
SED 658 Transcript

EPISODE 658

[INTRODUCTION]

[0:00:00.3] JM: The main user interfaces today are the smartphone, the laptop and the desktop

computer. Some people today interact with voice interfaces, augmented reality, virtual reality
and automotive computer screens like the Tesla. In the future, these other interfaces will

become more common. Developers will want to be able to expose their applications to these
new interfaces.

For example, let's say I'm a developer who builds a podcast playing application, I have a

website in a mobile app, but what if I want to expose that app to a voice interface, or what if I
want to expose a specific piece of functionality from that app to make shortcuts easier? Android

Slices are user interface components to that expose pieces of application functionality to Google
search, Google assistant and other applications in Android.

Jason Monk is a software engineer who works on Android Slices at Google and he joins the

show to discuss how mobile user interfaces are changing. He talks about the motivation behind
Android Slices and the engineering behind this newer building block for Android developers. We

haven't done too many shows about Android-related subjects, but I hope we do more in the
future.

[SPONSOR MESSAGE]

[0:01:23.9] JM2: DigitalOcean is a reliable, easy-to-use cloud provider. I've used DigitalOcean

for years, whenever I want to get an application off the ground quickly. I've always loved the
focus on user experience, the great documentation and the simple user interface. More and

more, people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for
their application workloads.

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet

that can mix and match different configurations of CPU and RAM to get the perfect amount of

© 2018 Software Engineering Daily �1

SED 658 Transcript

resources for your application. There are also CPU-optimized droplets, perfect for highly active

frontend servers, or CICD workloads.

Running on the cloud can get expensive, which is why DigitalOcean makes it easy to choose
the right size instance. The prices on standard instances have gone down too. You can check

out all their new deals by going to do.co/sedaily. As a bonus to our listeners, you will get a $100
in credit to use over 60 days. That's a lot of money to experiment with.

You can make a $100 go pretty far on DigitalOcean. You can use the credit for hosting, or

infrastructure and that includes load balancers, object storage, DigitalOcean spaces is a great
new product that provides object storage, and of course computation. Get your free $100 credit

at do.co/sedaily.

Thanks to DigitalOcean for being a sponsor. The co-founder of DigitalOcean Moisey Uretsky
was one of the first people I interviewed and his interview was really inspirational for me, so I've

always thought of DigitalOcean as a pretty inspirational company. Thank you, DigitalOcean.

[INTERVIEW]

[0:03:30.6] JM: Jason Monk, you are a software engineer at Google. Welcome to Software
Engineering Daily.

[0:03:34.3] JM2: Thanks, Jeff. Happy to be here. You work on Android and one of the features

that we're going to discuss today is Android Slices. More generally, I think Android Slices
represents machine learning and search features becoming more deeply integrated with the

Android operating system. Describe how the experience of the mobile user is changing, thanks
to machine learning and search being more deeply integrated into the operating system.

[0:04:01.6] JM2: Okay, that's interesting. I would characterize it slightly differently. I think that

enabling machine learning and search more deeply in the operating system is definitely a goal,
but at a higher level, Slices really what we're trying to do is we're trying to break the monolithic

app model, which is on your phone right now. You normally open an app, do some stuff, interact
with that app and then when you want to do something else, you open a new app. Slices is

© 2018 Software Engineering Daily �2

SED 658 Transcript

trying to break that up and say like, “Look, let's try to bring more of apps outside of themselves

and into the OS, so that users don't have to do as much jumping around.”

[0:04:34.8] JM: In that perspective, that seems like a real paradigm shift even from if we're
talking about desktop applications. If I'm using a browser, I'm using the browser. If I'm using

Slack, I'm using Slack. I guess to some degree, an analog might be, you get – on Chrome, you
get these browser notifications sometimes and even if you're on a screen where a browser is

not open, the Chrome browser notification might still appear on your screen. In that sense, the
monolithic browser application is broken up. Do you have any other analogues for how

applications are broken up on other platforms, things other than mobile?

[0:05:15.7] JM2: Ooh, things other than mobile; anything widgety jumps to mind. I'll be honest,
I'm not a huge expert on other systems. I'm a pretty big Linux user and a lot of them have – in

GNOME Shell, there is in the top right-hand corner, there's a task tray where you can add
various things there, and there's a way to get ongoing apps and bottom left. Anything ambient

indications, I think are similar models. Since I don't have many examples non-mobile, I'll give
more mobile examples.

[0:05:47.3] JM: Okay, sure. You can go ahead and jump into that, the mobile examples of

Slices.

[0:05:51.1] JM2: Because there's definitely – well, and not just Slices. The idea of having UI
outside an app has existed for a long time. We've had notifications on Android for forever, and

we've had remote views on Android for forever. That's how widgets and custom notifications
work. The new attempt with Slices is to try to come up with something which is generalizable

enough, but still feels integrated, and that's the trade-off between the notification space and the
widget space existing, and that we’re like trying to think about when we were tackling Slices as

a new thing.

[0:06:24.9] JM: Can you give a few examples?

[0:06:26.1] JM2: Yeah. When you're in launcher for example, if you have a widget and like a
weather widget or something like that on your home screen, a lot of people have these, you'll

© 2018 Software Engineering Daily �3

SED 658 Transcript

notice that the widget doesn't always necessarily feel very connected to the launcher. It's very

just like something which sits there. Well it can have rich content and lots of custom layout and
feel really branded, there's no good ways for it to interact, because basically to the home app, to

the launcher, it's just a black box. It's like, “Hey, there is some remote view here.”
[0:06:54.2] JM: Launcher by the way, that's the desktop, or the home screen?

[0:06:57.8] JM2: Yeah, yeah, yeah. On Android, you hit the center button on the bottom of your

screen and you end up on launcher, or home, or whatever anyone's current name for it is. Yeah,
and so on the other extreme end of the spectrum is if you look at notifications, not the custom

ones, if you look at notification templates, in the past few releases in Android, we've had some
really great integrations there. What we call it is Dice and I'm not sure what it's called publicly,

but the thing where the notification icons, they follow from the status bar as you drag down your
notification shade and you have that visual continuity, and there's all sorts of animations

between states. That's the deep integration with the surface we can do when we have
information about data inside. There's this trade-off that you pay between how much the app

has control, versus how much they can integrate with the surface.

