
SED 835 Transcript

EPISODE 835

[INTRODUCTION]

[00:00:00] JM: Google’s codebase is managed in a single monolithic repository. An engineer at

Google can explore almost any area of the codebase within the entire company. In order to
enable this, Google has built tooling to support the gigantic monolithic repo, including a virtual

file system and a set of build tools.

A monolithic repository is not to be confused with a monolithic deployment. Google’s
infrastructure is not a deployed monolith. It consists of thousands of small services interacting

over a network and scaling individually, but all of the code for each of these different
independent modules is in the same version control system.

Ciera Jaspan is a staff software engineer at Google working on developer infrastructure. She

worked on an internal research project within Google to find out how engineers felt about the
monolithic repository system and how it compared to a large number of small repositories,

which is an alternative form of management.

Ciera joins the show to discuss repository management, internal tooling and Google’s approach
to researching developer productivity within the company.

FindCollabs is the new company I’m building. FindCollabs is a place to find projects and build

them with collaborators or to start your own projects. We have a hackathon. It’s the FindCollabs
Open, and you can go to findcollabs.com/open and compete for the $2,500 in prizes. We’ve got

prizes for projects around machine learning, music, visual art, React.js, podcasting,
cryptocurrency, computer games, all kinds of stuff. If you’re looking to build projects, we’d love

to see your projects on FindCollabs. You can go to findcollabs.com/open and check it out, and I
hope to see you there.

[SPONSOR MESSAGE]

© 2019 Software Engineering Daily �1

SED 835 Transcript

[00:02:03] JM: Triplebyte fast-tracks your path to a great new career. Take the Triplebyte quiz

and interview and then skip straight to final interview opportunities with over 450 top tech
companies, such as Dropbox, Asana and Reddit. After you're in the Triplebyte system, you stay

there, saving you tons of time and energy.

We ran an experiment earlier this year and Software Engineering Daily listeners who have taken
the test are three times more likely to be in their top bracket of quiz scores. So take the quiz

yourself anytime even just for fun at triplebyte.com/sedaily. It's free for engineers, and as you
make it through the process, Triplebyte will even cover the cost of your flights and hotels for final

interviews at the hiring companies. That's pretty sweet.

Triplebyte helps engineers identify high-growth opportunities, get a foot in the door and
negotiate multiple offers. I recommend checking out triplebyte.com/sedaily, because going

through the hiring process is really painful and really time-consuming. So Triplebyte saves you a
lot of time. I'm a big fan of what they're doing over there and they're also doing a lot of research.

You can check out the Triplebyte blog. You can check out some of the episodes we've done with
Triplebyte founders. It's just a fascinating company and I think they're doing something that’s

really useful to engineers. So check out Triplebyte. That's T-R-I-P-L-E-B-Y-T-E.com/sedaily.
Triplebyte, byte as in 8 bits.

Thanks to Triplebyte, and check it out.

[INTERVIEW]

[00:03:52] JM: Ciera Jaspin, you are a staff software engineer at Google working on developer

infrastructure. Welcome to Software Engineering Daily.

[00:03:59] CJ: Thanks. It’s nice to be here.

[00:04:01] JM: The topic of our conversation today is the distinguishing characteristics of
monolithic repositories versus alternatives. Could you start us off by defining what a monolithic

repository is?

© 2019 Software Engineering Daily �2

SED 835 Transcript

[00:04:16] CJ: Yeah, sure. So we defined a monolithic repository as a source repository that

has five properties. So one of them is it centralized all of your source code is in one location as
supposed to in separate smaller locations. It’s also visible to all of the engineers working on all

parts of the codebase. It’s also synchronized. What we mean by synchronized is that the
repository is commits to the [inaudible 00:04:42] trunk base. There’s no branches. Everybody is

always committing to head. One of the more unique things about a mono repo is that they are
complete.

So a mono repository has all the dependencies for all your binaries all checked in, and more

interestingly, they are unversioned. So you don’t have multiple versions of a particular
dependency. Everyone is using the same version and it’s always the one that’s currently at

head. The last part of this is that a mono repo has a lot of standardization. In order to make
these all work, you have to have shared tooling. So a single build system, for example, that

everybody is using.

[00:05:19] JM: If I have not worked at a large tech company, I may not be aware that there is
any alternative to this monolithic repository. When I was in school, if I was working on a project,

I would just have one GitHub repo. That repo might have feature branches and other kinds of
branches. But I would never have separate repos for the same project. What is the alternative to

this monolithic repo strategy?

[00:05:49] CJ: The alternative would be that every sub-project, every project has their own
repository, and a lot of companies do do this, where they’re going to have for every piece of a

project in a large company, they’ll have their own repository and the teams then can only view
and access their own repo, but they can’t access the repo necessarily of all the projects at the

company.

[00:06:09] JM: By the way, we’re talking exclusively about git repositories or are we talking
more generally about just software repositories?

[00:06:17] CJ: No, more generally. So this can be, of course, git. You can use git as a mono

repo. You can have lots of small git repositories. But this could be any source version control
system.

© 2019 Software Engineering Daily �3

SED 835 Transcript

[00:06:26] JM: What are the problems of a monolithic repository, because it sounds great to just
have one centralized place for my code.

[00:06:35] CJ: Yeah, there are some problems here. So one of the big ones is that, quite

frankly, at some point you run into scaling issues, and this isn’t as much of a problem [inaudible
00:06:46] example if you’re a student and you’ve got some relatively small amounts of code all

in your one GitHub repo. But when you’re at the size of Google’s codebase, we’ve got – What
was it? 2 billion lines of code. So a lot of tooling won’t actually scale up to that size. So you have

to then have a lot of developer tools around just specifically for that type of repo.

[00:07:10] JM: What kinds of tools would you need? Sorry to interrupt you.

