's actually very helpful and it 
aids in their acceleration to modernization by having a layer like this available.

I think that's something different. Envoy, for example is a very small, but pertinent example in 

that direction, which is how easy it can be for you if you just have a VMware node to just get 
envoy up and running and front it with your application. Those are baby steps in that direction. 

Yeah, I think that's one. The approach would be one. I think, second is the team. I mean, just 
the whole team happens to be a set of people who actively created, or contributed, or are 

maintainers of these two projects. That's the other part.

[SPONSOR MESSAGE]

[0:34:01.1] JM: This episode of Software Engineering Daily is sponsored by Datadog. Datadog 
integrates seamlessly with more than 200 technologies, including Kubernetes and Docker, so 

you can monitor your entire container cluster in one place. Datadog’s new live container view 
provides insights into your container’s health, resource consumption and deployment in real-

time.

Filter to a specific Docker image, or drill down by Kubernetes service to get fine-grained visibility 
into your container infrastructure. Start monitoring your container workload today with a 14-day 

free trial and Datadog will send you a free t-shirt. Go to softwareengineeringdaily.com/datadog 
to try it out. That's softwareengineeringdaily.com/datadog to try it out and get a free t-shirt.

Thank you, Datadog.

© 2019 Software Engineering Daily �12



SED 892 Transcript

[INTERVIEW CONTINUED]

[0:34:58.8] JM: Do you find yourself competing with other vendors for deals, to help migrate 
them to – or I guess, I should say onboard them to Istio? Because my sense is that a lot of 

enterprises do want this service mesh thing, but they need a lot of help to get there. There's a 
lot of room to differentiate and compete for deals on the access of how deeply you're going to 

help an enterprise with the onboarding process. Do you find yourself competing for deals with 
other vendors?

[0:35:33.9] VT: Frankly, right now, no. I mean, as a startup at this stage, I mean, I think the 

interest we are naturally getting is enough to keep all of us absorbed and busy. There are 
actually more people who want help than I can help today. I have not seen too much of 

competition yet, at least that for me personally. Obviously, my data set right now given that I am 
small is small. Yeah, I'm not seeing that as a challenge yet.

[0:36:07.2] JM: Tell me about your interactions today with prospective customers and people 

who have become your customer. What are the problems that they're having and what do they 
want help with?

[0:36:20.2] VT: Yeah. Primarily you’re right in the sense of how do you help me onboard to Istio, 

given my infrastructure, given my constraints, given my plan of modernization, given my journey 
to cloud, given how I want to increase my developer agility, ops agility? This is the frame with 

which customers come to us. That's I think common for many of them. Really, it boils down to 
having any other thing in this world, like prioritizing and having a plan and having a partner who 

can help you execute that.

Like I said, we are a partner to a few in helping execute that. That journey is very – there's a lot 
of learnings coming into that that we are trying – we are building into our projects and products. 

I think that is extremely fulfilling in terms of what – getting those learnings and putting them into 
the product layer. It's not easy, right? Productizing here is hard, given the heterogeneity that 

people have and the scope that we are dealing with here. It's not an easy layer to really 
productize.

© 2019 Software Engineering Daily �13



SED 892 Transcript

I think, service mesh will go – it's definitely early. It is evolving from interest, to adoption, to 
product, to platform. It will go through that over the next, probably five years or plus. If it goes to 

the platform stage where for an organization, you can assume this layer exists and developers 
can just build on top and all of your organizational workflows are built around it, I think it's 

humongously powerful, in terms of what it does for your agility across the board. Because one 
thing is with all these microservices and all these framework things is like, yes, there is –

developer agility is promised. You forget about the network. You forget about security. Those are 
real – they need to grow lockstep with your developer agility, with your DevOps model. They 

need to evolve to a similar model.

Once you do that, I think you can adapt your networking and security to this model of more 
dynamic workloads and cloud world. I think you can find to save a lot of hours that are today 

spent in just understanding metrics of a service, or understanding health of a service, its 
dependencies and all of that. A lot of that stuff can just be done, assumed as part of the 

platform. That is very, very powerful.

In some sense, I like to think more meta senses, like networking is cool again in terms of –
because I think of it as application of where network brings me to the Sun Microsystems line of 

network is the computer. It is somewhat actually becoming more true again now. To me, a lot of 
intelligence is now going into the links than the nodes. I don’t know if you can think that way. 

That is the reason of why –

As you go to more distributed apps world, the more is demanded of links, the more in-depth 
power is needed in links, the more intelligence is needed in links, so it seems – that part to me 

is super exciting and is promising for this space.

[0:40:01.0] JM: What's the hardest part about building a company in the “cloud native space”?

[0:40:08.3] VT: It's a good question. Well, certain things in company building are hard period, no 
matter what company you're building. Those are generally true. The hardest part is generally 

attracting and retaining good people, so we think. That's my number one on the list from my 
short experience of 15 months as well. Specifically to cloud native, I think people, there's a few 

© 2019 Software Engineering Daily �14



SED 892 Transcript

misconceptions in terms of even what cloud native is. Again, I think people sometimes assume 

cloud is equal to cloud native, which is not necessarily the case. You can have cloud as it exists 
today, got us to provisioning agility. Yes, one-click, me not maintaining data centers and one-

click provisioning of machines and stuff.

Cloud as cloud native, or this notion of I can deploy my application and make changes to them 
at a rapid pace, deploy them where I need to based on the cost, performance, security, 

constraints, and almost think of data centers and cloud as the sea of compute. I can place them 
where it's right to place them and write as a function of as I was saying, your cost, performance, 

security and so on.