[0:07:47.6] JM: A few examples I've seen are, for talking about Slices explicitly, you can have
these actions that are decoupled from the actual application itself. For example, summon a ride

with Lyft, or play a song with Spotify, these application-specific ways of interacting with content,
with apps, can you give a few examples for how those are accessed through Slices and what is

new about that?

[0:08:16.0] JM2: Yeah. Clarify nomenclature, because actions is a very overloaded word. When
we were telling the Slices story at IO and Sense, we've talked a lot about them tied in with App

Actions at the same time, and I think that's what you're referencing here. There's two concepts
in there; there's like, “Oh, I just want to take an action in app,” and then there's App Actions,

which is a thing, you know what I mean?

[0:08:34.6] JM: Right, absolutely. I should have been more correct with my language.

[0:08:37.7] JM2: No, no, no, no. That's totally fine. I wanted to identify that and that's a point
that we even see internally we get confused a lot of the time talking about it. Yeah. The way App

© 2018 Software Engineering Daily �4

SED 658 Transcript

Actions works is Google defines a set of actions that it thinks a user might want to take. Yeah,

and those are things like book a ride, or play a song, or whatever. The real meat of what App
Actions does is it also defines a schema for input parameters. In Android, there are lots of built-

in intents, which are open the web browser, or whatever.

This is really a parameterized way to say, “Hey, I want a location parameter here, or I want an
artist here.” You can say, “I want to play music with an artist,” and it can go and look up and say

like, “Oh, I know what apps actually know how to play music and will receive an artist.” The way
that ties into Slices, and so this is a very interesting model, because it's really easy to think of

these things as one thing, because they're both trying to bring out parts of an app closer to the
user, but the model I like to think of it as is App Actions is a deep link discovery mechanism.

You think of like you're building a way to link way into an app; you are going to go straight to an

artist of Taylor Swift, or whatever, you're going to go straight to booking a ride in Uber, or Lyft
and something like that. Slices is the display mechanism for that. The way they link together is

through intents, intents of the common language of Android of how everything works. Once you
have an action built, that basically becomes a URL/an intent deep link into your app. We have a

translation mechanism in Slices where you can link basically any intent, which is going towards
your app to the concept of a previewable, or an extracted state of your app, where you can see

that in a different surface like Google search.

[0:10:25.8] JM: If we're talking about those three vocabulary words; intent, action and slice, if
we were talking about for example, the slice, the high-level interpretation of play a song by

Taylor Swift on Spotify, what would be the intent and the action that might correspond to that
slice?

[0:10:46.2] JM2: Yeah. The action would be something like play a song and the parameter

would be the artists name, or artist ID, or something like that. The way App Actions works is it
tells – is the app gets to define how those parameters transform into an intent, so the app gets a

control there, so it's really hard for me to define it, but they could easily just say this is package
name/play a song/artist ID. That could just be their scheme of how they received them in their

app.

© 2018 Software Engineering Daily �5

SED 658 Transcript

[0:11:17.6] JM: Was I completely mistaken around the search and machine learning features

being connected to Slices, because my understanding was in the ideal world, so at some point
in the future, we should be able to control so much more of our Android device through the

assistant, or just through entering the voice assistant, or just entering a simple search query
command and you should be able to have these deep links exposed intelligently, or indexed in a

way that a voice command can correspond to them. Is Slices connected to that kind of
conversation, the ability to trigger certain behaviors of your phone through the assistant, or

through some just single-text NLP search protocol?

[0:12:02.6] JM2: Yeah. No, they absolutely are connected. I'm sorry, because I started off by
walking away from that. No, it's just because I wanted to start by proposing Slices as more of a

foundational technology of the way we extract that information. I think that App Actions and
Slices absolutely do service those building blocks of how do we even present that. If you were

to say, a year ago before we have these, okay, we want to start building more intelligent things
and we want to start proposing stuff to the user. We didn't even know how to get ahold of that,

or let alone show it to them, other than just guessing deep links, like crawling the web and
figuring out what URL schemes various apps have. This gives us a way to address those

basically, to say if we know what the user wants, now we can construct that link into an app and
even present that data sooner through Slice.

[0:12:56.9] JM: Yeah, tell me more about the design decisions that led to this model of where

you have actions, intense – or intents, actions and slices, because I can imagine that three
years ago, this was total greenfield and you knew that voice was going to become a big deal,

you knew that the interfaces that people are going to be using are going to change over time.
How did you come to the conclusion that this model for the Slices being the path to the deep

linking would be the way to do things?

[0:13:29.1] JM2: Yeah. That's interesting. I can tell a little bit of backstory on Slices. I wasn't
involved in the early days of actions. It's interesting, these two projects came up organically in

Google just all on their own, and then we got paired together, people being like, “Hey, you
should really talk to this other team. They really seem related.” We're like, “Yeah. Okay, we need

to tell some unified story here, because they make sense together.”

© 2018 Software Engineering Daily �6

SED 658 Transcript

Yeah, in terms of Slices it's interesting. There's a future-looking Android UX group within

Google, which is where Slices were born. Slices were very different from where they started to
where they end, and I think that's true for a lot of projects. I think in the beginning, there was a

lot more about the transformative properties of a slice, which was not only about bringing stuff
out of an in-app, but we were thinking about moving things between surfaces, which when you

think about is about user control. Like if the user has a piece of content and they say, “Oh, I
don't want to interact with it on this surface. I want to drag it over to my home screen and

interact with it here.”

[0:14:26.3] JM: Or with my Chromecast.

[0:14:27.6] JM2: Yeah. Or even other devices. That's where it started and I mean, we still
continue to strive for that. We like them to be universal and movable between surfaces and

between devices someday. If you look at the internals of Slices, you'll see some of that structure
and how that comes out. At the top level, Slices is very much just a builder API. You're like,

“Hey, I want to make a list of things; here are my titles, here are my summaries.”