[00:07:13] CJ: Sure. Yeah. So one thing you need for example is a virtual file system, because
you literally can’t have the entire repository on your machine. Some of the other tools that we’ve

built up custom within Google for this are having a common build tool. Actually, our build tool,
Bazel, is open source. Other people can use it as well.

In order to navigate all of these code, you need to have a common code indexing tool, because,

again, Eclipse and your typical IDEs just simply can’t navigate that much code. At Google, we
use an indexer that we’ve built in-house called Kythe. This is also open source at this point so

other people can use it as well.

[00:07:54] JM: The virtual file system for my gigantic repository, it almost sounds like a request
for startups. Why doesn’t that exist, or are there virtual file systems that people use more

broadly? Because I’ve heard about this phenomenon where Google has this amazing virtual file
system for managing their repositories, but I have not heard of that being used anywhere else.

[00:08:16] CJ: That’s a really good question. I don’t know why. This might just be a matter if it’s

really hard a startup to get involved into a developer tool space. You don’t see that many
companies being successful there.

© 2019 Software Engineering Daily �4

SED 835 Transcript

[00:08:27] JM: Well, except in Israel. Although, also, I think people don’t necessarily want

monolithic repos, and I’m not quite sure why.

[00:08:36] CJ: Well, there are some good reasons not to want them. One of the common
complaints we heard before going into this study was that people found the Google codebase

very daunting and complex, especially new engineers to the code base, and it is scary. Your first
week when you open up your code browser and you’ve realized how many files there are and

you’re going, “I don’t even know how to navigate this. How do I start? How do I find an
example?” It can be a little scary and daunting to understand that, and it takes a little while to

understand how to use the tools to get around that.

[00:09:08] JM: On the other hand, if you’re only exposed to some small subset of the codebase,
you may feel like you can’t get a bigger picture. I dealt with this when I was an engineer at

Amazon. There are definitely virtues to only being exposed to some small subset of the
codebase, and I think I actually could have accessed the rest of the codebase if I wanted to to a

large extent. But I kind of liked the default, like you can see any part of the code and are
encouraged to see any part of the code.

[00:09:37] CJ: Yeah, and that turned out to actually be in our study though. One of the major

benefits that engineers said about this codebase is that you get this visibility, and that enables a
huge number of useful things. So you get code reuse benefits, being able to find the code that

you want to reuse. You can also easily find examples, and this is where tools like code indexers,
like Kythe, come in handy. I can go and find a library that I want to use and I can say, “Well, how

else is everyone else at this company using this library? What are some examples?”

The other major benefit we get, and this comes not even from being able to see the whole
codebase, but also the ability to commit to the whole codebase, is we receive updates from the

library owners. So I as a software engineer have many dependencies within my code, and when
those libraries update to a new version, they actually send me changes to update my client to

the latest version.

[00:10:34] JM: People listening to this who are frequent listeners, who are longtime denizens of
the software world are going to be thinking at this point, “Okay. Wait a second. So Google runs

© 2019 Software Engineering Daily �5

SED 835 Transcript

this big monolithic repository. I thought I’ve been hearing for years that this is like a

microservices-based organization and people are like pushing code independently, and this is
like merging with the codebase, and then it’s like getting deployed in its own small microservice,

and then that microservice is getting Canaried out independently. It’s getting slowly rolled out.”
Now you’re telling me that actually everything is in one big monolithic repository. Help me

understand that distinguishment.

[00:11:19] CJ: Yeah, this is distinguishing feature between a monolithic repository and a
monolithic architecture. So Google has a monolithic repository, but we do have a microservices

architecture. On the other hand, you could have the opposite. You could have lots of small
repositories, but when they’re built up into a binary and you release it, it’s one monolithic

architecture. We don’t do that. We do have a mono repo. All these microservices are stored in
one place in the code, but we release them all independently.

[00:11:49] JM: That is a really important clarifying point, and I think it’s so important because

people get the sense that if you’re doing things monolithically in terms of repository
management, you must therefore be doing things monolithically in terms of your deployments,

and that’s simply not a binding truth. So why has Google arrived at this way of managing
repositories versus managing deployments?

[00:12:14] CJ: You know, that’s a good question. I don’t know the history of how we ended up

here. I suspect it rather happened organically though.

[00:12:23] JM: Yeah. The context for this conversation is that you have done research and
study within Google around repository management. Can you set some context for this

conversation and how you gathered data and how you started to work on this project of
researching developer preferences around repository management?

[00:12:46] CJ: Yeah. So I’m on a team here at Google that sits in the developer tools groups.

We’re called the engineering productivity research team. Our goal is to try to improve the
productivity of all engineers at Google through making improvements to the developer tools. So

we’re always looking at how can we better improve these tools and where is kind of the best

© 2019 Software Engineering Daily �6

SED 835 Transcript

place for us to put our resources so that we improve, make the most impact across all of Google

engineering.

Part of that also though means understanding and questioning the status quo and
understanding where we’re at. We don’t want to end up in a case where we’re in some sort of

local maximum and we can’t improve farther. So we need to understand why we are currently at
the place we’re at.

[00:13:33] JM: Outline for me the spec for your research process. How did you architect your

workflow before you got into it?

[00:13:44] CJ: So our research process is we kind of gather a lot of different types of questions
people have about both our source repository, but also our software process. We look for where

the biggest questions, where the things that are making the most impact for developers.
Repositories are of course the first place you go to. So that’s the place we have large impact.

We then formulate some research questions and hypothesis around that based upon

sometimes anecdotal evidence, or based upon prior studies that we’ve done, and then outline
[inaudible 00:14:15]. Then from there we outline actually a study plan and go ahead and

execute the study. We use a lot of both qualitative and quantitative methods usually combined.
The study was a good example of that, where we have a survey and then we back it up with the

logs and LSS.

[00:14:31] JM: If Google has this monolithic repository, how did you get counter examples from
within the company?

