
SED 818 Transcript

 © 2019 Software Engineering Daily 1

EPISODE 818

[INTRODUCTION]

[00:00:00] JM: Google’s options for running serverless workloads started with App Engine.

App Engine is a way to deploy an application in a fully managed environment. Since the early

days of App Engine, managed infrastructure has matured and become more granular. We now

have serverless databases, queuing systems, machine learning tools and functions as a

service. Developers can create fully managed, event-driven, highly scalable systems with less

code and fewer operations.

Different cloud providers are taking different approaches to offering these serverless runtimes.

Google’s approach involves the open source Knative project and a hosted platform for running

Knative workloads called Cloudrun. Steren Giannini is a product manager at Google working on

serverless tools. He joins the show to discuss Google’s serverless projects and the

implementation details in building them.

A few updates to Software Engineering Daily land. Podsheets is our open source set of tools for

managing podcasts and podcast businesses. A new version of Software Daily, our app and ad-

free subscription service is available at softwaredaily.com. We’re looking for help with Android

engineering and other roles. You can find those at our Software Daily FindCollabs. We

particularly like your feedback on the apps, the mobile apps, which are available in the iOS and

Android app stores, and we definitely could use some help ironing out all the bugs there.

The FindCollabs hackathon has ended. FindCollabs is the company I’m working on. The

winners of the hackathon will probably be announced by the time this episode airs, and we’ll be

announcing our next hackathon in a few weeks. So please stay tuned. The updates for today

are in the show notes for today’s episode, and let’s get on with today’s show.

[SPONSOR MESSAGE]

[00:02:05] The 2019 Velocity program in San Jose (June 10-13) will cover everything from

Kubernetes and site reliability engineering to observability and performance to give you a

SED 818 Transcript

 © 2019 Software Engineering Daily 2

comprehensive understanding of applications and services—and stay on top of the rapidly

changing cloud landscape. get 20% off of most passes to Velocity when you use code "SE20"

during registration at velocityconf.com/sedaily
.

[INTERVIEW CONTINUED]

[00:04:48] JM: Steren Giannini, you are a PM at Google Cloud. Welcome to Software

Engineering Daily.

[00:04:53] SG: Hi, Jeff.

[00:04:54] JM: So you work on App Engine, and App Engine I think was before its time in

many regards. It was serverless before serverless was a word. I do wonder what would have

happened if App Engine would have had the word serverless associated with it. Probably it

would have grown even faster.

Tell me about the early architecture of Google App Engine, because I think was – What? Like 8

years ago, or 6 years ago? Something like that?

[00:05:19] SG: You know what? 11 years ago.

[00:05:20] JM: 11 years ago.

[00:05:21] SG: Yeah. We celebrated 10 years not that long ago, and now it’s 11. So you’re

right. The term serverless was not coined at this time, but if we take the definition of serverless

as fully managed auto scale pay for usage, that applies to App Engine. You’re right.

So, yes, 10 years ago, Google had a serverless offering. Actually, Google Cloud did not exist at

that time. At that time, App Engine was the platform. Actually to your question about the

architecture, that’s why within the App Engine product, the original one, were baked in many,

many APIs in order to help people build apps. APIs to store blob, data stores, task queues. All

of these were features of App Engine at the time. Of course, the original architecture was

SED 818 Transcript

 © 2019 Software Engineering Daily 3

around supporting very narrow set of runtimes, as we call them. I think the first one was fully

Python, then Java and PHP came, but how we achieved that was by actually modifying those

runtimes.

So we actually had Guido, the Python author, actually working on App Engine to make sure that

runtime is safe to execute customer code on it, because this code is, at the end, running on the

Google infrastructure, on the Google orchestrator next to the other workloads that Google is

running. So that’s why at a very early stage, App Engine was using custom runtimes, custom

modified language runtimes, which is why we haven’t released a lot of different runtimes I the

early days of App Engine, because that was a lot of effort to bring even just a new language to

App Engine.

[00:07:13] JM: So when you think about that evolutionary spectrum from the early days of App

Engine to the richness and the variety of the different cloud APIs that are now there, tell me

about the main milestones, the main timeline milestones you think about in the evolution of the

products that you’re building on Google Cloud from those early days to the modern day where

you have the spectrum. It’s almost like a monolith to a microservice, that kind of migration.

[00:07:40] SG: Yeah, yeah. Actually, we went from, as I said, one product, which was App

Engine, to a whole platform. At the time, App Engine was the platform. So what I mentioned

about a built-in data store. Well, of course you had to store your data, except that now App

Engine has moved towards focusing on compute, and many of the GCP product have actually

graduated out of App Engine.

Google Cloud data store is just the graduation of App Engine data store. Google Cloud Storage

is actually App Engine blob store in its own product. One of my favorite one that we recently

released as a standalone product is Cloud Tasks. So it’s actually the same infrastructure as App

Engine Task Queues. You send a task into a queue and the queue dispatches the task to a

different service. This is now offered as a standalone service where you can not only target

HTTP App Engine targets, but actually also any HTTP targets.

So what we’ve seen over those 10 years is many things that were originally built into App

Engine became their own GCP products. On the other side, of course, in 10 years, many things

SED 818 Transcript

 © 2019 Software Engineering Daily 4

have changed under the hood. Our customers have always benefited from day zero until today

from a managed security and update of their applications. Of course, auto scaling was here from

the beginning, but many thing have changed.