If you dig into that one level deeper, you'll find that they sit on top of a tree structure of nodes,
which are full of the base level elements of content of text and icons and pending intents for

actually triggering actions and a set of presentational hints. That layer of abstraction underneath
them is meant to make them more flexible and moveable.

[SPONSOR MESSAGE]

[0:15:28.5] JM: Leap.ai matches you with high-quality career opportunities. You are more than

just your skills and a job description and a resume; these things can't fully capture who you are.
Lea.ai looks beyond these details to attempt to match you with just the right opportunities. You

can see it for yourself at leap.ai/sedaily.

Searching for a job is frustrating and Leap tries to reduce the job search from an endless
amount of hours, days, weeks, to as little as 30 seconds trying to get you matched to a job

instantly, by signing up based on your interests, your skills and your passions. Leap works with

© 2018 Software Engineering Daily �7

SED 658 Transcript

top companies in the Bay Area, Unicorns and Baby Unicorns; just to name a few; Zoom, Uber,

pony.ai, Cloudera, Malwarebytes and Evernote.

With Leap, you are guaranteed high response and interview rates. You can save time by getting
direct referrals and guaranteed interviews through Leap.ai. Get matched to jobs based on your

interests, your skills and your passions instantly when you sign up. Try it today by going to
leap.ai/sedaily. You would also support Software Engineering Daily while looking for a job. Go to

leap.ai/sedaily. Thank you to Leap.ai.
[INTERVIEW CONTINUED]

[0:17:07.4] JM: Let's go back to that example of the playing a song. If I'm searching in my

Google search, so on Android for people who are not Android users, at least on the default for
the pixel, which is the phone that I have, there's a search bar at the bottom of the home screen

and you can just enter in stuff into the search bar. If I enter in play a song by and my phone
knows that perhaps I like Taylor Swift, who doesn't? I have Spotify on my phone and I'm logged

in on Spotify and the phone is able to recognize that if I just preface things with play a song, it
can recommend play a song by Taylor Swift and it has a deep linking thing, and I can just click

on that and it'll go directly into Spotify and it'll open up Spotify with that song playing.

Now in order to present that search result in the autocomplete suggestions, the search
application needs to have some permissions into Spotify, and Spotify needs to have some

things in memory presumably, so that it can present some suggestions to me that are tailored
based on my preferences. How does abstraction in that permissioning in the connection of the

data model between the search application and Spotify itself how is that modelled?

[0:18:23.6] JM2: Yeah, that's a really interesting space, because it's so privacy-centric. You
could easily be typing things into your search box that you don't want going to Spotify, right?

There have been lots of grounds with this, because of the way it works is there's this API called
Firebase app indexing, that's a pre-existing API. What that does is it lets apps push content at

Google saying, “Here, I've got some personal content on my device that I know is about my user
and I'm going to send you some keywords and information about that content and usage data,

so that you can surface it and deep link in to me.” That's been existing, but not shown as
prominently until recently.

© 2018 Software Engineering Daily �8

SED 658 Transcript

What we're doing is we're building on top of that API, and so now you can actually link together
what was previously a Firebase app indexing entity to now a slice. They can use all the pre-

existing cues to say like, “Oh, this is clearly trying to play music. This should go to Spotify, and I
know it's this entity in our database.” Now they can say, “Oh, hey. This is slice that I want to

show right now.”

[0:19:31.3] JM: I see. Spotify is presenting some information to something in the cloud, the
Firebase indexing service, and then your search application is also communicating with the

same data storage system in the cloud. It feels like it's all happening on your phone, but it's
actually taking place in the cloud.

[0:19:51.6] JM2: No, that's actually on your device. Those Firebase APIs interact with –

[0:19:54.5] JM: Oh, I see.

[0:19:56.4] JM2: Google Play Services on your phone and store that all locally. Now that's just

the base case. Let me take that and make it a little bit more complicated. Even if we have that
all set up and we say, “Oh, okay. We want a deep link into some app. We want to show their

slice,” the default behavior of a slice is when you show it the app would know, because they
need to present that data and would need to be live, but that's really dangerous with the security

implications of the search box.

What we do instead is we cache that data for things that are general term queries. That means
if you type in the name of an app like YouTube, you will get the default app slice and we

consider that non-sensitive data. Yeah, okay, YouTube can know you typed in YouTube into the
search box. If you type in something random, like an artist name, in that case when you're

pushing keywords and entity data at the Firebase app indexing API, it will also grab a snapshot
of that slice and it will hold that in its database, so that it can show a cached version of it

whenever the user is querying.

© 2018 Software Engineering Daily �9

SED 658 Transcript

Once you interact with it, or give us a signal by touching somewhere saying, “Hey, I actually

want this,” then we'll wake up the app and make sure that all of the data is live. Until then, we
won't give them any signal that it's there.

[0:21:11.3] JM: Okay. Can you go through that example again with – so you went through it with

YouTube there, go through it again with Spotify. For how Spotify is fit – Yeah, good for Taylor
Swift or for example.

[0:21:20.9] JM2: Okay. Spotify, if you type in, say Spotify.

[0:21:24.3] JM: Into Google search?

[0:21:25.4] JM2: Yeah. If you type in Spotify into Google search, will immediately wake up the

Spotify app and say, “Hey, what's your primary slice? What's your main slice?” They can say,
“Oh, here's our discover weekly playlist,” show that as our default slice. If you type in Taylor

Swift, ahead of time Spotify will say, “Oh, I know that Jeff likes Taylor Swift. I'm going to send
that to the Google index and I'm going to say I also have a slice at /artist/Taylor Swift that you

can show for this.”

Google Play Services ahead of time will go grab that slice and say, “Hey, what do you actually
have to show me? It'll get all the content from Spotify and serialize it into its database.” Now,

you type in Taylor Swift into the search box and it knows that it wants to show something from
Spotify, but rather than fetching it from Spotify, it fetches it from the database cache that it has,

and you see Shake It Off. Now you say, you want to listen to that song, you click on it, at that
point we know there's an intent, we know that you're actually looking for Spotify and you're not

just typing in random words into the search bar, and then we connect you with Spotify app.