[00:14:39] CJ: So what we did is we asked engineers about the prior experiences. So for this

study, one of the things we had done was a survey. We surveyed – I think we had over 860
responses, and of those engineers, over 300 had prior experience working at a company where

they had used multiple repositories, and another 300 had also previously had experience
working in open source. So we are able to narrow in on just those engineers who could do a

little bit of compare and contrast.

© 2019 Software Engineering Daily �7

SED 835 Transcript

[00:15:11] JM: Now, all due respect to that data gathering process, because I think this is just

an area where it’s like a hard to really get the necessary population sizes to have like a
bulletproof dataset. But do you wonder like if Google – Maybe doesn't even matter. Like maybe

if Google was to – And I guess we can't know in the scope of this conversation, but if Google
was to have ended up in a micro repo kind of situation, perhaps it would have just built like good

enough tools to have a great micro repo experience.

[00:15:44] CJ: And we might have. It’s hard to say. I think though, one of the things we found
from the study though is we were trying to understand what are the benefits of each type of

repository and what are the tradeoffs between them. So one of the things we did find was that
tools are really important, but people love their open source tools as well. GitHub came out as –

Or git in general came out as a tool that people hugely love and they will pick a repo simply for
git in face.

However, there were other tradeoffs we were seeing between multi and monolithic repositories

around the tradeoffs, around how you manage your dependencies and whether your code has a
lot of consistency across all your codebase, or whether you have flexibility to make unique

development choices for your project.

[00:16:32] JM: So do you think it might be the case that unless we have the proper tooling, we
might have to do micro repose in many cases. If we build up this necessary tool and like the

virtual file system and a great build tool system and we actually implement that and we have
standardization around it, perhaps we can get to monolithic repos. But for lack of tools, perhaps

we need micro repos.

[00:16:57] CJ: Sometimes you definitely do. Micro repos to provide benefits along the lines of,
for example, security. You might be working within an environment where you can’t trust people

across the company or maybe you have people who are third-party contractors working in your
code base and you want to limit them to one part and not another part. So there are definitely

good reasons for using multi repos.

[SPONSOR MESSAGE]

© 2019 Software Engineering Daily �8

SED 835 Transcript

[00:17:28] JM: When a rider calls a car using a ridesharing service, there are hundreds of

backend services involved in fulfilling that request. Distributed tracing allows the developers at
the ridesharing company to see how requests travel through all the stages of the network. From

the frontend layer, to the application middleware, to the backend core data services, distributed
tracing can be used to understand how long a complex request is taking at each of these stages

so the developers can debug their complex application and improve performance issues.

LightStep is a company built around distributed tracing and modern observability. LightStep
answers questions and diagnosis anomalies in mobile applications, monoliths and

microservices. At lightstep.com/sedaily, you can get started with LightStep tracing and get a free
t-shirt. This comfortable, well-fitting t-shirt says, “Distributed tracing is fun,” which is a quote that

you may find yourself saying once you are improving the latency of your multi-service requests.

LightStep allows you to analyze every transaction that your users engage in. You can measure
performance where it matters and you can find the root cause of your problems. LightStep was

founded by Ben Sigleman, who is a previous guest on Software Engineering Daily. In that show
he talked about his early development of distributed tracing at Google. I recommend going back

and giving that episode a listen if you haven’t heard it. If you want to try distributed tracing for
free, you can use LightStep and get a free t-shirt. Go to lightstep.com/sedaily. Companies such

as Lyft, Twilio and GitHub all use LightStep to observe their systems and improve their product
quality.

Thanks to LightStep for being a sponsor of Software Engineering Daily, and you can support the

show by going to lightstep.com/sedaily.

[INTERVIEW CONTINUED]

[00:19:39] JM: What was the outcome of this study? What data did you find after surveying this
large swath of developers who had experience within Google and outside of Google?

[00:19:51] CJ: Yeah. What we found was there was a lot of really interesting tradeoffs between

monolithic and multi repo source, multiple repository systems. We kind of themed this around
five areas. So we did see, as we were expecting, that visibility became a major reason why

© 2019 Software Engineering Daily �9

SED 835 Transcript

people prefer monolithic repository, and not just visibility, but all the benefits that it provides for

them. We saw that developer tools, as I had mentioned, is another major reason why people
might choose one versus the other, which really has nothing necessarily to do with mono versus

multi repos, but people do have a strong associations to their tools.

More interesting things I thought were around the two big tradeoffs between these. So one of
them was on consistency versus flexibility. So people identified that in a mono repo, you have

forced consistency. For example, at Google, we have one style guide for each language. In fact,
there’s even only one version of the language. We’re all on the same version of Java right now,

for example, and you don’t get a choice in that. You can end up coding in the morning and you
go to lunch and you come back and, well, now, you're on Java 8, because we all migrated

together. But there's some consistency in that that people like being able to always know that
they can build everyone else’s code and they can always read and see everyone else’s code.

Another thing with the multi repo though, you have a lot of flexibility. You have flexibility to select

your own programming language that you want to use, to pick your own development stack, to
choose your own tools that might be different from your neighboring project.

[00:21:26] JM: And if we had free reign within an organization to choose our own workflows, to

choose our own tools, how do you look at the tradeoffs there? Is that strictly a good thing or do
you ever have a problem where there's too much heterogeneity of different workflows within an

organization?

[00:21:45] CJ: I think especially for Google, having that much heterogeneity would cause us to
buckle under. We just have too many – Too large of codebase to be able to support 50 different

programming languages, for example. So we’ve got to limit to which programming languages
we use in our production code. As I said, even which versions we use.

So at least for a large company, I think there're a lot of benefits to consistency, and we actually

did see that in our data as well. While engineers at Google noticed this tradeoff between
consistency and flexibility, when it came down to choosing which do you prefer a mono repo

versus multi repo, people would pick a mono repo for the reason of consistency. They would
never pick a multi repo for a reason of flexibility, which I found kind of interesting.