I think I want to call out at least two of them. The first one is the App Engine scheduler. So the

algorithm and system that decides how many instances will your service get at a given point in

time. I worked on the release of a brand new scheduler. I think it was two years ago, where we

completely changed across the whole fleet the scheduling algorithm without any latency impact

or billing impact to our customers.

So you can imagine, you have really a lot of customers on App Engine, including very big ones,

and we seamlessly changed a core piece of the architecture while making save money,

because at the end I remember 8% reduction in cost on average for our customers just by

changing the way we scheduled instances. When we do those changes, we really measure all

across the board. There’s no latency impact, because at the end, when you use a serverless

product, the infrastructure is not managed by you. So there’s some kind of a trust relationship

between you, the customer, and the platform provider who has a part of responsibility into the

latency of your application into the availability of it and into its costs. So that was one of the

architecture change I worked on and it took a very long time for the team to achieve, and now

we are fully no this new scheduler.

But another big one I think even more important is the sandboxing technology. So as I

mentioned in your previous question, originally, each language that App Engine was supporting

was actually modified version of that language. For Python, we had to modify Python. For Go,

the same.

What we realized is that every new version of the language, we had to redo those changes, and

sometimes when the language changes a lot, you have to basically have to start from scratch

and redo your sandboxing by plugging holes into the language to make sure that the code is not

able to escape outside of this runtime.

So what we ended up doing is taking a different approach, taking an approach where we

actually sandbox not at the runtime level, but at the OS level. So that’s why Google has released

SED 818 Transcript

 © 2019 Software Engineering Daily 5

gVisor, which is the sandboxing technology that we use for App Engine, for Cloud Functions and

cloud run.

[00:11:26] JM: What does that mean? What’s the difference between sandboxing at the OS

level versus the runtime level?

[00:11:29] SG: So now, in every second generation App Engine runtimes, what we use is just

off-the-shelf Node.js, off-the-shelf Python, off-the-shelf Java, except that we run it into a secured

container runtime sandbox. Now, the isolation is not by patching the language, but it’s actually

by making the language believe it is on a regular machine. It’s actually not. GVisor will actually

implement many, many syscalls and make sure that they are fully secured and fully isolating,

the workload, from the rest of the environment.

Because, yes, I want to highlight that. Containers are not an isolation boundary. On a given

host, you can – Something like Jira will the piece that will help you really sandbox those

containers so that they cannot escape to the host machine.

[00:12:27] JM: Now, certainly security is one area of sandboxing, but there’s also the noisy

neighbor. If I co-schedule two containers on to the same OS and both of them happen to be

super hungry containers, I’m going to start to get performance degradation from at least one of

them. To what extent has the noisy neighbor problem been an engineering issue that you’ve

tackled in the sandboxing work?

[00:12:52] SG: I don’t think I’m the best person to answer that. I have not worked directly on

this.

[00:12:59] JM: Am I wrong about that? It is an engineering problem.

[00:13:02] SG: I know, the App Engine has one way to schedule workloads. The other cloud

providers have other ways. I do know that, yeah, we are allocating a certain amount of CPU

time [inaudible 00:13:13].

SED 818 Transcript

 © 2019 Software Engineering Daily 6

[00:13:13] JM: To me, it seems like a super edge case and it’s like pretty easy to solve by just

shifting the workload in most cases, or you spin up another, “Okay. We’ve detected a noisy

neighbor. Spin up a copy of this instance and start directing traffic to that instance, then delete

the noisy neighbor.” It’s just an edge case.

[00:13:27] SG: It’s also something that at scale balances itself. Of course, we say serverless,

but I can tell you, there are servers, a lot of servers. When you have such a large fleet in a very

large pool of host machines, if you want, then it’s easier to have diversity in those workloads

and to balance this problem within this pool.

[00:13:50] JM: I wonder if static analysis tools have gotten good enough to be able to predict

the performance of piece of code. We’re probably not there yet, right?

[00:14:00] SG: No. What we are offering on App Engine is the ability for our customers to

control a little bit the auto scaling algorithm by telling us, “Okay, you should target that CPU

utilization.” For about 60%, that means that we will detect that your instance starts to use more

CPU, then we will prepare another one so that the next request that comes in have an available

instance if needed to be processed. So this is more to help the latency of the end application.

[00:14:30] JM: We’ve gotten pretty into the weeds here. Let’s take a step back and just talk

about that word serverless. So I talk to you before the show that you work with or at least are

friends with Ville Aikas, who’s on the show previously to talk about Knative. Knative is

interesting and in some ways different than the other serverless perspectives that we’ve seen

around the industry. I think Knative sees less of a distinction between the function as a service

modality and the container as a service modality. Container as a service meaning, “Oh, this is a

long-lived container. We want it to sit around for a while to service. We need to accept requests

and we need it to be up basically indefinitely.” Whereas the function as a service modality is like,

“Yeah, you just hit this thing. It’s like a Google Cloud Function. It spins up kind of on-demand,”

and that’s fine. Then it spins down when it’s done. Why is there a gradient between those two

extremes?