[0:22:28.1] JM: To some degree, Spotify needs to manage this collection of suggested slices,
right? They need to be able to either build some internal recommendation system, or define just

some statically configured recommendations.

[0:22:45.0] JM2: Yeah. Well, that's where the link between App Actions and Slices comes in. In
the model that we just talked through, that is all without App Actions. Now some of this is very

© 2018 Software Engineering Daily �10

SED 658 Transcript

greenfield and hypothetical, but you can imagine a scenario hypothetical, because we have to

launch it and figure out how that even works. If you have App Actions and Slices implemented in
Spotify, you can imagine a world where you type in Taylor Swift and Google recognizes that

Taylor Swift is an entity. It doesn't do any lookup from what Spotify has. It instead says, “Oh,
Taylor Swift is an entity, I know that they care about this.”

Then it looks up an action related to that, so it’s, “Oh, it could play songs from Taylor Swift.” It

says, “Oh, hey. Spotify has an action for playing songs for Taylor Swift. Let me translate that into
an intent.” That's the first stage of that's all actions doing all of its magic. Then you can take that

a step beyond, which is if you have all the information and you have an intent, which is a deep
link you can say, “Hey, is there a slice for this?” Rather than just showing an icon in the words

‘Taylor Swift,’ you can say, “Hey, please give me a slice for this, which is a playlist containing a
bunch of songs.”

[0:23:57.9] JM: In the current model, it is this necessity that in the app on your phone
somewhere, Spotify has declared here is some default slices and then maybe they have some

other batch job that is generating Jeff's recommended slices?

[0:24:17.0] JM2: Yeah. That would be the visceral implementation of Spotify adding support for
Slices.

[0:24:22.4] JM: Okay. What's to prevent – I mean, could they just bloat that slice file so much,

that every time I'm searching anything in Google, they're recommending some podcast, or audio
file to me, or is there some limitation on the number of slices that can be recommended?

[0:24:42.0] JM2: Yeah. There are some limitations. Luckily, we get to sit on top of the app

indexing architecture for this stuff. The firebase app indexing team has done lots of really great
work in the past, so we don't have to think about this as much, which is really nice. Yeah, there

is a limit on the number of I think they're called documents I think is what they're called. There’s
a limit on the number of documents you can push at it. Then on top of that, there's a limit on the

number of keywords that you sit on top of that.

Also at the core of it sits the magic Google proprietary ranking, obviously. I know it's really hard
to rank on device content, but it's something they're working on and getting way better at. To do

© 2018 Software Engineering Daily �11

SED 658 Transcript

that, we actually take into account usage signals. Some of this is self-reported, but it's relatively

easy to determine if an app is just pushing at you random usage data, rather than actual usage
data.

Spotify, every time you go in and listen to Taylor Swift, it can notify Google Play services and

say, “Hey, Jeff's listening to Taylor Swift again.” That will give Google a little bit of information
saying, “Hey, we should bump those ranking up a little bit more.” Even if all apps register on the

same keyword ‘Taylor Swift,’ it will only show the ones that it has a reason to believe that you
want.

[0:25:56.7] JM: What's so interesting about this is that we went for many years with – the other

common phrase you would hear is dumb device smart cloud, and here it's gradually becoming
the opposite, if you imagine this Firebase app indexing service that has to index the ranking for

all the apps and their intents, all the apps and their slices, or their actions on your phone, if you
have Spotify and Uber and Postmates and Instacart and Amazon and all of them have their

slices and you enter in ‘shake’ on your search bar.

Your phone to some degree, or there's some interaction between your phone in the cloud where
they're determining should they give you a on-device recommendation from one of the slices,

like either it's Shake It Off from Spotify, or order a milkshake from Postmates, or get directions to
Shake Shack from Google Maps. Is there any trade-off between how much work you want to

delegate to that on-device indexing service, versus the traditional Google search in the cloud
thick indexing service?

[0:27:16.6] JM2: I think there's a huge trade-off there. I will say, this is speculation because I'm

on the Android team, I'm not on the Google search team, but waivers landed. Yeah, so I think
the trade-off is I think because the cloud is so much more powerful, you want to put as much

content there as possible, as much of the ranking, as much of the decisions there, because not
only do you have the power, but you also have the information from other people to feed that.

Like click-through rates of other people and how that happened and what they actually wanted,
versus what you actually want.

© 2018 Software Engineering Daily �12

SED 658 Transcript

The key part about what's on your devices, your device is personalized, your device is yours,

and so the Google Cloud servers may or may not, depending on account linking and whatever
and logins, know what songs you actually listen to on Spotify. Whereas, on your device it knows

absolutely, and it’s really easy for it to know that.

[0:28:09.1] JM: Tell me more about how you expect people to change their designs in their UX
decision-making process for applications where they are using Slices.

[0:28:20.9] JM2: I think that within their app, there would be very little change in UX, I think for

the most part. Assuming currently they have a well-structured app, which has some amount of
deep links. When there is clear user intent, there is somewhere in their app that you wanted to

go. You assume that you wanted to be looking at the Taylor Swift playlist in Spotify, and
assuming that Spotify has a screen where you could be looking at that.

I think that there's very little impact there. I think what the difference is is the accelerators to get

there. Also, there's a lot that goes into the UX of thinking about a slice itself, like what content
you put there really is going to affect the user’s experience. A lot of that is just put in the app’s

hands of like, they could – it could be that you're typing in Shake It Off and they decide to say,
“I'm going to show you artists related to Taylor Swift.” Might be a good decision depending on

your music taste, but it also might be that Spotify knows that you're going to be playing Shake It
Off and they should present that button to you right there.

[0:29:23.2] JM: What else can – if Spotify wants to change the Slices experience, how else are

they configuring that? Do they have the ability to configure that they want to present you artists
related to Taylor Swift? What's the API for Spotify to present a variety of Slices and not just one

that's as naive as play a song by Taylor Swift?