© 2019 Software Engineering Daily �10

SED 835 Transcript

[00:22:33] JM: As you were planning out and starting to do this study, did you find that people
actually had a debate in terms of their preferences? Because I'm thinking about this and I’m like,

“If I had all the build tools necessary to have this kind of situation, I can't see wanting a micro
repo situation at all.” I mean, I guess the security benefit, that seems like the one area that

seems kind of useful. But was there anybody in Google who was actually like, “I think micro
repos are going to be favored as they were like predicting the results.”

[00:23:10] CJ: Yeah. So one of the things we saw was the, well, a majority of Googlers did

prefer using a monolithic repository. There was a minority that prefers multiple repository
systems, and their reason, their primary reason we are seeing there what that people like the

stability of the dependencies. This is other tradeoff that we were seeing, where in a mono repo,
you're always using the version of your dependencies that are currently at head, which means

as soon as somebody makes a change to that, you’re on it. If they break it, they’re breaking you
too. So there's always a chance that somebody else breaks your code.

Now, within Google, we've done a lot of things to defend against this. There’s a practice within

Google of doing a lot of defensive testing, for example. So you can't commit unless it passed all
the tests. So you write test to make sure that nobody breaks you.

On the other hand, there's a lot of people who really still don't like that, just the chance that

something could ever break them. They want to have the control of knowing what version
they’re on and updating it at the point when they choose. So we saw people who really felt that

having those stable dependencies was hugely beneficial.

There was even a really interesting minority viewpoint that the ability to change your library at
will and update all your clients at the same time, like we do at Google, is actually detrimental to

API design. This is not my particular viewpoint. I always have a trouble like describing this one,
because I so strongly believe against it. But the viewpoint is that by knowing that as soon as you

write out a version of your library that someone's going to use it and there's always going to be
somebody using version 1.0 even when you're on version 6 means that you have to think

carefully about your API design from the beginning and you can make mistakes.

© 2019 Software Engineering Daily �11

SED 835 Transcript

[00:25:05] JM: I mean, that granted, but we know how to do API back compatibility. Don't we?

Isn’t that a reasonable constraint to impose upon developers?

[00:25:15] CJ: I think it is. I personally view it as a library deciding myself [inaudible 00:25:19] in
that role, I view it as, “First of all, I’m a software engineer and I'm a human and I’m an idiot. I am

going to make mistakes in my API design.” There’s going to be things I don't anticipate.
Additionally, the environment is just going to change. That software engineering, the context is

always changing underneath us. So we need to be able to adapt their libraries and our APIs
accordingly.

Now the cool thing about Google is we don't always have to be exactly backwards compatible,

because you can update all your clients as well. Because, remember, we do have access to the
entire codebase. There's actually a philosophy within Google. It’s a weird philosophy here, that

when you are a library owner, the onus is on you to update your dependencies, the people who
depend on you.

[00:26:03] JM: But it’s not strictly like you need to keep your dependencies API back

compatible. You could conceivably update your service as well as all of the clients that depend
on your service.

[00:26:14] CJ: Yes, and I’ve done before. I mean, I've made a mistake in a library before that I

was deciding. It was all these mistakes that I should've known better, and even my manager at
the time questioned me on it. It was like, “You really want to do that?” I’m like, “Oh! It’s going to

be fun.”

Three months later, I was really regretting that decision. At that point, I had 900 clients. So I had
to go in, change to create a new version, and then I updated all of my clients to use the new

version.

[00:26:41] JM: Were you able to do that programmatically?

[00:26:44] CJ: Oh, yeah. We have lots of tooling around this. This is where things like our code
indexing tool again come in really handily, because I could easily find all of my clients, search

© 2019 Software Engineering Daily �12

SED 835 Transcript

for them, automatically update their code. We have tooling that will automatically send out all

these updates to everybody and make sure they’re property code reviewed, that they go
through all the tests. If there's any test that fails, that will notify me so I can go and fix it myself.

It's an amazing piece of infrastructure.

[00:27:12] JM: Now I see why people miss working with the tools within Google. That’s kind of
hilarious. I really have to side with you on this one, because I have worked – I think I’ve literally

worked at three places that all had multiple versions of Java running at the organization, and I
have not worked at many software companies. It’s like you’re in this constant stroke, “Okay, are

we updating from Java 6 to Java 7? Oh! No. No. No. No, sorry. We’re talking about the part of
the organization that’s updating from Java 7 to Java 8,” and it’s just a nightmare, and that’s just

Java.

[00:27:50] CJ: Yeah. The amazing thing here was I got to show up one afternoon and there was
an email in my inbox saying, “Congratulations! You’re all now on Java 8. You may now use

Lambdas at will.” There was even somebody who’d even written tooling to help you
automatically update your code to use Lambdas in obvious places, and it was so awesome.

[00:28:11] JM: Amazing. You're revealing a world of tooling, interesting tooling opportunities

here for me. Is there anything else that like stands out as kind of a useful or interesting tool that
you have seen anecdotally within Google, like help with this kind of at scale repository

management?

[00:28:30] CJ: I mean, I think the big things are all around our code navigation features. I
mentioned this code browsing idea, the ability to just go find a piece of code, quickly search for

it and then say, “I want to see everyone who’s using this code so I can find examples.” Maybe
because I am trying to use this library myself or I'm trying to understand like an edge case of

how I'm using this library when I see other people who are doing something similar. It’s seconds,
a couple of clicks to do that here. That was actually the big thing I missed when I was – I had

spent a couple, about a year, working on open source project while I was at Google, and I swear
I felt like my productivity dropped I half, because I couldn't easily navigate my own code, much

less the code of the libraries that I’m depending on.

© 2019 Software Engineering Daily �13

SED 835 Transcript

[00:29:19] JM: How did you wind up in a situation where you're doing these like studies of

developer tooling? Take me through the kind of winding path that I'm sure why did you do that
kind of situation.

[00:29:32] CJ: Yeah. So, I actually have – So my graduate work is in software engineering. So I

studied developer tools and studied primarily software frameworks and static analysis tools in
grad school. When I came to Google, I was put into the developer tools group and I was actually

on the static analysis team originally.