[00:15:33] SG: I think there is one very important takeaway that people should remember

when listening to this podcast is serverless doesn’t apply only to functions. Let me explain why. I

SED 818 Transcript

 © 2019 Software Engineering Daily 7

think Ville explained it a little bit in the previous podcast. When you deploy a function to Google

Cloud Functions, for example, your function is a piece of source code. The first thing that we will

do is build that code to something that we can execute and auto scale.

Today, the industry standout for that is the container. So the first thing that happens when you

deploy to Knative, your source code, is that Knative build is used to transform this source into

something that can be auto scaled and managed by Knative serving. There’s another piece of

Knative, which is Knative eventing, that this piece will take care of making sure that this Knative

serving service is triggered when this other thing happened in your cluster or even outside of

your cluster.

So eventing is about binding things together, triggers, and serving is about actually serving your

workloads, your containers, and building is about coming from source. This source could be just

a simple function. Not even something that can execute by itself, but that is wrapped into what

we call – In Google we call that the function framework. So that’s what’s happening when you

deploy to Cloud Functions.

Let’s take Node.js as an example. You give us a one file that exports one function. That doesn’t

execute by itself. Even in your local machine, you cannot run that. So what we do first thing, we

inject what we call the Google Cloud Function frameworks for Node.js, which by the way we

open sourced today. So now the piece that we use to wrap your function around is open source,

and we take that. Now we have a Node.js application that actually you can start with npm-start,

it would start on your local machine, but that’s not enough to deploy to serverless, or serverless

infrastructure, or to Knative. You need to build that into a container, and many tools are helping

you do that. Google Cloud Function does that completely seamlessly for you without you

realizing it. You can do it by hand with Docker, with Google Cloud Build.

Personally, I’m a very big fan of Buildpacks. Something that entered beta recently, and you have

the tac command. You run tac on your Node.js source code, and boom! You have a container.

This industry standout of containers allows us to all agree that this is the piece to distribute and

deploy software, and then it’s about the infrastructure to run this container. In that case, under

the hood, Google Cloud Functions, once we’ve build your function to a container, we are

SED 818 Transcript

 © 2019 Software Engineering Daily 8

executing it on the same serverless infrastructure as what we use in this new App Engine

runtime.

To continue, it’ll end up being sandboxed by gVisor and executed in an auto scaled manner on

our infrastructure, and it’s the same for Cloudrun, the new product we announced today, which

instead of taking source code, this time it allows you to give us any container.

So tie that back to Knative, Knative serving is serving containers within your Kubernetes cluster.

So what we’ve done with this latest product that I mentioned, Cloudrun, is that now we are

exposing the same API, the same Knative serving API as a fully managed solution running on

our infrastructure that you don’t have to manage, you don’t have to worry about the cluster, or

you don’t have to worry about provisioning infrastructure, because we do that for you. As a

consequence of that, we can deliver a pricing model that is really, truly, pay per usage, which is

the serverless pricing model. When you use Cloud Functions, you pay for your number of

request and the execution time of this request. Well, it’s the same for Cloudrun, except that this

time we do the same with your container

[SPONSOR MESSAGE]

[00:19:53] JM: Today’s sponsor is Datadog, a cloud monitoring platform for

dynamic infrastructure, distr ibuted tracing and logging. The latest AWS X-ray

integration from Datadog al lows you to visual ize requests as they travel across

your serverless architecture, and you can use Datadog’s Lambda layer to col lect

business cri t ical metr ics, l ike customer logins or purchases. To see how Datadog

can help you get a handle on your applications, your infrastructure and your

serverless functions, signup for a free tr ia l today and get a free t-shirt .

Visit softwareengineeringdaily.com/datadog to get started and get that free t-

shirt . That’s softwareengineeringdaily.com/datadog. Thanks to Datadog for being

a continued sponsor.

[INTERVIEW CONTINUED]

SED 818 Transcript

 © 2019 Software Engineering Daily 9

[00:21:45] JM: So let’s say I build an app on Google Cloud. Actually, I am doing this right now

in the sense of Firebase. I’m using Firebase today. It’d be awesome to see Firebase eventually

become this level of open source. But let’s just assume we’re talking about Google Cloud, and

let’s say I start building this app today and I do it entirely through Knative, but using the hosted

options on Google.

Then let’s say in a year a half I decide I want to also be multi-cloud. I want to move this entire

serverless infrastructure deeply integrated with serverless APIs. I want to replicate it on a

different cloud provider. How easy it for me to do that?

[00:22:28] SG: So starting by the compute part of your application, what we ensured with this

new product, Cloudrun, and then its sibling, Cloudrun on GKE and with Knative is that those

three products share the exact same API. So sharing an API means that any tool that work with

one will work with the other.

Let me dive a little bit more into Cloudrun on GKE. Cloudrun is something that we announced

today, but it has two versions kind of. The first version is really fully managed, don’t worry about

anything. This is probably the easiest one to get started. It has a user experience, which is

simple developer experience console CLI. Using that same developer experience, you can, if

you want to, deploy inside your own Kubernetes cluster this time with Cloudrun on GKE.

So from a developer perspective, it’s literally the same, except that this time, because it’s within

the cluster or your organization, that you are in charge of managing this Kubernetes cluster and,

of course, the influence. Within the cluster, your workloads are auto scaled, and we are using

the Knative serving auto scaler for that.

