
SEDFB 06 Transcript

EPISODE 06

[INTERVIEW]

[00:00:00] JM: Nick Schrock, you are an engineer who was working at Facebook for a very long 

time. You are now working on your own company. Welcome back to Software Engineering Daily.

[00:00:08] NS: Thank you. 

[00:00:09] JM: When you joined Facebook, the application code was not in great shape. 
Facebook had grown very rapidly. They were not many unit tests. The code had anti-patterns 

throughout. Tell me about the state of Facebook's software monolith when you joined the 
company.

[00:00:26] NS: Yeah. So I’d like to explain this story through metrics. So I believe I was 

engineer 180. The company was about five-years-old. We were just on the cusp of getting 2 
million active daily users, part of me active month at least. Then the number of unit tests in the 

code base, I’ll give you one guess, it was zero. Correct. It was zero. 

What I would say is that I was shocked at some of the state of the engineering at Facebook, and 
then amazed. Maybe amazed and appalled simultaneously. The things I was amazed at was the 

bias towards velocity. I never worked in an environment like that, and when I was told you’re 
going to be expected to commit code on day one,” and that code chipsets production every 

single Tuesday, and I didn't even process it, because I had never worked in an environment like 
that. That's extraordinarily liberating, and the company was forced to build infrastructure around 

that. 

But then when you hopped into a particular file in the PHP code base, I would lose the healthy 
color of my skin and looked like a scandalized ghoul of some sort. So it was a really interesting 

time. It was actually – It was all these ironic things, where it was a testament to the overall 
quality of the engineers that they were able to be productive and not much of a hostile 

environment. But I always like to give the analogy that every engineering organization needs to 
decide how much time they’re going to spend cutting down the trees and how much time they’re 

© 2019 Software Engineering Daily �1



SEDFB 06 Transcript

going to spend sharpening their saws, and it was clear at that juncture, and the company 

realized that there was an imbalance there. 

[00:02:07] JM: What was it that made it so that Facebook knew it had to shift from building new 
things really rapidly to doing some cleanup? Was there some acute set of problems that were 

actually causing Facebook some issues?

[00:02:22] NS: Yeah, I think we were just pushing a lot of bugs to production. They were starting 
to hire more experienced engineers, and the feedback those engineers would give to the 

powers at be was very strong, blunt and consistent. Then I think all the engineers just knew 
intuitively that there was something wrong, and the leadership to their credit understood this as 

well. 

[00:02:46] JM: How did you prioritize what needed to be fixed?

[00:02:50] NS: The tools that Facebook typically used in terms of prioritization was a process 
called headcount. Meaning, it's actually very simple. You decide what company priorities are 

and then you set goals in terms of staffing. So the way that a company communicates its 
priorities is who gets assigned to what project. So the company effectively, both in terms of 

bottoms up, because the engineers in those days had a lot of latitude to work on they want, 
work on what they wanted. But also the top-down – In a top-down way, the engineering 

leadership gave space for a lot of really talented engineers to work on the core infrastructure. 

[00:03:31] JM: Now, that top-down versus bottom-up management, you did hear a lot about 
Facebook being a fairly flat organization. What was the management strategy in the earlier 

days? Was it just kind of people figured out what needed to be done and it sort of 
spontaneously happened, or was there management that needed to occur?

[00:03:55] NS: So there’s definitely management. It was definitely flat. The team I joined out of 

boot camp, which is our process for spending up inside the company, it was called Comapps, 
and this is a collection of what I like to call probably the 18 least manageable engineers in the 

entire company that were responsible for 80% to 90% of the surface area of the product. So that 
one team was responsible for managing messages, chat, events, groups, the profile. Effectively, 

© 2019 Software Engineering Daily �2



SEDFB 06 Transcript

the entire site except for the newsfeed and except for the kind of account sign-up flows that the 

growth team worked. 

I mean, now if you count that, I don't know how many engineers today cover that same surface 
area product, but like hundreds, and managing that group was a challenge. But, meaning, if it's 

bottoms up and flat, it doesn't mean that there's no management. It just means that the 
managers need to approach their job differently and need to guide and persuade their engineers 

rather than command them. 

So the management was certainly able to direct the work, and then Zuck implicitly did have a 
effectively dictatorial control over the product and was very influential, and he could set priorities 

and then the engineers would have to respond. 

[00:05:18] JM: So you were referring earlier to some metrics-based ways of describing how the 
infrastructure was starting to bump up against issues. The number of users and relative to the 

number of unit tests was infinite. So it was clear that there had been a pattern of people putting 
band-aids on things and not fixing the fundamental problems because there were such scale 

and there so much to build and so many new ideas. 

Was there a problem with the engineering culture or was there an adjustment to the engineering 
culture that had to be made in addition to recognizing that, “Okay, we need to switch into fixing 

mode.” Were there cultural elements that needed to be fixed?

[00:06:05] NS: Honestly, I think there is just the collective knowledge and an acknowledgment 
that it was a serious problem. To be clear, I don’t know if the company made the wrong 

decisions in terms of – I think they went too far in terms of not building infrastructure I think with 
just establishing a little best practice early on. But I think that most companies bias towards 

building too much infrastructure. 

I like to say that infrastructure is a problem you have to earn, because if you build infrastructure 
for a product that no one uses, what's the point? I think engineers naturally want to build too 

much infrastructure, myself included. In my previous companies, I had built all these 
infrastructure for products that didn't achieve product markets fit. So what was the point?