So we actually had a paper on that too. It’s called Triquarter, and it’s our really fun static analysis
tool that runs across all of our code on every single commit and provides engineers with useful

warnings about their code.

From there though, once I was in the developer tools group, there's actually a few of us in that
team who had prior research experience in software engineering, and we were noticing that our

group as a whole, the developer tools organization as a whole, was looking for kind of what’s
the next big thing we can work on. What’s the next step we take to improve engineering

productivity?

Up until this point, it had been kind of random projects that people thought of, and you were
getting the low hanging fruit. But we were hitting a point where it's not clear what we do next.

Our VP actually start asking these questions of, “Well, if I have 10 people to put on a project,
should I put those people on improving our build system or should I put them on the code review

tool?” So our team was formed around this idea of help our executives understand where they
should best put their resources to improve productivity.

[00:31:06] JM: Hilarious. Static analysis is one of these areas where I had no idea this existed

before I started a podcast about software engineering, and yet it has turned out to be just this
tremendous field. I think the most recent show we did about static analysis was with an

interview with a company called FOSSA, that basically does static analysis around whether you
might have licensing issues in your open source repositories.

[00:31:35] CJ: Oh, that’s a nice one.

© 2019 Software Engineering Daily �14

SED 835 Transcript

[00:31:36] JM: Yeah. What are the big unsolved problems in static analysis?

[00:31:41] CJ: That’s a good question. So I could go for the more theoretical answers here or
the more practical answers.

[00:31:47] JM: Let’s do both.

[00:31:49] CJ: So the theoretical things that people are still working on are in an area called

alias analysis. This is how do you know which objects are pointing – Which pointers are actually
pointing to the same object. It turns out that this is a kind of foundational piece to really make

any static analysis system work. It's really tricky to make this work and make it work at scale so
that you can actually analyze a large codebase as supposed to just a little toy problem. This is

something that people are still working on.

Once you’re able to solve that better, it will actually enable a huge amount more static analysis
tools. Practically speaking, there’re a lot of problems that I think that our team here at Google

solved a lot, but there are still a lot of problems with getting the right level of utility out of static
analysis tools. We see that there’s a lot of cool tools, for example, in academia. But when you

look at them in practice, people don’t use them, because either they have too high of a false
positive rate or they don't actually have a high false positive rate, but people don’t understand

what to do about the problem. So they see an error message and they go, “Okay. What is this
even mean?” If it takes you 15 minutes to figure out what it means and it turns out that it was a

false positive, no one’s going to use your tool.

One of the things we did at Google to try to make static analysis more useful here is we actually
started focusing on the simplest possible errors that had the simplest error messages that we

thought people actually want to respond to and fix. We were aiming for less than 10% false
positive rate. I think we’re down to 3% false positives now.

So we’ve built up over the course of five years now a lot of trust in the static analysis tools, and

there’s now hundreds of analysis tools running within Google. But we take a view of trying to
make them very practical. There’s actually – It's kind of funny that I spent a lot of time in

© 2019 Software Engineering Daily �15

SED 835 Transcript

academia working on some pretty complex analysis tools. I did a lot of things with data flow

analyses and to procedural analyses, and it turns out that in most cases the simple dumb
analyses work out really well in practice.

[00:34:04] JM: So the alias counting thing, why would you need to do that in a static analysis

tool? Because like don't garbage collectors just do that at runtime and it works fine?

[00:34:16] CJ: But that’s at runtime. So at runtime, sure, now you have precise perfect
information. That’s the benefit. So a garbage collector would be something we’d call a dynamic

analysis tool, because at runtime you have precise information. But you only have precise
information over the path that you are running on. If you view all the paths through your code,

you've got the one path you’re going through at runtime.

Static analysis has a lot of interesting tradeoffs where you're looking now at all the possible
paths, including even some that might never occur at runtime, because no user ever inputs that

kind of data. So you're trying to handle all those paths. Additionally, you don't have precise
information help. You’ll lose information about which objects point – Which pointers points to

which objects and whether they’re the same or not, and that starts to cause problems.

Now there is – I should mention this too. There is some really interesting work I think that uses
both static and dynamic analyses together, and I think we’re going to see a lot more from that

around from academia and hopefully eventually in industry tools as well where you do things
that you use a dynamic analysis to understand what are the possible paths that people take

through this code. What are the possible inputs? Then you use that to feed into a static analysis
to help make it more precise.

[00:35:30] JM: Wow! Then you get to like machine learning-based applications kind of.

[00:35:35] CJ: Kind of. I guess I wouldn’t.

[00:35:36] JM: Because, I mean, there’s probably so many dynamic paths you could potentially

find that you take the loss function or you just basically feed the data from the dynamic analysis
back into the static analysis tools. So you get like update.

© 2019 Software Engineering Daily �16

SED 835 Transcript

[00:35:53] CJ: I’ve seen this go the other way too, where you can use dynamic analysis to feed
static analysis. Actually, one of my co-authors and I did that in grad school, where I had a

system that was a static analysis that would check your – That you’re using a library correctly,
client-side, that you’re using a library quickly. But you have to create specifications for that.

Creating specifications is hard. It’s a lot of work. Nobody wants to do that, but he had a dynamic
analysis tool that would automatically generate the specifications. So we could make that work

out so we could feed one into the other and then you could go back again.

[00:36:26] JM: This is kind of like what a protocol buffer is or like a GRPC thing, or is that – Am I
misunderstanding?

[00:36:33] CJ: So, a little bit different. A call buffer would be just the data storage. What I was

meaning by this is we’re looking at the API for how people use maybe a protocol buffer.

[00:36:46] JM: Okay. What was it about static analysis that was so intriguing that you put your
graduate efforts into that?