But from a developer perspective, the container that you deploy is strictly respecting the same

runtime contract, and the user experience you have is strictly the same, including at the API

level, which means that we have partners, like GitLab, who have integrated with this Knative

serving API. This means that those partners are now able to deploy to Cloudrun too because of

this shared API.

SED 818 Transcript

 © 2019 Software Engineering Daily 10

So to answer your question, what happens if I want to move out of GCP? Well, we designed all

of these from the ground up to answer that specific question. The thing we’ve heard in the past

ten years on App Engine was it’s great, but I feel a bit locked in, especially with those

proprietary APIs that I mentioned early on in the product.

So now our answer is, “You know what? We are actually providing you the open source projects

to run the exact same thing on your own or anywhere else Kubernetes runs. To do that, just

install Knative in this cluster and you will have the exact same API able to run at the exact same

containers than what you have on the fully managed version of Cloudrun. Really, we ensure that

the container contract is strictly the same. We are working on conformance test to ensure the

APIs are strictly the same. This is something that is core to our strategy.

So last year at Cloud Next 2018, we started to pave the way towards this vision. When we

announced Knative, that was the first step. Okay, first step, open source project. Then I don’t

know if you noticed, but we also announced containers on serverless, and we announced the

GKE serverless add-on. All of these was actually the very first step towards today, which is

Cloudrun on GKE and Knative allowing that portability.

So you should really see Knative as a reference API that Cloudrun, Cloudrun on GKE and/or

many other partners are implementing, as well as a reference implementation that Knative, the

open source project itself, is providing on GitHub.

[00:25:56] JM: One thing I’ve heard – I’ve never built an application that scaled enough to

have this problem, but I’ve heard that the lock-in doesn’t necessarily come from open source or

close source. Well, it could come from the close source APIs obviously, but it can also come

from the IAAM layer, the identity and access management layer.

So if I build my app entirely on Google, I’ve got certain access policies and role management

and stuff that I’m doing that is closely associated with the Google Cloud identity and access

management system. My entire devops workflow, my entire permission system is now deeply

integrated with this proprietary IAAM layer. I’ve got 200 people. If I want to migrate my entire

serverless infrastructure, I now have to remap the IAAM roles to the entire – Whatever cloud

provider I’m migrating to IAAM’s system. I’m never going to want to do that.

SED 818 Transcript

 © 2019 Software Engineering Daily 11

[00:26:58] SG: So this is true, and that’s why when I started my answer, my first answer, I

started by, “If you want to migrate your serverless compute, we designed it to be easy.” Then I

just said, “The landscape is way bigger than compute. There is all of the security and identity.

There’s all of your data. There’s all of potentially software as a service that your application uses

that is not delivered as any open source equivalent.

So, yes, indeed. If you want to migrate your entire architecture, you have much more to worry

about than only the compute. But at least the compute piece, we have built it so that it’s easily

portable. We have Cloudrun alpha testers, or actually using both Cloudrun and Cloudrun on

GKE, and they start this Cloudrun and they realize, “Oh! Maybe I need access to a GPU to do

some graphical computation. They do image analysis.”

Well, they just – “Okay, fine. I just moved to Cloudrun on GKE with the same tooling.” Actually,

these customers are also looking to guarantee to their own customers that they will not be

locked in. So what does that mean? They do IoT on water systems, in cities. So when a city

signs a contract with them, it’s [inaudible 00:28:14] by the way, where they send a contract with

them, they want to make sure that even if they change contractor, the whole infrastructure will

keep running. After all, it’s water systems that people are relying on for living.

So they want to make sure that by contract, they are able to move to a different cloud provider,

to on-prem if needed. So the Knative story resonates a lot with that customer, because they

have the guarantee that those workloads are portable. The tooling they are going to build, they

are going to easily be able to target different backends, if you want. Yeah, there will be a bit of

identity transition to do if you want to move to another provider.

That being said, Kubernetes is becoming a platform on its own, and Kubernetes RBACs are

something that are shared across managed Kubernetes offerings. Even the identity layer is

starting to kind of become standardized via Kubernetes.

[00:29:19] JM: Sure! SPIFFE and SPIRE I think are kind of related to that, or no. That’s more

like workload authentication, I guess. I think the whole lock-in discussion is like – I don’t know

why people focus on it so much, because the cloud providers are competing down to a

SED 818 Transcript

 © 2019 Software Engineering Daily 12

commodity level cost, and maybe there’s going to be some cost differences in the margins, but

kind of a whole reason we’re all in the software industry is because the things we build are

pretty high-margin. Why do you think we’re all so obsessed about this whole multi-cloud thing?

[00:29:54] SG: I think for us it’s really, “Okay, you can do it on your own. You can do it

elsewhere,” but we believe we have the best offering. When I say that, it’s more, “Look. Yeah,

you can totally install Knative on your own Kubernetes cluster that you run on bare metal or on

VMs,” but also at the same time, you can take a look, and we offer a fully managed version of

the exact same API where you literally have to provision nothing in advance and can just deploy

in one command. Maybe you will pick that, because that’s way easier to use a developer so that

you can focus not on building your own infrastructure, but on building values for your business.

So that’s Cloudrun. Yeah, you can do it on your own, and we give you the tool and the code to

do that, but we also give you this hosted offering, where, literally in two clicks, you deploy a new

container auto scaled in your all serverless environment and you don’t have to pay for the

infrastructure either. You only pay when you use it.