[0:29:47.6] JM2: Yeah. Well, so we do some basic checking to make sure that your keywords
are tied to your slice in some way, that you're not just spamming keywords. Beyond that, pretty

much all of the content is in the app’s control. The way the API looks it, the best words I've
heard describing this is like a simplified layout language. We wanted the templates to be really

flexible. When you're building them, it's like you're constructing a UI, but it's a very restricted UI.
You can say at the top level, all Slices right now are list, so you say, “Hey, I've got a list,” and

© 2018 Software Engineering Daily �13

SED 658 Transcript

then you say, “Hey, I've got a header and the title is Taylor Swift, and the subtitle is other artists

related to Taylor Swift or something like that.”

Then you can add individual rows which have – and rows can have all sorts of content they
could have. They could have a slider, they could have switches, they could have titles and

subtitles. We also have ways to present stuff horizontally. If you want to show stuff in a grid, like
if you were doing a weather forecast, or something like that. It's like composing simplified layout.

[0:30:53.3] JM: Tell me more about what your role has been in the development of Slices.

What's been your involvement and are you engineering the actual code for Slices, or are you
more of an architect for what's going on?

[0:31:08.0] JM2: Yeah. That's really changed over time. It's been interesting. I am the

engineering lead for Slices. I started off by being the architect encoder for a lot of it. There were
two engineers when we started trying to take over this project and productionize it, and say like,

“Okay, let's take this UX concept of Slices and say what if we want to make this a real thing?”
From there, it's scaled a bit. I would say most of my time these days is more in an architectural

role. I spend a lot less time coding. I don't code not at all, but I do code some. I spend a lot of
time thinking about what is our structure right now, what is our – what would it look like if we pick

up new surfaces and what effect does that have on our APIs?

I have a really great engineer, Maddie, who was talking with me at IO and she pretty much
handles all of templates on their own, so I don't even have to think about that most of the time.

Yeah, does that answer the question?

[0:32:02.5] JM: It does. When you say for new surfaces, what is that look like? What services
are you talking about?

[0:32:08.8] JM2: I don't think I can really answer that. We try not to speculate in the future.

[0:32:13.0] JM: All right.

[0:32:13.8] JM2: No. I mean, I would like to see a lot of new surfaces.

© 2018 Software Engineering Daily �14

SED 658 Transcript

[0:32:17.1] JM: We did some shows with Flutter recently. We did a couple Flutter shows, and I
think the idea of Flutter is interesting, because it's supposed to be surface agnostic. It's more

about designing UI that's super flexible for any surface. Are you thinking more abstractly about
just how you make this UI component work for any surface? You want it to be compatible with

anything?

[0:32:41.7] JM2: Yeah, we do. That's something we have to think about every time we add a
new template. One thing I'm not scared to talk about is we have said that we're looking at

messaging templates for the future. We don't have anything messaging specific right now, but
we want it in the future. You can see in our code base if you just look at AOSP that it's there.

When we think about that, we have to stop and say not only what is the backwards compatibility

story if someone's running an old version, or whatever, but also what does that look like on
other surfaces in the future? An interesting case of this is you have a pixel phone, right?

[0:33:14.5] JM: I do.

[0:33:15.8] JM2: Okay. On your always-on display, you're seeing some stuff like weather and
date and upcoming calendar events.

[0:33:23.4] JM: Yeah.

[0:33:24.6] JM2: Okay. Under the hood, that's actually powered by slice technology. We use

Slices as the data transport layer for what that is, and at the UI layer we say like, the always-on
displays is a very different surface than a normal slice view. I mean, it's got all of its own custom

rendering. That's an example of when you are constructing a new template, you have to stop
and think about what are the core building blocks of this data and what if we want to present it in

a different way?

You'll notice that even in the APIs, if you look at things like, if you want to add a slider, it's called
an input range and not a slider. Because we don't guarantee that it's going to be a slider. If a

user is interacting with voice in the future, or if they're on a different device that doesn't have an

© 2018 Software Engineering Daily �15

SED 658 Transcript

easy touchscreen, they might be hitting buttons, or talking at it. Who knows? The idea is that –

the core data model there is you want an input range.

[0:34:12.5] JM: I don’t understand. What's the difference between an input range and a slider? I
guess, if you're talking at a voice interface, or like an augmented reality interface, I'm not

necessarily sliding. I'm looking through my glasses, or my VR headset at an input range, and I
may not have the physical sensation of sliding something. I'm just looking at this range thing?

[0:34:37.3] JM2: Yeah. I mean, you could imagine a world where you're interacting with the

assistant and you say like, “Hey, what's my brightness?” You hear it's 45 and you say, “Hey, set
my brightness to 75.” That very much is not –

[0:34:51.2] JM: There's no slide.

[0:34:52.3] JM2: There's no slide, there's no even UI in that case.

[0:34:56.0] JM: Okay. Can you talk more about assistant and how this fits in with assistant?

That sounds like a no.

[0:35:03.7] JM2: No. I can a little bit.

[0:35:04.9] JM: Okay.

[0:35:05.4] JM2: We've definitely talked to assistant. We think that they fit in in some way. I
think the answer is we don't know how. I think the assistant has some very specific

conversational APIs that are really, really good. It's really hard to think about like, do you want to
generalize those, or do you want just to use them as is and let that be a specific thing? It's a

trade-off between easy developer adoption and power and control.

[0:35:29.7] JM: What do you mean voice APIs that are really good?

[0:35:32.0] JM2: Actions on Google has – there's a whole API for way for developers to define
grammar of how you interact with the assistant. I'm really not an expert here, I just like, I know of

© 2018 Software Engineering Daily �16

SED 658 Transcript

it. It is possible for apps to do those kinds of integrations now. When you know that that's the

landscape, you have to be like, “All right. Well, what would be our role if we wanted to be
there?”

[0:35:54.3] JM: Oh, man. Can you tell me more about just how you navigate this developing for

voice? I've talked to a few people who are working on voice stuff, both on the show and off the
show. It sounds like it is so nascent. People really just don't know what they're doing today. Can

you tell me more about just what that experience is like, because I imagine there must have
been false starts and you don't want to over commit on any particular strategy, but it's hard to

get significant testing without deploying something. Well, how do you develop voice?