[00:36:54] CJ: So that's actually a really interesting story. I was in underground. I was working

as a software developer at a couple of companies throughout my undergrad career, and I
remember having this day where I was working in, I believe – Yes, I was writing some C# code

and I get a bug report from our tester, and it’s like a no pointer exception.

I go and open up the code and I’m looking at it and it was so damned obvious. I had done just
like a really stupid thing. I had set something to null and then immediately, like immediately try to

use it. I’m just going – And I kind of was a little annoyed with myself, because this is a dumb
thing I should've caught, and I also should have of course had better test. But then I thought to

myself, “How come the compiler didn't catch this? This is so blindingly obvious?” So that’s what
kind of caused this interest in static analysis tools, is that I felt like the compiler should be doing

more for me.

© 2019 Software Engineering Daily �17

SED 835 Transcript

[00:37:56] JM: In that specific case, like good point. Why didn't the compiler catch that? Is there

something that is fundamentally so hard about looking at two lines of code and being able to
identify that a no pointer exception is going to occur there?

[00:38:12] CJ: So that was a really great example of one where that could have been done

easily, and I have not written in C# in a long time. I am certain that my colleagues at Microsoft
have actually already fixed this. But there are cases where it would be difficult, and this is where

that alias analysis comes back into play, like, “What if in between those two lines I had made
another call and that did get initialized somehow?” So it’s important to know where pointers are

actually at.

[SPONSOR MESSAGE]

[00:38:50] JM: DigitalOcean is a reliable, easy to use cloud provider. I’ve used DigitalOcean for
years whenever I want to get an application off the ground quickly, and I’ve always loved the

focus on user experience, the great documentation and the simple user interface. More and
more people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for

their application workloads.

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet
that can mix and match different configurations of CPU and RAM to get the perfect amount of

resources for your application. There are also CPU optimized droplets, perfect for highly active
frontend servers or CICD workloads, and running on the cloud can get expensive, which is why

DigitalOcean makes it easy to choose the right size instance. The prices on standard instances
have gone down too. You can check out all their new deals by going to do.co/sedaily, and as a

bonus to our listeners, you will get $100 in credit to use over 60 days. That’s a lot of money to
experiment with. You can make a hundred dollars go pretty far on DigitalOcean. You can use the

credit for hosting, or infrastructure, and that includes load balancers, object storage.
DigitalOcean Spaces is a great new product that provides object storage, of course,

computation.

Get your free $100 credit at do.co/sedaily, and thanks to DigitalOcean for being a sponsor. The
cofounder of DigitalOcean, Moisey Uretsky, was one of the first people I interviewed, and his

© 2019 Software Engineering Daily �18

SED 835 Transcript

interview was really inspirational for me. So I’ve always thought of DigitalOcean as a pretty

inspirational company. So thank you, DigitalOcean.

[INTERVIEW CONTINUED]

[00:40:57] JM: Not to go further down the static analysis path, but I find it kind of interesting. We
did a show kind of recently around this company that was like a security company that did static

analysis on Ruby. I think was basically on like at the latest possible time. So I think Ruby code
like turns into C code, for example, or I think it compiles down to C or compiles down to C struct

at least.

In any case, they did static analysis on the lower level interpretation that the code compiled
down into rather than the higher level. Have you seen any like interesting – I don’t know, studies

or anecdotes in the world of like doing static analysis on the high-level language versus like the
byte code or something?

[00:41:44] CJ: Yeah. I mean, there’s plenty of tools that do each of those. There’re pros and

cons as far as building a tool that does that. One of the benefits of working for like if you were
on Java working on the byte code level, is there’s fewer cases to handle all of the syntactic

sugar gets compiled down. It’s much more straightforward to actually write an analysis tool.
There’re also benefits if you can compile multiple languages into the same format. So I know

there're companies out there that are doing that and they idea is that where they can trace code
paths, go between multiple languages, or you can write a general checker that works for many

languages. So there can be benefits there.

The downside of working at kind of more of a byte code level is it makes it more difficult to write
error message that the engineer can actually understand. Yeah. At least in Google we typically

are working on source code level.

[00:42:42] JM: Yeah. Coming back to the research area, are there other studies you've worked
on, or is the only study you focused on this repo question?

© 2019 Software Engineering Daily �19

SED 835 Transcript

[00:42:53] CJ: No. We’ve actually got a bunch of other studies, some of which have been

published already and few that we’ve got in the works. So one of the ones, for example, that
we’ve published recently is looking at productivity factors. So, what are the things that

influenced someone being productive?

We ended up – One of my colleagues went into the literature review going back to last 50 years
of research on productivity, and he pulled out a whole bunch of different things that the research

literature had said it makes people productive or not productive. We then filtered through that,
combined things that were the same and ran a survey at several companies actually. So it

wasn't just Google.

Also, at Google, we ran it also on not only software engineers, but we also looked at quantitative
analysts, because they are another form of knowledge worker and we want to see what the

differences were, software engineers and other knowledge workers. It was a really interesting
study. We found that there were a lot of things that influenced people's – This is all self-reported

productivity by the way, I should say. There's like no objective measures here, because it's really
hard to objectively measure productivity. But there were a lot of things that correlated with

people's self-reported productivity, and they were in fact different at each of the companies and
they were even different even at Google between the software engineers and the quantitative

analysts.

[00:44:17] JM: So result inconclusive?

[00:44:20] CJ: Well, I don’t know if it’s result inconclusive. It was useful to see that there was
those differences though, because that might tell us something about how we focus on each of

these user communities. It means that maybe we can’t just say, “If you do the following five
things, that’s going to make your engineers more productive. Maybe your engineers have

different needs, and so you have to rerun this study for them.”

[00:44:42] JM: Have you seen anything conclusive around this open office plan, versus closed
offices, versus remote work? Kind of like high-level circumstances mapping to productivity?

© 2019 Software Engineering Daily �20

SED 835 Transcript

[00:44:42] CJ: I have not been keeping up with that research. I know it’s very popular amongst

like the Hacker News crowd right now. I’ve actually not been keeping up as much with that
research. I probably should get into it and find out what's going on there though. I’ve just been

seeing the headlines though.