If I can do that, then that to me is – that is more how I think of a cloud native style operating 
experience, but more centered around applications, not centered around infrastructure. I think 

I'm a company's point of view, that is what they primarily care about, which is how do I get my 
applications to be more reliable, measurable, secure with my org structure? Then where I 

deploy them is somewhat a secondary concern, right? How I do that is something that should be 
front and center of my experience and I should be able to do that independent of compute, 

independent of the cloud I choose, or data center I’m running on, right?

My thinking is a little bit different, I think from what how people think of this. To me, I think this is 
why if you look at the missing links to get to something like that from where we are, I think you'll 

be able to relate why I think mesh and its future towards this application, or where network layer 
is a pretty important missing piece in this future. That's what got me even excited to start this, so 

let's see how far we go.

[0:42:51.6] JM: The first company to come to market with a service mesh product was Buoyant, 
with the Linkerd service mesh. How does Linkerd compare to Istio?

[0:43:02.9] VT: Linkerd is a great project. In fact, both William and Oliver who I know was doing 

a phenomenal job. In fact, service mesh I think is a name – in fact, the credit even goes to them, 
because I think they were actually one of the first ones to come up with.

© 2019 Software Engineering Daily �15



SED 892 Transcript

I mean, in terms of specifics of Linkerd, yeah, I mean, I think their latest work over the last six 

months or so is pretty phenomenal, in terms of the experience and speed that they are bringing, 
which is great. I think more options is better for consumer. One thing which is personally to me, I 

think, envoy data plane and envoy’s adoption is growing pretty rapidly. The community which is 
adding capabilities and maturity to envoy industry is growing pretty rapidly, an ecosystem there 

is forming at a faster rate. I think that, I would see, if I were Linkerd I would see as a challenge. 
Yeah. I mean, otherwise, both William and Oliver are doing a pretty fantastic job.

[0:44:06.8] JM: What about from an engineering perspective, what are the design decisions 

that Linkerd does differently than Istio?

[0:44:12.7] VT: From an engineering point of view, look, I think there is – going back to the core 
data plane, I think, so they've launched a new data plane which is Rust-based, which is fast, 

which is what is bringing a whole bunch of data plane resource utilization games that they've 
been talking about and speed, which is great, right? I think. I think for this to be widely adopted 

beyond ecosystem purely from engineering, I think you need it to adapt to – there's a whole 
bunch of things you need in the data plane, because this whole concept is about centrally 

managed and locally enforced, or centrally managed and locally executed, where you can 
define centrally what behavior I want, but locally running proxies can actually enforce those.

For that locally running proxies to adapt to different workloads, you need protocol additions and 

envoy is already adapting to a bunch of non-HTTP protocols and more are getting added. 
Second, performance [inaudible 0:45:15.4], just lot more people working on tuning of 

performance of envoy. Third, in a world of this, you want to have specific injected behavior, like I 
want to check on whether a given request payload has – or forget payload. Or, even header has 

any SQL string, or I want to do something on the payload and I want to write certain custom 
behavior, which is pretty common to, I want to do certain checks on whether this request is 

allowed to do. I read something, inherit that in payload and make that decision.

These are just examples in authorization space, but this need of customizing the behavior of 
these locally running proxies is another from an engineering point of view, a need. Then that is 

also a place where I think envoy with its efforts is a little bit ahead and growing faster. For me 
personally and obviously for our company, we are placing our debt on envoy and Istio. Frankly 

© 2019 Software Engineering Daily �16



SED 892 Transcript

to me, I think the larger vision of enabling this service mesh for the organizational impact is way 

more important. Let's say, five years from now there is an even better, faster magical data plane 
that we do, or someone else does, great. We should adopt that.

[0:46:42.8] JM: Do you think that the service mesh war is winner-take-all?

[0:46:48.9] VT: No, I don't think so. For a while, it will be – there will be many implementations. 

In the long-term, probably one is going to win, I think. The reason is I think, they'll be – again, 
because the core plumbing is off the mesh in terms of the data plane and the protocols and its 

performance characteristics, it having all the buy-in from all the organizations, it being 
compliant, the set of things that need to happen to the core plumbing for it to be widely adopted 

is a pretty high barrier. I think it'll be difficult for multiple things to cross those barriers.

Where you'll have choice, so in that sense, one will win. Where you'll have choice is the platform 
piece, where you can have adaptors and different companies. Let's say for example, I want to 

have a very – I have a vendor when I used to do threat detection, the specific – this whole 
bunch of companies that help do that. I want to take signals that are coming from this layer, but I 

can then plumb in my third detection software, awesome. There will be companies providing 
that, and so on like this. I think there, you'll have many, many choices. Same for let's say, even 

observability or security. On the core foundation, I do think long-term, one will win.

[0:48:14.0] JM: Varun, thank you for coming on Software Engineering Daily. It's been really fun 
talking to you.

[0:48:16.8] VT: Thank you, Jeff.

[END OF INTERVIEW]

[0:48:22.3] JM: At the beginning of 2019, we had problems with Software Daily, which is our 

custom-built website and mobile app set. The website was not engineered properly and our iOS 
app was buggy. Everything needed redesign.

© 2019 Software Engineering Daily �17



SED 892 Transcript

To help us refactor our cross-platform application, we brought in Altology. Altology is a full-stack 

software engineering firm that helps innovators build worthwhile products. Altology will help you 
get your project or your company to where you want them to be. They can rescue your project, 

they can augment your team, they can help you get a new version of your product out the door. 
If you're building a brand-new product from scratch, Altology can also design and develop web 

and mobile products that are brand new.

The Altology team is entrepreneurial, they’re design-focused and they're able to work across the 
stack. To get help with your engineering projects, check out Altology today by going to 

altology.com. That’s altology.com. Thank you to the Altology team for helping us get Software 
Daily to where it is today, and for being continued friends of the show. If you need help with your 

application, check out altology.com.

[END]

© 2019 Software Engineering Daily �18