[0:36:29.1] JM2: Yeah, I'm just going to skip that altogether. I have no idea. I talked to those
engineers internally, like that happens, but I don't know. They certainly seem confident when we

talk to them. They haven't figured out. You should have one of them on the show and then we'll
find out.

[0:36:43.5] JM: Yeah, I absolutely should.

[SPONSOR MESSAGE]

[0:36:53.8] JM: Cloud computing can get expensive. If you're spending too much money on
your cloud infrastructure, check out DoIT International. DoIT International helps startups

optimize the cost of their workloads across Google Cloud and AWS, so that the startups can
spend more time building their new software and less time reducing their cost.

DoIT International helps clients optimize their costs, and if your cloud bill is over $10,000 per

month, you can get a free cost optimization assessment by going to doit-intl.com/sedaily. That's
D-O-I-T-I-N-T-L.com/sedaily. This assessment will show you how you can save money on your

cloud, and DoIT International is offering it to our listeners for free. They normally charge $5,000
for this assessment, but DoIT International is offering it free to listeners of the show with more

than $10,000 in monthly spend.

© 2018 Software Engineering Daily �17

SED 658 Transcript

If you don't know whether or not you're spending $10,000 if your company is that big, there's a

good chance you're spending $10,000, so maybe go ask somebody else in the finance
department.

DoIT International is a company that's made up of experts in cloud engineering and

optimization. They can help you run your infrastructure more efficiently by helping you use
commitments, spot instances, right sizing and unique purchasing techniques. This to me sounds

extremely domain-specific, so it makes sense to me from that perspective to hire a team of
people who can help you figure out how to implement these techniques. DoIT International can

help you write more efficient code, they can help you build more efficient infrastructure. They
also have their own custom software that they've written, which is a complete cost optimization

platform for Google Cloud, and that's available at reoptimize.io is a free service, if you want to
check out what DoIT International is capable of building.

DoIT International are experts in cloud cost optimization. If you're spending more than $10,000,

you can get a free assessment by going to doit-intl.com/sedaily and see how much money you
can save on your cloud deployment.

[INTERVIEW CONTINUED]

[0:39:18.1] JM: We see that you have to have a lot of interactions with disparate teams. You've

got interactions with voice teams, with search teams, it sounds like with the Firebase team. How
do you juggle all those different conversations and keep the interests of the different teams

aligned? Because I can imagine this could lead to sprawl, or gaps in communication. What's
been your, I don't know, your experience in inter-team communication?

[0:39:47.0] JM2: Yeah. You ask how I manage that, the answer is poorly. Yeah, it is really hard.

We really regularly between – for the core part of Slices showing up in search, there's really
been three core teams. I mean, you think about that there and that's us, the Slices team,

Firebase app indexing like you talked about, and the search team and well, and specifically the
sub-team of search that works on those really upfront suggestions that are crazy low-latency.

© 2018 Software Engineering Daily �18

SED 658 Transcript

It's so hard to think about all of those different product angles. At the same time, I think that what

it comes down to in the end as to whether like you can find something that makes it all the way
to launch is whether it is something which is good for users overall. There was a lot of – there's

a lot of back-and-forth and a lot of privacy questions like we talked about that are really deep
and complex.

I think the reason we made it this far is that we all shared this belief that like, “Oh, if we had

Slices on our phone in search, we'd like that.” I'd really like to have that personally. That keeps it
going. Yeah. The difference in just technology, the way Android is developed an open source

and we've got yearly release cycles. Whereas, they've got apps and all this craziness of
mismatching release cycles happens too.

[0:41:08.5] JM: Yeah. If there's somebody out there that's listening and they work at –

[0:41:12.4] JM2: I stumped you. I love it.

[0:41:14.6] JM: No. This is actually something that people have asked for more discussion on

the show about. If there's somebody out there who works at Salesforce, or Oracle, or Amazon,
or one of these other behemoths and they are trying to learn the diplomacy and the education

necessary to pull through, or to push through a highly technical change is going to impact so
many different interest groups within a large organization. Do you have any suggestions, or

tactics?

[0:41:47.3] JM2: Yeah. The thing that we try to do here is I say we all are unified now. We all
have our own ways of dealing with this. The way my boss has trained me and I've tried to

embody this, now I have a temper and I'm not always perfect at it. No one is, but you're always
going to hit cases where you disagree on something. What you need to assume at that moment

is that the other team is trying to do what's best for their product. If they aren't, they wouldn't be
here. They wouldn't do this for their job every day, if they weren't trying to do what's best for

their product.

You need to stop and think about, “Is there a path forward which is best for both you and them?
Is there some scenario where this works out for all of us?” That's a really hard thing to do,

© 2018 Software Engineering Daily �19

SED 658 Transcript

especially as an engineer, that is one of the hardest things I've ever gone through, is you have

this design in your head, this architecture and you go into a room and you have a room full of
people and they're like, “No, no, no. There's no way we can do that. That's a terrible plan.”

To actually stop and not be frustrated and not yell at them, and to be able to be like, “Wait, but

why?” What information do they have that I don't have about their product, about what they're
trying to do for their users?

[0:42:58.9] JM: Well getting back to lower-level engineering concerns, what had been the

hardest parts –

[0:43:03.5] JM2: I see how it is. You don't like my answers there.

[0:43:06.0] JM: No, no. I like it just fine. I think that was – this stuff is more about experience.
From what I've seen is there's no easy way to learn diplomacy. You can read books, you can

listen to people, give high-level advice like you just gave, I thought that was – that was about as
actionable as you can get, but mostly you're only going to learn by getting into the fracas and

picking up on people's latent and upfront signaling.

[0:43:31.0] JM2: Well, and I started there by giving you a hard time, just because that's how I
am. That is so true. I receive pretty similar advice from my boss for years, and it still took me a

long time to get to a point where you can even feel that way when you're in the moment.