[00:45:10] JM: Yeah. Yeah, that one’s tough. I mean, that one is just really hard to measure. It’s
kind of like the same thing with the question of like if Google would've gone in the direction of

microlyths, arbitrarily, would they have ended up with just great tooling for microlyths? There are
these companies that say like, “Hey, we’re remote first.” GitLab for example, and like, “We just

do everything over Slack channels and things are fantastic. Why don't you all join the remote
club? It's just very hard to know like, “Okay. You're working on a different kind of software.

Maybe there's something about the culture or the culture of the founders that leads to a remote
culture being holistically viable.” I think I guess my meta point here is it’s very hard to do this

kind of research and have real confidence in your results.

[00:45:59] CJ: It is. There's a lot of variables from one company. In instance, you mentioned the
context, whether or not – How often, for example, people need to collaborate for this type of

project.

[00:46:10] JM: Any guiding principle there when you're thinking about like necessary sample
size or – I don't know, other kind of parameters that will allow for a study to be even just in the

foundational level, like a viable sample set or a viable study architecture?

[00:46:28] CJ: I think it depends on the type of study you're going for. There’s I think sometimes
a view that – And especially within software engineering research, that we need to always have

the best possible studies with a control group at a treatment group, and we’ve narrowed down
our independent variables and also have a large and on top of it. That's just not realistic. That

something you can do in medicine. But even in medicine, they start with other types of studies.
They start with small case studies, for example.

If you look at medical research, especially in the cases where it's a very rare disease, they’re

not doing large end studies. They’re small case studies and they buildup a kind of foundation of
case study work before they can start making more interesting hypotheses and saying, “Okay.

© 2019 Software Engineering Daily �21

SED 835 Transcript

This seems to work across all these groups, or it doesn't. It only works in certain groups. Now

let’s make some new hypotheses and start having more experiments.” I think that's true for
software engineer research as well.

Because I’m at Google, I’m currently in the case of I’m doing kind of effectively a large case

study within Google on all of our research. On the other hand, my colleagues in academia are
frequently doing large case studies on open source. Every once in a while [inaudible 00:47:41]

able to do a study across multiple companies, and we kind of end up pulling all of that together,
and across several different research papers we’re able to start seeing things emerge.

[00:47:53] JM: So the thing you alluded to earlier, where you would like to let the executives

have more insight, statistical insight, anecdotal insight, white paper style insight, into are they
allocating engineering resources properly. Was there any kind of reallocation or insights or, I

guess, action insights that came out of the repo study?

[00:48:20] CJ: I think the repo study, I don't think we did have any other than just like
everyone’s happy with a status quo. So let's keep it going.

[00:48:27] JM: Yeah, I guess that’s true.

[00:48:29] CJ: I mean, it was so blindingly obvious that we should just kind of keep this going,

that we just left it like that. I have had other studies though where we’ve either at the executive
level been able to give some information and help them make a decision and maybe change

course. Honestly, a surprising number of cases, our recommendation was backed with, “Keep
the status quo. Everyone is happy with this. It's like this for a reason.”

But even had on a more microlevel, we’ve had times where we’ve told the whole team of like a

tools team, “Hey, you should work on this problem rather than this other problem.” So like some
of the programming languages teams come to us regularly and ask, “Which of these following

three problems should we be prioritizing this year?” We’re able to use our survey data and our
log so it would actually give them some useful insights on where they could be most impactful.

© 2019 Software Engineering Daily �22

SED 835 Transcript

[00:49:16] JM: There was an interview I did with somebody from Facebook recently, and

Facebook actually has also – I think, to my understanding, has also thrived with a mono repo.

[00:49:28] CJ: Yeah, they have.

[00:49:29] JM: And the way that they've done it, my understanding is actually with probably
significantly less tooling, or at least I would guess. I've read the like feature flags play a really

important role. Like you kind of like manage the different areas of the code base with feature
flags, which is kind of like a more late binding – I don’t know. I shouldn’t be speculating on this.

But anyway, I guess the question I want to ask is like, “Do you think the broader industry can

learn anything from this study, or do you think it's too Google specific, or gigantic company
specific to say if people should go mono repo or not?  

[00:50:08] CJ: I think there is something to be learned here. I would not, for example, if I was in

another company, I would not take what we've done and say, “Oh, Google is using a mono repo.
Therefore we should too.” Clearly, I think our number was something like 88% of Googlers say

they prefer their mono repo. I wouldn't take that number and say, “Therefore, every company
should use a mono repo.”

But I would take is looking at the benefits that the Googlers have identified to a mono repo and

the benefit they’ve identified as the multi repo and these tradeoffs and attentions we identified.
That, I think, does apply across other companies. So I think that's where you can kind of make

the engineering choice of, “Let’s see. Which of these tradeoffs apply best for my company?”

[00:50:51] JM: I don’t know if you’d answer this, but there must be some repos within Google
that have to have to be permission. I mean, it's almost like a zero-trust networking kind of thing.

Is there a permissions model for this mono repo?

[00:51:06] CJ: The permissions model is primarily around who commits to the code and who
approves those commits. So I can commit to any part of the code base or I can at least attempts

to. But the owner of the code is the one who says, “Yes, I’m going to accept this commit.”

© 2019 Software Engineering Daily �23

SED 835 Transcript

[00:51:21] JM: You can see all of it.

[00:51:23] CJ: And you can see all of that. Then we do have some cases where people have

separate repos. So not quite all the code base is in one mono repo. One of the classic examples
actually is a lot of our open source projects. So Android and Chrome are both in their own

repos, although they’re fairly big projects in and of themselves. Then we do have several GitHub
projects for a lot of for open source projects.

[00:51:48] JM: Oh, good Lord! I’m thinking about the Android and Chrome repo management.