[00:30:52] JM: Have you talked to any companies that have done a really significant multi-

cloud expansion?

[00:31:02] SG: I haven’t, and I’m not the best person to talk about that for – I mean, I know we

released many things today around multi-cloud, around hybrid, and I would recommend you to

interview somebody who has worked more on that. For us, it’s really about we give one piece of

this whole story, but we don’t give – Me, in the serverless team, we don’t give the full story. We

give Knative, which is part of this story of you run serverless on-prem, how you run serverless

on your Kubernetes cluster. But the whole story, I will recommend you to interview somebody

else. I think the field is very interesting.

[00:31:34] JM: But let’s say you’re running a giant insurance company. You’re never going to

move everything to multi-cloud. You’re going to have some disaster recovery story that’s multi-

cloud. You’re going to checkpoint your Kafka logs to like the other clouds, bucket store system

perhaps. I mean, why would any of these companies want to spend that much time on going

multi-cloud with their compute infrastructure? Is it just portability or like –

SED 818 Transcript

 © 2019 Software Engineering Daily 13

[00:32:08] SG: It’s also reliability too, right? When every system that you design, if it’s at least

N+1, redundancy is going to help in case of one of the piece has an outage, for example.

However, it’s probably very hard to shift an entire stream of incoming request and tell you to one

side or the other.

[00:32:31] JM: So maybe it’s an ideal. It’s an ideal we’re aspiring to as an industry to get to

this point.

[00:32:37] SG: Yes. What I do know is that we at Google Cloud are actually giving a lot of tool

to achieve it. It’s not easy. We are making it easier and easier, and let’s take a closer look at the

announcements of today in that area. But it’s not easy.

What we’ve seen more, for example, one Cloudrun anecdote. People were running batch scripts

on their machines, because, yeah, batch scripts runs maybe once a day with a serverless

architecture that allows you to run any language, because it runs any container. You can run

batch scripts on a serverless way, and that’s how people start to realize, “Oh! I can get rid of

that small machine that I have on-prem and move that to the cloud. Thanks to container. Yeah,

if I want to move to another cloud, I know this other cloud can also run containers. That’s the

industry standard.”

Of course, containerizing, it’s definitely a no-brainer for hybrid clouds, for moving to the cloud.

Even containerizing a batch script is the answer. Yeah, you use cron as a service that we offer a

newer cloud, which is Cloud Scheuler. Then you can easily say, “Run this service once a day,”

and it will run your batch scripts once a day. Whenever I like to do some, say, data backups or

anything, any batch scripts can actually run in a container. That’s quite interesting.

[00:34:00] JM: Interesting. So when you open source something like this, there’re a lot of

questions around how do you want to do licensing. What should your relationship be with open

source kind of foundations, like the CNCF? Was there any interesting decisions around how you

structured the open sourcing and relationship to foundations and relationship to other

corporations?

SED 818 Transcript

 © 2019 Software Engineering Daily 14

[00:34:27] SG: From the beginning, we’ve build Knative with many partners. Very early on, as

soon as we decided that we would walk in the open for Knative – I mean for this project, it was

not named Knative at the time. But we decided to start sending some emails and contacting

others to see if they would like to join us in that journey.

So that’s where we were when we announced Knative last year, where from the day of the

announcement, many of our partners were already contributors to Knative, even some of them

had already managed Knative offerings, and we did not, but they had.

So from the beginning, we’ve been building that with our partners. I mean, the API working

group of Knative. In that group, there are many people from outside of Google, and the

discussions are really respectful and listening to many opinions and many feedback from all

respective user-base. We don’t come all from the same area. I think Google has, as we

discussed, a lot of expertise, thanks to App Engine, and later Cloud Functions, and Kubernetes

or course. But some partners are bringing a different perspective on things, and that’s how we

all reach consensus and build Knative. This is happening today, and all of these is happening in

the open. The recordings are on the internet and everything.

Now, to your question. Do we need a foundation? I think this is more – You should not start with

that. Start by building a successful open source project. Start by building a community. Start by

building partnerships with very strong partners. Only then you think about, “Okay. So now how

do we make that sustainable in the long-term?” I think it’s always too risky to think more in terms

of CNCF instead of actually what problem are we solving here. Maybe it just doesn’t solve any

problem and we don’t even need to ask us this question. So we really want you to solve your

problem with Knative first.

[SPONSOR MESSAGE]

[00:36:30] JM: DigitalOcean is a reliable, easy to use cloud provider. I’ve used DigitalOcean

for years whenever I want to get an application off the ground quickly, and I’ve always loved the

focus on user experience, the great documentation and the simple user interface. More and

more people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for

their application workloads.

SED 818 Transcript

 © 2019 Software Engineering Daily 15

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet

that can mix and match different configurations of CPU and RAM to get the perfect amount of

resources for your application. There are also CPU optimized droplets, perfect for highly active

frontend servers or CICD workloads, and running on the cloud can get expensive, which is why

DigitalOcean makes it easy to choose the right size instance. The prices on standard instances

have gone down too. You can check out all their new deals by going to do.co/sedaily, and as a

bonus to our listeners, you will get $100 in credit to use over 60 days. That’s a lot of money to

experiment with. You can make a hundred dollars go pretty far on DigitalOcean. You can use

the credit for hosting, or infrastructure, and that includes load balancers, object storage.