© 2019 Software Engineering Daily �3



SEDFB 06 Transcript

[00:06:47] JM: Meaning internally, like internally you built tools or you built –

[00:06:51] NS: I build kind of the tools that the other engineers use to build the product, but we 
didn't know what we were building. So the infrastructure has to match the product that you’re 

building. So unless you have super high confidence you product market fit, it's actually good to 
bias towards fast iteration and working in the domain of your business rather than the domain of 

your infrastructure. 

[00:07:13] JM: It’s funny, when I talked to Brendan Burns, who made Kubernetes. Before he 
made Kubernetes, he actually built internal search infrastructure that nobody used. He built it. 

He spent a ton of time crafting it and architecting it, and then nobody used it. Then he took 
those lessons and built Kubernetes. It sounds like you had similar lessons, because within 

Facebook you did build a ton of tools that people actually use. You built frameworks that actually 
had earned their worth in existence. 

Can you give an overview of some of the frameworks and tools that you built at Facebook?

[00:07:49] NS: Yeah. So the bulk of my career was spent building the abstraction stack that 

ended up being externalized as GraphQL, which is now a relatively successful growing open 
source technology. So that journey started. I was assigned a project that all the other – And I 

wasn't senior at the time. Meaning that the existing engineers who probably had the capability of 
actually doing it avoided the project, which is probably a warning sign I should have heeded. So 

I really gotten over my head, and that project was trying to unify our infrastructure between our 
concept of pages, which are public. Meaning, a public user’s product, an entity that has a follow 

graph and not a friend graph, and our traditional accounts, because we wanted the site to 
behave more like Twitter, where everyone was on the same account abstraction. It became 

relatively clear early on that that was a software abstraction problem, because migrating 
everyone was not feasible and there is huge investment in both products. 

So that kind of started me on this journey of trying to unify those concepts in software, which 

effectively led to the realization that we needed a coherent business object model for our site, 
which hitherto had not existed. So that ended up being reified or made real in a framework 

© 2019 Software Engineering Daily �4



SEDFB 06 Transcript

called ent, short for entity. So this is kind of the base object model of the site now. So there's an 

end user object and an end event object, etc., etc. 

Then on top of that was stacked a system called end query, which was effectively a query 
language you could express with a PHP DSL. It was mostly modeled on the Link, which is 

the.net framework abstraction, but it was modeled on Link spiritually. Link is super powerful and 
beautiful because it has explicit language support for it, and ent query did not have that. 

Stacked on top of that was a system called FQL ent. FQL used to be the primary way that 

developers would access the Facebook platform, meaning our external users. A SQL-esque 
DSL over our object graph with the higher level abstraction that ent query provided, we're able 

to express our FQL tables in terms of a very, very thin wrapper on top of the ent query 
framework. So that I was able to replace a massive amount of platform-specific infrastructure. 

Then on top of that was our API to serve our internal developers, meaning companies that 

worked within Facebook, and that’s what GraphQL was. So that was kind of the final 
materialization of that entire journey, because we had built this internal abstraction stack that 

really fit the needs of our product. Then GraphQL was kind of that PHP API, but then expressed 
as a query language that you could express as a string and send over a network. 

[00:10:48] JM: Now, you had a lot of success at Facebook compelling people to move in the 

direction of these abstractions that you were suggesting to them. Was there any lesson around 
convincing engineers to move in a particular direction that you learned early on?

[00:11:09] NS: I don't know if I learned it early on. I had instincts and then I was able to 

backwards engineer kind of a coherent or semi-coherent philosophy around this. So I call this 
evolutionary means for revolutionary ends, the art of changing large software systems in place. 

Now, that's a mouthful, but I am a firm believer in incremental process. But incrementalism 
doesn't mean heavy incremental goals. So the goal was to transform and revolutionize the way 

that product engineers at Facebook worked. But the key thing was to chop up the work into 
incremental milestones and objectives such that it was actually feasible. 

© 2019 Software Engineering Daily �5



SEDFB 06 Transcript

This interoperates with reality on a number of dimensions. One is that you actually don't know 

what the end state is until you're closer to the end state. Two, you need to bring your users 
along the way, because if you jump directly from zero to N, it’s going to be too much for them to 

absorb. So you need to bring your users along the way, incorporate them into the process, 
because if you do incremental chunks, they end up participating in the infrastructure, which is 

key, and then you can also be flexible in terms of aligning your journey while still holding that 
vision in your head to the organizational needs at the time. 

I think this approach is critical, because programmers naturally are often ideological creatures, 

and they want to proceed. They believe that a certain way is correct and they want to proceed 
from point A to point B in a direct line and get to the final answer. If they’re unable to persuade 

people to do this, or they run in some technical barrier, but the non-technical ones are the most 
fraught actually, because it's extraordinarily frustrating when you believe you have the right 

answer and other people don't believe you. 

That's when you hear engineers complain about politics. There’re a couple kind of politics in 
companies. One is the really bad kind when someone is locally optimizing and not maximizing 

for the global optimum. That's about politics. The good politics is the process of deliberation 
about what's the right path forward. Unless you have a totalitarian company, there's going to be 

discussions and compromise, and sometimes that means you don't always get what you want, 
and that's very frustrating. So you need to be able to navigate that process, and that interacts 

with the technical process. 