That sounds like a can of worms or they each sound like cans of worms respectively. Is there
anything notable about – How did all those different versions of Android get managed?

[00:52:06] CJ: I'm actually not working with the Android team right now. So I'm not entirely

certain. But I do know they have a git-based repository.

[00:52:14] JM: Okay. Yeah, fair enough. Anything notable about the open source, the interaction
between the open source codebases and the main Google code bases. I don’t know, integrating

those two kinds of somewhat disjoint domains?

[00:52:29] CJ: Yeah. There’s some tooling around trying to keep things in sync. So if your
project, for example, internally depends on open source project. There's a work around how to

keep this projects in sync together. But it's pretty straightforward tooling actually that we have
there. This is kind of our props. Our solution for everything at Google; just add more tools.

[00:52:48] JM: So we’re seeing – I think when a company reaches a certain size, I think it often

behooves the company to set up some sort of research thing like what Google has done. Like
you have Google research, your Facebook research. I think companies like Stripe probably

have something nascent around that looks like research. Microsoft research obviously. Do you
have any general principles for – Let’s say I’m a company and I'm just reaching like the

thousand person mark and I’ve got really good traction, and like everything is going really well.
I'm not constrained by capital. I can hire a research team. Any advice for setting up a research

team or managing an in-company research team?

© 2019 Software Engineering Daily �24

SED 835 Transcript

[00:53:32] CJ: I think the big thing with us that made us successful was we were very careful

about how we grew this team and the people we added to it over time. One of things we did is
we did start small with people who had prior experience with software engineering research. But

over time we’ve added to group and we’ve been especially adding people who have social
sciences background.

So our team right now, about half of us are software engineers. Of that group it’s about software

engineering research background and half the people have more of a mathematics background.
Then the other half of our team actually is more social scientists. We've got people who came

from cognitive psychology, neuroscience, behavioral economics, and they bring a lot of rich
research methods that are unique, and they’re thinking about problems in a different way. Once

you’ve got a behavioral economics on your team, they think about, “How do I tweak things to
make people do the right thing without them really realizing it? How do I set up the incentives?”

You get someone who’s a cognitive psychology and they’re noticing the differences between

how people think about their colleagues and how that might affect their work product. So I think
that has been very beneficial to us. I know some other companies also try to get people like that

as well.

[00:54:52] JM: Kind of envious of your lunchtime conversations.

[00:54:54] CJ: They are. There’re some very, very, very interesting lunchtime conversations.
I’ve learned so much on this team.

[00:55:00] JM: So last question; what kind of studies are you curious about or like what do you

see is the future of your research to the extent that you can talk about it?

[00:55:10] CJ: Well, we’ve got some studies hopefully coming out in the next couple of years.
We’re going to be working on things like looking at build speeds and how that affects

productivity. Yeah, I know. It's a hot topic.

[00:55:21] JM: My code is compiling.

© 2019 Software Engineering Daily �25

SED 835 Transcript

[00:55:23] CJ: I know. We’re also – We’ve got some fund research I think the code readability

process at Google that we’re going to try and push out the door, because I think there’ll be some
really interesting lessons there for people outside of Google. More broadly, I am really interested

in getting more involved in trying to understand things like how context switches affect
engineers and how often do we context switch, and how difficult is it to get back on context?

There're actually a couple of papers that have been coming out in the academic community

about this where they’ve been trying to study GitHub and looking at like, “Within GitHub, how
many projects does an engineer work on a given day or a given week, and are they switching

back and forth between them quickly or are they working on one for two days and another one
for three days? How does that affect productivity?

[00:56:10] JM: This is actually what made me need to leave my career as a software engineer,

a corporate software at least, is because Cal Newport has this thing he calls Deep Work.
Everybody needs to be doing deep work. They need do have some segment of their day where

they’re not context switching. They needed to be completely focused on what they're doing.
Yeah, I happen to really enjoy shallow work with tons of context switching, and that's kind of a

rare work environment to find in my experience. But I'll be very intrigued to see what you find in
your context switching analysis.

[00:56:43] CJ: Yeah. I’m going to be curious too. One thing we do have some evidence of is

that there are differences from one person to the next here. So there are people like you who
would rather be switching between a lot of different projects and doing a more shallow work and

there are people who were like, “No. No. No. I need to work on a single project at a time. No
interruptions until this thing is done.”

So it’ll be interesting to see how that plays out with maybe how we change up again, how

[inaudible 00:57:08] with the tooling. How do you maybe even go into open office spaces? How
do we change up how people work based upon their preferences and what makes them

personal and the most productive? I don't think there's a single right answer here though.

© 2019 Software Engineering Daily �26

SED 835 Transcript

[00:57:21] JM: Well, I completely agree with you there. Ciera, thank you so much for coming on

the shore. I’ve been really enjoying the conversation and I look forward to seeing your future
research.

[00:57:29] CJ: Thanks so much.

[END OF INTERVIEW]

[00:57:35] JM: GoCD a continuous delivery tool created by ThoughtWorks. It's open source. It's

free to use, and GoCD has all the features that you need for continuous delivery. You can model
your deployment pipelines without installing any plugins. You can use the value stream map to

visualize your end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add
continuous delivery to your cloud native project. With GoCD on Kubernetes, you define your

build workflow. You let GoCD provision and scale your infrastructure on-the-fly, and GoCD
agents use Kubernetes to scale as needed. Check out gocd.org/sedaily and learn how you can

get started.

GoCD was built with the learnings of the ThoughtWorks engineering team, and they have talked
in such detail about building the product in previous episodes of Software Engineering Daily.

ThoughtWorks was very early to the continuous delivery trend and they know about continues
delivery as much as almost anybody in the industry.

It's great to always see continued progress on GoCD with new features like Kubernetes

integrations so you know that you're investing in a continuous delivery tool that is built for the
long-term. You can check it out yourself at gocc.org/sedaily.

[END]

© 2019 Software Engineering Daily �27