DigitalOcean Spaces is a great new product that provides object storage, of course,

computation.

Get your free $100 credit at do.co/sedaily, and thanks to DigitalOcean for being a sponsor. The

cofounder of DigitalOcean, Moisey Uretsky, was one of the first people I interviewed, and his

interview was really inspirational for me. So I’ve always thought of DigitalOcean as a pretty

inspirational company. So thank you, DigitalOcean.

[INTERVIEW CONTINUED]

[00:38:38] JM: One engineering area that we have explored on all of these different episodes

about serverless is the “cold start problem”, the problem of, “I’ve got some code I want to run in

something that’s serverless, and I need a machine to be provisioned and I need the code to be

loaded on to a container on that machine.”

In the early days of the “serverless world”, the cold start problem was brutally slow for many

applications and it was too slow. I understand it’s gotten a lot better across the industry for a

variety of reasons. Can you tell me in your mind the history of the cold start problem when it

comes to serverless functions and what innovations have happened so far and what room there

is for improvement?

[00:39:26] SG: So we have to define what it is first. So cold start is when there is a request or

an event that happens that needs to reach your service or function, but this service or function

SED 818 Transcript

 © 2019 Software Engineering Daily 16

has been scaled to zero. So the first thing that needs to happen is an instance needs to be

scaled up so that it can process this request.

As a consequent of scaling of this instance, your function, or service, or code, actually does

things when it starts. It’s not ready to process request right away. It needs to load all of your

modules, or maybe do some initialization before actually being able to process that request.

So we’ve seen cold start problems often on function as a service kind of products, because they

have what we call a concurrency of one. Let me dig a little bit more into that. So Lambda or

Cloud Functions, each, let’s say, instance of your function, functions are automatically scaled to

many, many instances if needed. But each instance of that function is going to be able to

process only one request at a time. So that means that, yes, of course. The first request will hit

a cold start. But if a second one happens before the first one has finished, then this other one

will also hit a cold start, because a second instance needs to be scheduled now.

On Cloudrun, the concurrency number is not set to one, but it’s set to 80 by default, and you can

change it as much as you want. What that means is that this very first request, yes, might hit a

cold start, and I can come back to that. But the second one, if your code is designed to handle

multiple requests at the same time, which honestly a lot of frameworks are helping you to do

that and a lot of languages are actually built to do that. Then this same instance is going to be

able to process many requests at the same time, and as a consequence –

[00:41:23] JM: Wait. I’m sorry. But the first iteration of this world, you said with that

concurrency of one, like I spin up a serverless function. If that thing is running when another

request for the same function is called, it’s going to hit another cold start. It’s going to have to

spin up another container. Why don’t those requests get co-scheduled on to the same function,

the same container function?

[00:41:50] SG: So the thing is the platform providers that offer function as a service have, by

choice, decided to add that restriction for the simplicity maybe of the billing model or the

simplicity of –

SED 818 Transcript

 © 2019 Software Engineering Daily 17

[00:42:04] JM: And that’s public or just by practice, you’re saying? Is that public that they say

they do that?

[00:42:09] SG: The bidding model we offer for Cloud Functions could only be offered with a

concurrency of one, because you are paying for execution time. So, of course, if we are going to

send two requests on the same instance, you will be basically paying for only one request.

So Cloudrun goes a little bit deeper into its pricing model, where it’s actually making you pay for

the exact CPU and memory and number of request that you use. So with that billing model, you

can now decide, “Okay. Now I decide to send one request at a time,” and now you get the

functions as a service kind of cold start problem, and also billing model, or you can decide, “You

know what? I will actually optimize my code, because maybe my code does an API call to

another API. Until the API returns, my container does nothing, but I pay? Maybe that’s some

CPU I should use to process a different request?”

So this is actually better software practices to have code that can be multi-threaded, or like

Node.js have an event loop that is able to process multiple requests at the same time. I put

aside to be one piece of the problem, which was the very first request that comes in. This one,

even if you have a concurrency of 80 or 1, if there is no instance scheduled, this one will still hit

a cold start.

Here, there’s also a bit of responsibility on the developer side. When you deploy to a serverless

environment, it’s also your responsibility to pick the libraries and tools in the language that will

not take 30 seconds to start. So, for example, minimizing the amount of modules that you load

at startup time, or if you initialize some global – I don’t know, some assets, don’t load them

asynchronously. Those kinds of things will put them in your container.

[00:43:55] JM: Okay. I kind of like what you’re saying. This is like an encouragement for

people to slim down their services.

[00:44:00] SG: We’ve seen a lot of improvements just by – In Node, just by reducing the

amount of files that I’ll write in-memory or those kinds of things. Yeah, that’s roughly one advice

for the very first cold start.

SED 818 Transcript

 © 2019 Software Engineering Daily 18

Then one thing that people should know is that Google, when we schedule your container

instances or function instances, we don’t directly scale them to zero as soon as the request is

over. Because, well, maybe we don’t need to get that capacity back. As I said, we have a very

large capacity where all of the Cloud Functions are running. So until we actually need it, we will

maybe keep your instance here for some time.

So that’s why if you send one request and then one minute later you send another request, this

other request, even if it’s technically a new one one minute after the other one or maybe 10

minutes after the other one, this new request might not hit a cold start, because we actually –

The platform provider or auto scaling algorithm decided to keep your instance here until it was

really sure that it did not need it anymore.