So, incremental process, but without compromising on your eventual long-term goals, and part 
of that incremental process is also picking your right clients. So I would always say you start 

with a single client. You deeply engage with them. Hopefully there's a pre-existing trust 
relationship. If there is pre-existing trust and you're on the ground with them, they're willing to 

tolerate mistakes, deal with changing APIs. Through that process, you kind of start to dial in on 
the fact that you might be building the right thing. Then you might expand to three clients, ones 

that are overlapping, but not totally overlapping, because you don't want to over fit to one use 
case. You want to kind of capture a minimal N-clients that represent, say, like 80% of the use 

cases in the company. Then only once you’re really confident that you have product market fit, 
then you really go aloud. 

© 2019 Software Engineering Daily �6



SEDFB 06 Transcript

Then I used to tell the people I work with just like, “You should think of this like a political 
campaign, but with extremely informed constituents that have a lot of skin in the game.” What I 

mean by that is just like in a political campaign, you need messaging. So it's not just about 
having the right technologies. Having the right messaging that feels authentic and aligned with 

that technology. In any sort of non-trivially large organization, you will have to repeat that over 
and over and over and over and over again until you are so sick of yourself saying the same 

thing. But it's just absolutely critical to be able to have message discipline and understand what 
everyone needs, and understand that people, when you say something, hear different things. 

That can often be a fraught process to navigate. 

[00:15:38] JM: And what's so important about it is at a company like Facebook where you have 
some degree of engineer autonomy and some degree of bottoms up process, you really have to 

make your case to people, because it's not just like you can introduce some tool and force 
people to use it. They're going to adapt it if they like it and there's probably no competing ideas 

in the company. You're going to really have to make a strong case. So can we make this 
concrete with some example of a tool or some fix that you made within the company?  

[00:16:14] NS: So let me think about that. I think, broadly, at Facebook, the internal dynamic, 
and this is where you have to understand the dynamics of the business, is that feed was the 

center of the universe both in terms of the business, meaning that's where the company drove 
all its engagement and eventually made all its revenue, but also in the technical dynamics of the 

product. Meaning that every single team in the company effectively needs to integrate with feed. 

So if especially in the data fetching layer, if you were able to convert or have the momentum to 
convert feed, naturally, the abstraction would spread organically across the company. I used to 

say as feed goes, so goes the app. Meaning that that technology which is deployed to feed that 
is generalizable, obviously there's some feed specific infrastructure. That will end up leaning 

through the rest of the organization. 

Yeah. So I think that's kind of the generalizable answer, and I think the other thing was just 
maintaining relationships. Understanding who were the – I mean, I hate this term now, because 

© 2019 Software Engineering Daily �7



SEDFB 06 Transcript

it's been polluted, especially post-fire festival, but the influencers within the company. Not 

Instagram models, but the engineers who actually did stuff and who could in turn convince other 
people to do stuff. 

So I attempted always, especially when I was more junior and didn't have the credibility myself 

to affect change, maintaining very good relationships with the senior engineers, getting 
feedback early in the process, responding to their feedback so that they felt they had some skin 

in these abstractions. Then they advocated for it. Then once you get a sufficient corpus of kind 
of influential engineers who both just do stuff on the ground, but also have a voice, then things 

end up kind of unrolling as they will. 

[00:18:15] JM: How does one become an influencer engineer? 

[00:18:18] NS: We had this internal tool later in the company that tracked – Had a graph of 
relationships between people in terms of code reviews. So every time you submitted a PR, in 

today's parlance, what we call the dif, you would say, “Hey, I want these four people to review 
it,” and naturally the people who were the most influential had the most kind of inbound edges in 

that graph, and it actually did really match the perception within the company of who were the 
strongest engineers. 

This is kind of frowned upon a little bit in today's world, but I still believe that engineering quality 

and productivity is a power law, the mythical 10X engineer. Well, I don't think it's mythical. I think 
there are 10X engineers, and those 10X engineers naturally become influential. 

[00:19:07] JM: And is that the case whether or not they are good vocal communicators? 

[00:19:13] NS: I considered multiplicative. Meaning that the really impactful people, at least if 

you’re doing infrastructure, are those who can both do work on the ground and therefore 
intuitively understand the needs of the developers. But then you can think of this like a multiplier 

effect. If you're able to communicate that effectively as well, that kind of multiplies your impact. 

So there are so very influential people who aren’t are as communicative, but often they did it 
through other means. Instead of going and doing a lot of schmoozing and public speaking, they 

© 2019 Software Engineering Daily �8



SEDFB 06 Transcript

would write documents, and documents can be extraordinarily higher leverage as well. So you 

need some form of communication capability, but people on the ground are – We used to say 
code wins arguments, and that was a culture we try to maintain, and that serves us well. 

[00:20:04] JM: Facebook had a platform that was totally unprecedented in software architecture 

is my sense, and some of Facebook's weaknesses eventually became strength. So it was the 
first high-scale PHP application. So it was forced to build HHVM. It’s one of the first products to 

really deal with mobile infrastructure and performance at scale. So that led to GraphQL, 
arguably, React Native. 

When did you realize that the problem set at Facebook was unprecedented and that you were 

going to need to slaughter some sacred cows, build some completely new abstractions that 
might fly in the face of conventional computer science?