[0:43:46.5] JM: Because you're never going to be able to know everything that's going on in the
Firebase team, or the Google search team, or the Android permissions team, or the Flutter

team, or the augmented reality team, or the assistant team. All these different surfaces that the
implications of Slice will touch either now or in the future, and so there's no clear-cut answer of

like, “Oh, well I go home every night and I read all of the internal communications between the
assistant team and the Firebase team,” and maybe you do that for 10 minutes, but you can't do

all of that.

[0:44:20.4] JM2: I can’t imagine anyone doing that.

© 2018 Software Engineering Daily �20

SED 658 Transcript

[0:44:22.2] JM: Nobody could do that. There's some degree of you're doing this round-robin

switching between learning about all these different technologies and understanding what's
going to be the win, win, win, win, win for the 15 teams involved in ultimately being affected by

some minor decision in Slices.

[0:44:40.8] JM2: Yeah. Yeah, yeah, yeah. Absolutely.

[0:44:42.4] JM: What's been the hardest part of building Slices?

[0:44:45.7] JM2: There have been a lot of hard parts. Backwards compatibility. The fun
buzzword I haven't gotten to say is we support all the way back to KitKat and slices, which

means we go to way up in the 99% of devices. Yeah, backward compatibility is a crazy hard
scenario to think about. It's been very hard to get permissions working in that context. We

haven't gotten into the details of permissions, but the way permissions for Slices work is they’re
URI-based permission.

You say you have some URI, which is basically a URL, and you can grant specific apps access

to a subspace of that. You say, this app can read anything under /play. The difference from that
in standard Android URI permissions is that a user can grant them. There's actually a grant flow

for a user, the assumption that maybe you want to use Slices outside of whatever, anyone was
thinking of ahead of time. The reason that was so complicated in back compat is that we

encountered an issue very late in the game, where we found out that URI permissions have this
undocumented limit of how many an Android device will hold on to.

You don't normally hit it, because in the past, URI permissions are used for things like, how

many folders does an app have access to? You're not thinking about these in the context of
there might be thousands on a device. There might even be thousands for a single app. Very

late game, we found out there's this limit, and when we start scaling that's going to be a problem
and we had to be like, “Okay, let's rethink our permission story from the beginning and basically

build our own version of URI permissions into our back compat library.” Yeah, that was
something that was pretty hard.

© 2018 Software Engineering Daily �21

SED 658 Transcript

Something which was hard, but not at a specific instance was just thinking about scaling for the

future. I would like to get to a point where we have many thousands of these moving around
your device and that means that they have to be small and compact and compressed and fast.

All of that is something sitting in the back of your mind constantly. You have to think about like,
“How big is the wire format of this when it's transferring between apps and how fast does this

react? Are we building the APIs to encourage that developers are building these to respond
quickly, so that this can happen?” Yeah.

[0:46:49.5] JM: How are they being – what's the communication protocol between for example,

search and Spotify?

[0:46:55.8] JM2: Yeah. For Android developers who know content providers, they sit on top of
content providers, we hit all the terrible parts, don't worry. I promise. When you get to the core

part of a content provider, the really nice thing about it is you say that you have data
addressable by a URI, and you can acquire the data and act on that data. A lot of what Alices

are at their core. That you extend a slice provider, which is a content provider and you get a
callback which is on bind slice, which is basically anytime you want to bind to data from a

specific URI to the actual structure.

Then inside there, you have builder schemes and if you're in Kotlin, we have a DSL. Yeah, in
Kotlin. That's mostly how it works. Then there's a scheme for saying like, “Hey, something

changed. Please trigger a rebind. I need to bind my data again.” I think that covers it at a high
level. In reference to the performance, there's a lot of things that we put in there. Originally, we

were actually going to run it on the main thread to encourage people to think of this as UI. It's
not UI in your app, but it needs to feel UI needs to be that responsive. We didn't end up doing

that, but we put the same restrictions as if you were on the UI thread, which is like, you
shouldn't be reading from desk, you shouldn't be talking to the network, you shouldn't be doing

any long operations here. Instead, what you should do is return, “Hey, I've got to load some
data.”

In that, within our API, we've got bunch of a bunch of structures which are like, “Hey, I've got to

have a thing here, but it's loading.” You should do that asynchronously and let us know when
you're done loading.

© 2018 Software Engineering Daily �22

SED 658 Transcript

[0:48:18.6] JM: Now does that get tricky? Because you don't want to have to have Spotify be
running when you see a slice in Google search, right? It would be nice if you could just access

the slice data from disk, right, because you don't want to have that application running?

[0:48:36.7] JM2: Yeah. We do. The way that works is Google Play Services, which is the thing
which caches them for search, when it asks for a slice from Spotify that it's going to cache, it

waits until Spotify says, “I've actually loaded all the data.” It says, “Hey, Spotify give me a slice.”
Spotify says, “Oh, here's my slice, but half of it is loading.” Google Play Services is just like, “Oh,

that's fine. I’ll wait.” Then when it is fully loaded, it serializes that to disk.

I mean, there are a slice API specifically for apps that are hosting Slices to be like, “Here, I want
to serialize this to disk and hold on to it for later.” We actually went into this enough that we

made that a core part of the slice API concept, which is anytime you build a slice, you have to
specify TTL, which is a hint to the presenter of how stale this data is. We’ll actually show

different things in Google search depending on whether we think that this is with – whether this
is within TTL, and that means like, “Oh, yeah. We think this data is fresh. We don't need to tell

the user that it's old.” Or if it's outside of TTL and we'll give the user some hints like, “Hey, this
was updated four hours ago,” and show them a refresh fresh button.

[0:49:43.5] JM: I see. If am searching on the Google search and it's rendering a slice and the

slice is taking a while to load, that's not going to affect my Google search results, because the
autocomplete for Google search results is this asynchronous behavior, and you can you can

enter in the first P-L-A-Y and then you can wait three seconds. If you're on an old phone, then
maybe after three seconds your Spotify slice actually will render, because the Spotify side of

things will finish.

[0:50:16.5] JM2: Yeah. Well, so Google search actually does a bit more amazing stuff in this.
They're really conscious of latency and things loading in asynchronously, because they know

that that can be jarring. They'll do things where if you're typing and something is in a loading
state, they'll hang on to it for the next character.