So it’s not every request, every new request that comes in, which will hit a cold start. It’s really

one where, “Okay, you function has been scaled down, because it has been inactive for a very

long time.” In that case, you as a developer, can may be do a few things on the startup of your

code to reduce the time that it takes.

[00:45:24] JM: Now, I could talk to you about scheduling for the entire length of a podcast

episode, and there’s lots of improvements. Scheduling is this bottomless problem. There’s also

the hardware level or the VM level. There have been other people who are focused on

serverless who have recently focused on the VM level. Making some open source VM

innovations that are related to having a platform, a hypervisor level platform as far – I haven’t

looked at that project in detail. A hypervisor level platform that is optimized for running these

functions as a service. Why is that? Why is there space for innovation at the lower level? I

guess the thing that’s sitting – Like the hypervisor level, for example. Why would the hypervisor

level be something that we would want to modify based on, “Okay, this is a server that’s

dedicated to running functions as a service or containers as a service.”

[00:46:20] SG: It’s all a question of startup time. How fast can you bring up a container

instance ready to serve?

[00:46:25] JM: So we have basically the same cold start issue at a lower level.

SED 818 Transcript

 © 2019 Software Engineering Daily 19

[00:46:31] SG: At a lower level.

[00:46:31] JM: Interesting.

[00:46:32] SG: Google with gVisor is taking a different approach, where the VM is here but

the isolation is performed in-user space. I encourage people to read at the gvisor.dev.

[00:46:42] JM: I’d love to do a show on gVisor, by the way.

[00:46:44] SG: Yeah, and I can put you in contact with the people working on it. It’s

fascinating. It’s not only used by Google serverless infrastructure. It’s used in many different

places at Google. The interesting part is that it passes the security review of Google, which is

why we are able to run customer code on our infrastructure in a secure way.

[00:47:07] JM: Right. Actually, I think somebody else said this. You don’t really use VMs. You

just have containers running on raw infrastructure, right?

[00:47:16] SG: Maybe Brian Grant would have been something better to answer this question.

[00:47:18] JM: No, I think that’s literally who said it. He’s like, “Yeah, we don’t –”

[00:47:21] SG: Yeah, exactly.

[00:47:22] JM: We don’t use VMs. I was like, “What?”

[00:47:23] SG: I know you interviewed him. I mean, probably, he’s way more knowledgeable

than I am.

[00:47:26] JM: Okay. I’ll ask him about that.

[00:47:28] SG: Maybe the podcast can maybe even answer this question, the podcast you did

with Brian.

SED 818 Transcript

 © 2019 Software Engineering Daily 20

[00:47:31] JM: Yeah. I realized this might be – Okay. Yeah. Totally. That’s fine. Also, we

learned about scheduling from this experience.

[00:47:38] SG: I mean, to me, on the Kubernetes cluster with Knative, you have more control.

For example, if you want to remove the cold start, well, you can set the min instance to one and,

sure, you don’t have any cold start anymore, but just know that you always have an instance

running your service. That’s actually a flag that we gave on App Engine for users who want to

constantly pay for one instance. You can do so.

So what I realized is it’s a complex problem, many different approaches. From a product

perspective, the hard part is how much control do you give to the users? Because, I mean, if I

want to optimize my scheduling of my, let’s say, App Engine, I have, okay, a number of

concurrent request. I have memory, or the instance size by itself can make my instance able to

process more or less request. There is the CPU utilization targets. There is the throughput

utilization target. There is the minimum instances, max instances. So many, many parameter.

[00:48:39] JM: Cost, priority.

[00:48:40] SG: Exactly. So at the end, for our customers, it’s exactly what you said. It’s a

balance between optimizing for costs or optimizing for performances, because you can always

schedule large amount of instances and have amazing latency, amazing performances, but then

your cost will be higher.

So on App Engine, we give a few more knobs to tweak to help you choose between this or that.

Actually, this depends maybe on the workload you are running. At the end of the day, if you do

some background job, then maybe you don’t care about the latency so much, as long as the job

is done. On the opposite, if you expose some frontend API [inaudible 00:49:20] probably care

that it is quite snappy and able to answer a load that varies overtime.

[00:49:28] JM: As we move towards a world in which more people are running their

applications on “serverless infrastructure”, does it change the requirements we need from

storage systems?

SED 818 Transcript

 © 2019 Software Engineering Daily 21

[00:49:42] SG: Oh! So, for sure, you should not store state in your container.

[00:49:46] JM: Yes. Okay. All right.

[00:49:47] SG: We want to state the obvious. But the depending on the type of data you want

to store, you will find many different storage options, some of them that we qualify as serverless.

If I take, as an example, cloud file store, you put nothing it. You pay nothing. You put as much

as you want. It’s scales with you. You pay for usage.

So we’ve seen those scalable data storage solutions that are actually very well-suited for

serverless workloads. Of course, we allow you to – I mean, on App Engine and Cloud

Functions, to use a SQL instance if that’s what you want, but just know that, well, if your function

is scaled up very fast and maybe you will exhaust your number of connections to your database.