[00:20:53] NS: I mean, I don't think I ever realized it. We’re just working trying to solve these 

problems. I never like – I didn't even realized at the time how that anything was particularly 
innovative was happening, because we didn't really have – It was a fairly cloistered world. It's 

kind of actually only after the fact that I realized that a lot, the PHP code base at Facebook 
between, say, 2008 and 2013, had a innovations that are only now just spreading across the 

industry, which is kind of bizarre if you think about it. 

So now one of our favorite tweets ever. I forget who tweeted it, was in like every React 
presentation for the first two years of life of that project was someone in a critical way tweeted, 

“Facebook: Rethinking best practices,” and it might have been even worded more aggressively 
than that. It was not an approving tweet, but we were like, “Yup! That's exactly what we’re 

doing.” Because we maintain – It’s called like the beginners mentality, where you try to strip 
away previous orthodoxy and try to approach problems from first principles. Then I think that 

combined with some of the unique properties of the problems that Facebook was trying to solve 
kind of, plus the personalities and capabilities of the engineers in your organization was really 

kind of a magical mix.

Now that a lot of us have kind of sailed off into the sunset or have worked at other companies, 
only after the fact did we really realize that that was a special time and a special group of 

© 2019 Software Engineering Daily �9



SEDFB 06 Transcript

engineers, but at the time we were just solving our problems and doing our jobs and just very 

focused. 

[00:22:38] JM: In trying to think about the archaeology of the Facebook infrastructure versus 
the Google infrastructure, this is may be like overly contrived or like telling a story in my head. 

But one thing that stands out to me is that Facebook is like this huge opportunity that just grew 
and grew and grew and there were emergent patterns in the software architecture that, as 

you're saying, only in retrospect look beautiful and important and innovative. Whereas Google is 
like this – They do all these planning in advance and they come to this beautiful abstraction that 

is really well thought out and informed by traditional computer science principles. 

Do you have any perspective on what the difference is in Facebook software development 
strategy versus Google’s?

[00:23:31] NS: So I think there's a couple dimensions here. A lot of this is just downstream from 

the personalities and background of the founders. So Zuck didn't graduate from Harvard. Was 
very into the kind of hacker mentality of often compromise solutions, but in favor of velocity, 

whereas [inaudible 00:23:55] with PhD's, and then the nature of the applications they ended up 
building – I mean, Google is a text box, and then a list, but backed by extraordinarily 

sophisticated infrastructure. 

Facebook is almost the complete – If Google is the ultimately verticalized app with a tiny sliver 
of surface area that is user-facing, Facebook is like the opposite of that. Meaning that an 

incredibly wide surface area with tons of concepts that are interrelated in complex ways both in 
the product and in the infrastructure, and then the technology ends up matching both the nature 

of the product, which is in some ways a personification of the founder’s personalities and the 
staff who implements that, which again is also downstream of the founders and the early team. 

So they are just two very different companies, especially in the early days. Kind of all – While 

the tech companies end up like kind of have – As they grow and have broader, they staff their 
companies from a broader subset of the population. They end up somewhat converging culture-

wise. As they expand into other domains, that often overlap. But I would say that's kind of the 
primary – The reason I would say. 

© 2019 Software Engineering Daily �10



SEDFB 06 Transcript

[00:25:21] JM: The tool that your best known for is GraphQL, and GraphQL grew out of issues 
with mobile infrastructure and data fetching, and we've covered it in detail in previous shows at 

a technical level. But to come back to what you said about the evolutions and revolutions and 
change within a software organization, you built GraphQL, but you also evangelized it effectively 

internally. Can you describe the process for your evangelism of GraphQL?

[00:25:51] NS: Well, It it was one of those tools that evangelized itself in a way because of a 
couple reasons. So one is there is the origin story of GraphQL. So this is a great story. So we 

had transitioned – We had tried to build the mobile app on top of HTML5. This is called 
Faceweb. It's notoriously one of the biggest clusters to redact language in Facebook history. 

Other events have superseded this, but market at one point said that this was the biggest 
mistake in the company's history. So the decision was made to do a full pivot to mobile and 

rebuild the apps using more traditional native technologies. 

Now, the issue was is that we had hired a lot of outside expertise who were incredibly talented 
mobile developers, but didn't have deep grounding in the Facebook infrastructure and actually 

they were prototyping this thing and building it over FQL, which serves our external developers. 
So they were building is over a three-year-old feed. It was missing all sorts of feed type. It just 

like wasn't – They weren’t going to succeed doing that. 

One of my friends who had been kind of one of my – Both a close friend and also early 
consumer of almost every technology that I participated in. A guy name Bo Hartshorn. He joined 

that team and realized very quickly what was going on and he got started stopping by my desk 
every week and be like, “Schrock,” he would say this more colorful language, “but we are in 

trouble here, and if you are someone doesn't engage in fix as data fetching thing, like this isn't 
going to work.” 

I was working on some – Something that wasn’t nearly as important, but I'm stubborn. So he 

kept on doing that. Maybe the fourth time I was like, “Oh, this is important.” When you're doing a 
massive technology shift like that, you’re kind of shaking up the snow globe with every crisis as 

an opportunity. While the snowflakes and this snow globe are settling, you can kind of change 
the landscape a bit. 

© 2019 Software Engineering Daily �11



SEDFB 06 Transcript

So this is both a critical juncture in the business, because we are about to IPO. We are about to 
be accountable to shareholders every three months. So we couldn’t just like stop development 

on things. As a private company, we needed to start making money on mobile. We needed to 
start having a good mobile experience. I don’t know if you remember, but like the mobile 

experience was awful. It was so bad. This is a type of shift in technologies that kills companies. 
Seemingly, unassailable empires get consigned to the grave on the stuff, like Yahoo is an 

example. 

So it was totally obviously mission-critical. So just kind of the timing was right for this type of 
thing, and was spoken at this, and then I’ve seen some things that Dan was prototyping, Dan 

Schafer, one of the GraphQL your co-creators. Then kind of inspiration hit and built this thing. 
Now, we were working very close to the iOS team, but what really kind of made this the easiest 

thing to sell that I've ever dealt with was when we ended up building a tool, which is now called 
GraphIQL, GraphIQL. We love our puns. This was a tool – Yeah, I was talking before about 

messaging. The easiest way to have messaging that's consistent is to somehow embed it in the 
tools that the engineers interact with. 

Literally, I could go those same influencers that I mentioned, the engineers, not the fire festival 

people. You could go to them and slap this thing in front of them and be like, “Start typing,” and 
then things would fly up and they’d be able to construct query very quickly and they’re like, “You 

want that?” They’re like, “This is incredible.” 

So having a quantum leap in tooling that’s visual, that's instinctual, makes it very 
straightforward, and then to double on to that, the first thing we built this for was feed. So that 

natural dynamic of as fee goes, so goes the app also kicked it, which made this – Actually, our 
problem was that technology spread too quickly. After we launched the iOS app, Zuck started 

exerting pressure to get GraphQL to be driving our profile like the second-biggest surface area 
in the site. So then you're in the stage where Mark is just kind of like walking by and being like, 

“When is profile going to be done?” Then we call this the Eye of Sauron where you don't like it 
when it’s on you, but then you miss it when it’s gone. 

© 2019 Software Engineering Daily �12



SEDFB 06 Transcript

So that was actually one that I wish – I retrospect, I actually wish we could've clawed back the 

adoption and done it in a more modest pace and broadens more mobile expertise, especially in 
Android, which ended up being kind of our most fraught GraphQL offshoot and being able to go. 

So kind of lesson learned there in terms of mistakes that we and I have made in my career. So, 
yeah, embedding something in the tooling to make it blatantly obvious what the value is is very, 

very effective. 

[00:31:15] JM: How did the evangelism strategy changed as you went from this project being 
internal to open source. 

[00:31:23] NS: Well, once it went open source, Lee became the architect of the project, partially 

because he came up with the launch in the evangelism strategy, which, to be honest, I can be a 
little more upfront about this now, I guess, is that I didn’t think it was going to work. So I was a 

GraphQL manager at the time and I was trying to convince Lee, “Oh! We should open source 
this thing,” because we were kind of an open source momentum. React had been open source 

great success, and we were trying to open source Relay, which you can just think of, take 
GraphQL and React and smash it together, and that's Relay. In order to open source Relay, 

we’d have to open source GraphQL. So I called this my Byronic fantasy, because his name is 
Lee Byron. 

He’s tough to convince of things and then he came back and he’s like, “This is what we’re going 

to do. We’re going to write a spec, and then we’re going to write an unproductionized reference 
implementation of this in JavaScript.” I was like, “You're out of your mind,” and they show me 

some of the ideas and I was like, “You’re completely changing the whole system.” It took me a 
while to come along with the changes to the system and then being one of those brilliant 

redesigns. The number of very elegant subtle decisions that Lee made were was extraordinary. 
It’s an extraordinary piece of work. 

But I was still skeptical about this spec. My position was like no one’s going to read it, let alone 

implement it, but I was wrong, very wrong. Within six months, it was implemented in most major 
programming languages. Then, in fact, people were already trying to implement it before we 

release the spec. Actually, one very prominent member of the GraphQL community, Mikhail 

© 2019 Software Engineering Daily �13



SEDFB 06 Transcript

Novikov, he was explained to me how they had actually implemented a server of it before we 

release the spec by sniffing the network traffic from their iOS devices. I was like, “Okay.” 

So that changed the evangelism, for sure, but by the process of the spec did not just improve 
the technology, but also improved the messaging, which made it we could come out, we had the 

spec we really strive to make it written in plain English. It’s one of the only specs that I know. I 
mean, I'm biased, but that where you can go and look it up and read it, and it kind of like reads 

like a normal document rather than like an insane spec. You can read it and kind of graph the 
system, which is good. It kind of opens with a preamble of like, “Here’s the philosophy of the 

system.” That is still quoted today at large. 

So I think the evangelism changed, now that I think about it, that it was more formal. We had to 
formally write everything down both the technology and the messaging, and then you have this 

surreal experience, where then as the technology grows, you see people on YouTube like 
[inaudible 00:34:13] your shtick. You’re like, “I wrote that in a document. Now it's being repeated 

by someone who is explaining almost better than I am, or I can, or we can.”

So I think the lesson I would take away from that is, one, believe in the external developer 
communities, because branding a GraphQL engine is hard, and people did it over and over 

again. So that's extraordinary. Then also having this formalized written out messaging is very 
high leverage, because if people end up reading it, absorbing it, and then repeating it to other 

people, you have this kind of viral spread of the ideas, which is just as important as technology. 
Not maybe as important, but is a very necessary complement to the technology. 