So these are problems that if you use a serverless data storage solution, you don’t have

anymore. But this is maybe structured data, but unstructured data, we all know about Google

Cloud Storage or blob storage solutions. Then if you want to do some – As always, depending

on the use case, you want to do some analytics, maybe not a little bit less real-time, then use

some data analytic solutions. BigQuery is amazing. I use it very often as a product manager to

process data, and this is a different use case and something that does it very well, and also

scales on-demand and on usage.

[00:51:06] JM: So I love BigQuery. I love Firebase. I don’t really – Personally, I don’t care that

much if something is open source or not. I’m more of a product kind of person. For me, it’s all a

means to an end. That said, everything about the multi-cloud and the open source, I get why

some people need it, and there definitely are people that do need it, and I’m happy that this

migration towards like open source and cloud, or this kind of a merger between those two, or

both the areas of open source and cloud are expanding, but perhaps there’s more and more

overlap between them in the Venn diagram.

What’s cool about working at Google, from what I understand, is that to some extent, you’re

going to see the future of what’s going to be available in cloud providers. Because if you work at

Google, you have all these infrastructure that’s really taken care of for you. If you want to deploy

SED 818 Transcript

 © 2019 Software Engineering Daily 22

a service, if you want to embed a machine learning model – Okay, the machine learning model

is already trained for you. It’s just like an import statement. You’re like, “Really?

Recommendations are that easy? It’s just like I import and then it’s like two lines of code and

I’ve got a recommendation system out of the box?” I know that’s what it’s like to be at Google.

We don’t have that in the cloud yet. I mean, maybe we do to some extent. It’s probably more

lines of code if I want to have my own recommendation system using cloud tools today than

what you have within Google.

What I’m excited about in these cloud conference, I’m just like looking and I’m like, “I want the

new tools. I want the highest level, craziest API that I can get leverage from.” What’s in the

future? What are we going to see in five years? From your time looking around at Google, what

am I going to be able to do as a developer with public cloud tools that I cannot do today?

[00:52:51] SG: So I think today, first of all, we already introduced something quite new. When

I joined the serverless team and I realized, “Wait, we have the infrastructure to run arbitrary

containers on all serverless infrastructure in a serverless way, literally scaling up and down on

demand.” We should give that to developers.

There’s not necessarily the requirement to ask them to write in a given language, because if we

are able to execute containers, let’s just give them containers. That’s already what you’ve seen

today has moved one step forward. Literally, we went from a set of five languages, seven

languages, to any language you want, any software you want, put in a container, which by the

way is an industry standout and now is run on the same infrastructure as what your Cloud

Functions were running on. So I think I’m very excited about this product, because we have

introduced something new here, more than just functions. It’s containers on a serverless

infrastructure.

For developers, I think – As you said, bringing more of the Google goodness to the internet

world is – Internet is actually our direction. You’ve seen it with Tensorflow, for example. Google,

from the beginning, decided to instead of building a proprietary internal machine learning

framework, decided from the beginning to open source it. This is very different from before. If

you look at Hadoop and MapReduce, before Google was publishing the paper and leaving the

world to take care of the rest.

SED 818 Transcript

 © 2019 Software Engineering Daily 23

Here at Google is now getting the implementation of things. I mean, you mentioned – Can I just

add an impulse statement and have a prediction model imported? Well, that’s what we see

today on NPM and Tensorflow.js. So right now, I did it myself. By importing one node module –

[00:54:41] JM: So it is that easy.

[00:54:43] SG: Yeah. With one node module, I imported – What was that? Like face detection

algorithm build with Tensorflow that was running in my browser. So we are reaching that level

of, “Yeah, sure. I want to run a Tensorflow model. I just important it as a backend, because why

not?” This is something that in the past we would not have believed possible, but today, thanks

to open source – Actually, thanks to something that become standards, we are able to share

those pieces together.

On the Docker ecosystem, people are sharing base images. On the package ecosystem, people

are sharing modules, and this is – To me, it’s not only about open source. It’s about agreeing on

a way to do things. If you agree on doing containers and – Okay, let’s all support containers.

[00:55:30] JM: Let’s all do it.

[00:55:32] SG: It’s all better.

]00:55:32] JM: We’ve got better things to worry about.

[00:55:34] SG: Exactly.

[00:55:35]JM: Steren, thanks for coming on the show. It’s been a real pleasure.

[00:55:37] SG: Thanks, Jeff. Thanks for having me.

[END OF INTERVIEW]

SED 818 Transcript

 © 2019 Software Engineering Daily 24

[00:55:43] JM: GoCD is a continuous delivery tool created by ThoughtWorks. It's open source

and free to use, and GoCD has all the features you need for continuous delivery. Model your

deployment pipelines without installing any plug-ins. Use the value stream map to visualize your

end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add continuous delivery

to your project.

With GoCD running on Kubernetes, you define your build workflow and let GoCD provision and

scale your infrastructure on-the-fly. GoCD agents use Kubernetes to scale as needed. Check

out gocd.org/sedaily and learn about how you can get started. GoCD was built with the

learnings of the ThoughtWorks engineering team who have talked about building the product in

previous episodes of Software Engineering Daily, and it's great to see the continued progress on

GoCD with the new Kubernetes integrations. You can check it out for yourself at

gocd.org/sedaily.

Thank you so much to ThoughtWorks for being a longtime sponsor of Software Engineering

Daily. We are proud to have ThoughtWorks and GoCD as sponsors of the show.

[END]