[00:35:01] JM: Which brings me to the question of Facebook open source versus other open 

source solutions. So with GraphQL, and JSX, and React, and Facebook's suite of open source 
technologies, Facebook really changed the world of open source, and it really changed the – I 

mean, in the React world, the way that people use JavaScript, and JavaScript frameworks. Do 
you think Facebook open source was better from a technological standpoint than Angular, and 

was GraphQL better than something like Falcor, or was it a matter of the evangelism and the 
communication skills of Facebook that made the Facebook technologies win out?

© 2019 Software Engineering Daily �14



SEDFB 06 Transcript

[00:35:48] NS: So I'm inherently biased, but I do think it was the quality technology that won 

out. I think also part of it was that Facebook style of app is far more aligned with the majority of 
business apps in terms of their requirements than Google. Meaning that – Like I said, the core 

product of Google is a text box and a list backed by very sophisticated infrastructure, and 
obviously they spread in other domains, but that's the core culture of their company. Whereas 

Facebook is a big complicated app with lots of interrelated concepts and really complicated 
application ontology, etc., etc. 

So the solutions that we built were far more geared towards that, which is much more like any 

other business apps that you see anywhere. Every business app I know has tons of different 
concepts, and like the UIs change all the time, and it's complicated. They have complicated 

business logic. They don't necessarily have complicated infrastructure problems. Now, 
Facebook solves complicated infrastructure problems as well, but we have the complicated 

business logic. 

So I think I'm biased. I believe that those frameworks are qualitatively better. I might get I 
ntrouble for saying this, but I like to say Angular is when you take the worst ideas from Java and 

port them to JavaScript. Whereas React feels like a much more JavaScript native solution in my 
view. Now, JSX haters will probably disagree with that, etc., etc. But I believe that the solutions 

are qualitatively better, and they fit the domain. 

Let’s take Falcor versus GraphQL. One of the big selling points of GraphQL, this also plays in 
what I was saying before is that you modulate your messaging to the current technical reality 

sometimes, because one of the big selling points of GraphQL is that you could coalesce all your 
interactions with the server into one request rather than having a chatty interaction, which can 

be devastating on mobile networks. 

Now, there’s nothing inherently in the abstraction in REST or Falcor that using something lower 
in the stack like H32 could solve these issues to some degree, but it was a huge selling point, 

and something like Falcor was designed for Netflix, and Netflix app sends your streaming video 
over it. You are, therefore, definitionally on a network that you can successfully stream video on. 

So they were going to tolerate far more chatty interactions with their server. I think that was one 
of the reasons why GraphQL ended up having wider adaption. 

© 2019 Software Engineering Daily �15



SEDFB 06 Transcript

[00:38:26] JM: We've talked about one strategic inflection point within Facebook that was 
perhaps the biggest strategic inflection point while you were there, and that's the mobile 

transition. Were there any other strategic inflection points within that company that you recall 
that affected you as an engineer?

[00:38:44] NS: Sure. A big one when I just joined, I’m blocking on the name of the project, but it 

was effectively response to twitter that made our feed much more real time. That required a feed 
view, right? I guess we kind of like had one of those every 12 months. It was kind of the nature 

of the beast. But that was big, but I mean the shift to mobile is by far the most decisive 
technology shift, at least from a product perspective. Therefore, I was building infrastructure for 

product engineers, so that's what we felt.

So I don't think anything is comparable, but that's only from my view, and I don't have global 
view of the organization. So someone else might disagree, but from my perspective, the 

mobileship was the biggest strategic shift that affected the technology stack. 

[00:39:35] JM: Were there any other “best practices” within Facebook, or I guess in software 
engineering that you rethought when you were at Facebook?

[00:39:45] NS: Yes. So two come to mind, one is ORM's. Facebook did not use an ORM as 

traditionally defined. One good way to make me mad when internally someone will go like, “Oh 
yeah, ent! That's another ORM, and that caused me to start pounding tables and be like, “Its 

exactly the opposite of an ORM. There’s relational store underneath.” 

But that one was driven almost by technological requirements. ORMs are famously the Vietnam 
of computer programming, which I firmly agree with. 

[00:40:16] JM: You actually said that in our last interview also. 

[00:40:18] NS: Yeah. No, I mean, I hate ORMs. So I think the more interesting story, because I 

don’t think it was driven by Facebook's particular technical requirements, but it’s certainly a 

© 2019 Software Engineering Daily �16



SEDFB 06 Transcript

dogma in the industry as model view controller. Model view separation was a dogma in the 

industry, and this is an amazing story, actually. 

So this is one of the battles that was fought in our PHP code base. So we used to strictly 
separate the stuff and we had XHP, which was our JSX precursor, which is in PHP. Then we had 

a thing called preparable, which was our way of orchestrating asynchronous fetching with our 
backends. 

So what you'd always had to do is that you’d have to, in separate files, you would have to edit 

your data fetching logic in a preparable file and then go do XHP and then match that and 
change your render, and this is the way you did things. 

All kind of the beard stroking senior types, including myself, thought this was just the way you 

did it. Then it was one engineer just – These two engineers are brilliant. One guy named Ben 
Mauer who had been an intern of Myth and Legend, who then joined the company full-time, and 

he was fresh. I think nine months in. Then another intern-intern, whose just there for the 
summer, a really talented young man named [inaudible 00:41:46]. They wrote this thing that was 

like, “Model view is done. We need a thing called preparable XHP, which kind of co-locates 
these things in one file.” This is actually – This ends up being materialized externally eventually 

as Relay. Apollo client also has that concept, and this happened in like 2011 in our PHP code 
base. 

In retrospect, this is the most obvious thing in the world, which is like by having model view 

separation, you are pretending that something is decoupled, and it’s very coupled. It turns out in 
order to display a piece of data, you have to fetch it. Therefore, you create this unnecessarily 

decoupling. At that point, very young engineers were able to kind of – It’s actually one of my 
proudest moments culturally, because you can see the discussion on the PR unfold and like 

someone would weigh in, “This is terrifying,” blah-blah-blah. 

Then Zach and [inaudible 00:42:49] would go talk to them and they’d be like, “They have some 
good points,” and I'm very personally proud that I was one of the earliest ones to turn. You can 

see me turn against MVC right in that thread, and they were able to convince a preponderance 
of engineers enough to commit this. Then basically like a 22 and a 21-year-old were able to 

© 2019 Software Engineering Daily �17



SEDFB 06 Transcript

fundamentally shift the structure of our entire product code base, and then that same insight that 

they had was moved into other domain and programming languages. It really is extraordinary 
when you think back on it. 

[00:43:27] JM: What do you miss about Facebook's engineering culture?

[00:43:31] NS: Am I miss mostly my ex-colleagues. When you go through a lot of the – There 

are very intense, very stressful times where you’re building technology really under the gun, and 
you kind of become a lighter weight version of war buddies where you kind of remember you’re 

in the stuff together. I’m trying not to curse here. Especially kind of the subset of the engineering 
teams that I interact with were just a group of extraordinarily brilliant and action-oriented and 

pragmatic people, and that mix is just lovely to work with. So I really do miss a lot of my 
colleagues, is definitely the primary thing. I don't miss the micro-kitchens, and the fancy pants, 

benefits. I certainly don't miss the HR and performance review processes. But just the work with 
extraordinarily talented colleagues doing, well, at the time was definitely the best work of their 

lives, and mine. So that's what I miss. 

[00:44:43] JM: Any larger organizational reflections on what made Facebook special and what 
other engineering organizations could learn from Facebook?

[00:44:53] NS: That's difficult for me to say, because I don't have wide-angle contexts, and a lot 

of the struggles that other people have in engineering organizations. Giving your senior 
technical talent space to determine their own objectives and work relatively independently, but 

with guidance from management. I'm not a no management person, but I think that Facebook 
was able to really strike a great balance there of having non-coercive, but effective management 

styles combined with engineers who could execute independently. But then we get very direct 
feedback about what they were doing right and wrong. 

So the performance summary cycle that I was just complaining about, it did have a very 

valuable second-order effects of changing behavior, and it's a really good mind, like I got some 
very negative performance reviews, or aspects of performance reviews that criticized some of 

my methods and communication styles, but that was invaluable. So that was the way the 
management –

© 2019 Software Engineering Daily �18



SEDFB 06 Transcript

[00:45:58] JM: So you agree with them in retrospect, the criticisms.

[00:45:59] NS: Oh! 100%! I agree with them very – I mean, it took me a week or so to 
emotionally deal with it. But then, on reflection, I was like, “Yeah, that's right.” Not everyone, not 

every criticism. But I think the management teams also did a very effective job of collecting 
feedback from your peers and then synthesizing it into a coherent message, that, and the best 

managers were that in a language that you can hear. 

So my most effective manager, who most aligned with my personality and was able to kind of 
alter my behavior the most, is Arturo Bejar, and he synthesized all the feedback into very simple 

things. He would just give me one sheet of paper and would say, “Here's where you exceed 
your expectations, here's where you met your expectations, and here's where you fell short. 

Here's what we’re going to work on the next six months. Here's how we’re going to measure it.” 
Very simple, very actionable. It allows you to focus on one thing. Because like if you just get an 

unfiltered feedback on every – It’s like, “Oh! He did this and that,” and like you need to 
synthesize it into a message that a person can actually act upon rather than just like getting five 

piece of feedback and being like, “Well, I guess I'm a terrible person, and that's the way the 
world works.

[00:47:20] JM: All right, just a few more questions. My sense is that people underrate Mark 

Zuckerberg as a leader. What is the most underrated characteristic of Mark Zuckerberg as a 
leader?

[00:47:32] NS: So what I was always struck well with Mark is that in intense situations he 

maintains great deal of calm. So you set up this organization where you set very ambitious 
goals, very high-power people, and that naturally engenders some degree of chaos. Then 

Facebook did controversial things and you get criticized for it in the media. Not usually the same 
fever pitch that today is occurring. But I was very involved in this kind of – One of the are many 

privacy crises, were we had to really change the fundamental way that privacy worked in the 
app in a very condensed period of time. The whole management team was kind of running 

around with their heads cut off and really kind of – I wouldn’t call hysteria, but it’s like, “Oh! We 
got to see the company,” blahb-blah-blah. Then Mark would just kind of enter these meetings 

© 2019 Software Engineering Daily �19



SEDFB 06 Transcript

and be like, “We just have to sound satyrs.” Fix the issue and calm everyone down, and that 

was – And he just kind of like – He's steady like a rock. He is the same person that he’s been for 
a long time for good and ill. He’s grown, but like the core personality is there. 

Yeah. So I just really appreciate the combination of not being a pushover and not being not 

ambitious, not having strong goals. With that in combination with like a steadiness and 
calmness is very, very effective. 

[00:48:58] JM: You are now working on your own company, and you are taking reflections from 

your time at Facebook, your eight years at Facebook? 

[00:49:09] NS: Eight years. 

[00:49:09] JM: Eight years, and then time spent outside of Facebook reflecting on what is going 
on in the broader startup ecosystem and enterprise software ecosystem. Tell me about your 

reflections and what you're working on to the extent that you can talk about it. 

[00:49:26] NS: Yeah. No, I can talk about it. So in terms of what I've seen externally in the 
startup ecosystem that I did not see while I was at Facebook is that I was totally blind to the 

extraordinary innovation and progress in the public cloud infrastructure as well as all the 
technologies surrounded it. 

I love Facebook, and like I had heard of Docker. But I was like, “What the hell is Docker?”Then I 

started to play with it and I was like, “Oh, this is super interesting.” Then coupled with these new 
hosted SaaS services were like – Even simple stuff I was kind of amazed by. I was, “Wow! You 

can spin up your own CICD infrastructure where you are running a container? That's a beautiful 
– Like containers are what processes should have been the whole time.” 

So I was blown away by the innovation, the pace of innovation. The fundamental underlying 

change of economics of the public cloud infrastructure, and all the associated cloud native 
technologies, Kubernetes, the entire ecosystem. So that was a total – That took me a few 

months to really absorb and learn about. 

© 2019 Software Engineering Daily �20



SEDFB 06 Transcript

What I'm working on today, the company is called Elementl. So it’s Elementl without the A, and I 

left and I didn't want to use social media anymore, and I started talking to people in more legacy 
industries; healthcare, finance, etc., and I was asking them what their technological problems 

were. This whole notion of data processing, some people call ETL, data cleaning, a data 
infrastructure problem just kept on cropping up again and again and again. So I was always end 

these meetings and I would say, “Wait. Wait. Wait. Wait. Wait. Wait. You’re telling me that’s what 
preventing you in your mind from transforming the American healthcare system is the ability to 

do a regularized computation on a CSV file,” and they’re like, “Yeah, pretty much.” I was like, 
“What on earth is going on here? This is crazy.”

So I have difficult resisting the urge to rathole on infrastructure, and I just dove right in. I’ve kind 

of discover this data engineering ETL world, and I think more and more programming going 
forward is going to be in this structure. I think more engineers are going to have to participate in 

this as like, “You need feedback loops that integrate with the apps to do ML.” Then when you 
would talk to people in the industry, every data scientist ever, like half their talks start with, “Well, 

I spend 20%, 10%, 5% of my time doing what my job is supposed to be, and I spend the other 
time data cleaning.”

It’s like, “Well, first of all, if that's 90% of your job, that kind of is your job.” But what it actually 

reminded me of was talking to, let’s say, a frontend engineer in 2008 and they would say 
something like, “I spend 10% of my time on my business logic and 90% of my time fighting the 

browser.” As a result, frontend engineering at that time had a lot of pathologies. It was consider 
this engineering backwater. There’s like no culture testability. Engineers would like dive in, do 

just enough JavaScript to make something fly around and then get the hell out. People didn't 
want to work on it, because they would look at this code base and be like, “I don’t want to touch 

that. Please.” 

Then eventually things changed. Yes, browsers improved, but I actually think – Again, I’m very 
biased, but React, in some ways, Angular, and these other frameworks, really did change the 

trajectory of the ecosystem fundamentally, and there is now testing frameworks, all the 
sophisticated infrastructure, and now you don't hear people say that. You'll hear people say, 

they’re like, “Oh! There’s JavaScript fatigue. There're too many tools,” and there’s not like kind 

© 2019 Software Engineering Daily �21



SEDFB 06 Transcript

of a vertically integrated solution. But no one says they spend all their time fighting the browser 

or none of their time dealing with their business logic. 

So I think that echoes to me in the data engineering space, because when a data scientist says 
I spend 90% of my time data cleaning. That's how they experience it, but that's not the root 

cause. It’s not just like it's hard. It's a system-wide ecosystem why pathology, like testing is 
super difficult. These pipelines are – Or these data processing apps. I hate the word pipeline. 

These data processing apps are kind of multi-phase. They go from like a Spark job, to a data 
warehouse, to a Jupyter Notebook. Every time you hop from face-to-face, you fall off what I like 

to call semantic cliff, where you lose all context in the data. This is ends up getting reified as you 
hire this genius data scientist, pay them God knows how much money, and then their workflow 

is you hand them a Jupyter Notebook and a CSV file and they're expected to reconstruct the 
entire domain of your application from scratch. That’s crazy. 

So high-level, I believe there's a company to be built and a technology to be built that serves the 

same function at a very high-level that React played in the frontend ecosystem similar in the 
data engineering ecosystem. So kind of like high-level, what React did for UIs and what 

GraphQL did for APIs. I want Dagster, which is the open source technology that Elementl is 
hosting, to kind of be that, but for data processing, ETL, ELC, ML pipelines, or whatever you 

want to call it, and then to build a sustainable business on top of the that, that is a hundred 
percent aligned with the success of the open source technology. 

Because I think constructing businesses that can sustainably host open source tech is a 

challenge, and I'm excited to also kind of move the needle on that or attempt to build an 
instance of that that works.

[00:55:35] JM: Okay. Well, we will save the rest of that can of worms for another conversation. 

Nick, thanks for coming on the show. It’s been great talking to you. 

[00:55:41] NS: It's been a fantastic conversation. Thank you very much for having me. 

[END]

© 2019 Software Engineering Daily �22