© 2018 Software Engineering Daily �23

SED 658 Transcript

Generally, I mean, whether with some exceptions obviously, but for the most part, you won't see

the UI in search change, unless you type a character. It's one of those things, at least for me
personally, I didn't realize until they explained it to me and then I realized it and saw it on my

phone. I was like, “Oh, yeah. It totally does do that, and that actually works really well.”

[0:50:51.7] JM: Definitely. Those performance improvements that you're really hoping for, that
scalability, do you have a sense for what that's going to look like or what it will require?

[0:51:01.7] JM2: Yeah, a little bit. I mean, to some degree. Some of it you don't know, some of it

depends on apps. You can never be sure what an app is going to do with your API and how
they're going to use it wrong. Not to say that all apps are bad, but you get a few million apps, or

whatever. I don't know if it's in the millions. I have no idea how many apps are – someone's
going to use it wrong.

[0:51:21.5] JM: Yeah, permissions issues, weird privacy things. Like oops, well –

[0:51:26.0] JM2: Or just hanging. Yeah.

[0:51:27.8] JM: Hanging, right.

[0:51:29.8] JM2: Yeah. Yeah. Hanging is one of the most interesting ones, because if you're

calling out to them on a – because there's an entry process communication there. If you're
calling out to them on the wrong thread, you can just hang one of your threads. You have to be

really conscious with that.

Yeah. In terms of performance and scaling, I think right now we're mostly in a wait-and-see. The
interesting thing about Slices that is different from a lot of Android APIs is that it's a platform

concept, but it's also heavily developed in the support library. There are accelerators in the
platform to make it really performant on P and forward and we can even improve those over

time, like Android Q or whatever, but we also have very high-level developer-friendly API sitting
in the support library. Because of that, we can make adjustments in both places. We can make

adjustments way down in the OS to say like, “Hey, let's perform better.” Or we can make

© 2018 Software Engineering Daily �24

SED 658 Transcript

adjustments up in the support library to say like, “Oh, this isn't doing great on P. We're going to

change how this actually worked.”

[0:52:30.3] JM: I see. Okay, well as we begin to wrap-up, what other improvements, changes
do you foresee for Slices that are going to be made in the near future?

[0:52:39.6] JM2: Yeah. Well, so Android X recently moved to developing an AOSP, which

means all of our – all of our support libraries/Android X development is completely public. Last
night, I merged a prototype of a library, which is going to make pending intents much nicer for

anyone who deals with pending intents. I'm hoping to ship that and out into an alpha release for
people as soon as possible, because I think it's going to be – I think people are going to be big

fans of it.

You blew a deal with Slices, or notifications, or widgets, or even a number of other things, deal
with pending intents and Android apps, and it is a huge amount of boilerplate. Normally, you

have to put together your arguments into a bundle and then generate an intent of what you
would want to launch and then turn that into a pending intent and finally you have something

which you can get to this something, someone.

We're using annotation processing to try to make that simpler in something we're calling remote
callbacks, named TBD. Right now I'm calling it remote callbacks. That simplifies that into about

two lines of code, which is like, “Hey, I want to make a callback and I want to call this method
with these parameters, and it will just generate the pending intent for you.”

[0:53:45.2] JM: Cool, and by the way when you're making these kinds of changes, that have

ramifications for so many different types of phones, so many different operating system
versions, do you have some comprehensive testing, continuous delivery thing that you push the

changes to and it runs on a bajillion different device configurations before actually getting
accepted into Android core?

[0:54:11.1] JM2: For the most part, we don't. For the most part, we don't. There are two

scenarios here related to what you are referencing, which is there's stuff which is in the OS
code, which runs on your device. We do have a bit of comprehensive testing across pixel

© 2018 Software Engineering Daily �25

SED 658 Transcript

phones and emulators of what we expect, but there's no real way to test that on say a Samsung

device, because it's part of the OS and Samsung would have to build it, or LG, or Sony, or
whoever.

Then there's the other end of the spectrum, which is support library. That testing is on a similar

set of devices, I think just because of historical reasons mostly at this point, because in the past,
support library when it started as support library, it was just a part of the OS being like, “Hey,

let's backport this stuff for people.” Now it's developed into this whole Android X jetpack thing
and we’re like, let's actually make developers life's easier and really think about that as a core

tenet. I don't know where I was going with that, but that seems like a good place to stop with
that. That's where I was going with that.

[0:55:06.5] JM: Agree. Well Jason, I want to thank you for coming on the show and it's been

really great talking about such a wide variety of things. I appreciate you going there with the
stuff that's probably on the verge of discussable with assistant and whatever other mysterious

surfaces Slices will be deployed to, and maybe we can do another show at some point in the
future when those surfaces have breached reality.

[0:55:27.9] JM2: Yeah, absolutely. It's been great being on here and getting to talk about this

stuff.

[END OF INTERVIEW]

[0:55:34.8] JM2: If you are building a product for software engineers, or you are hiring software
engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an e-mail

jeff@softwareengineeringdaily.com if you’re interested.

With 23,000 people listening Monday through Friday and the content being fairly selective for a
technical listener, Software Engineering Daily is a great way to reach top engineers. I know that

the listeners of Software Engineering Daily are great engineers, because I talk to them all the
time. I hear from CTOs, CEOs, Directors of engineering who listen to the show regularly. I also

hear about many newer, hungry software engineers who are looking to level up quickly and
prove themselves.

© 2018 Software Engineering Daily �26

mailto:jeff@softwareengineeringdaily.com

SED 658 Transcript

To find out more about sponsoring the show, you can send me an e-mail or tell your marketing
director to send me an e-mail jeff@softwareengineeringdaily.com. If you’re a listener to the

show, thank you so much for supporting it through your audienceship. That is quite enough, but
if you’re interested in taking your support of the show to the next level, then look at sponsoring

the show through your company.

Send me an e-mail at jeff@softwareengineeringdaily.com. Thank you.

[END]

© 2018 Software Engineering Daily �27

mailto:jeff@softwareengineeringdaily.com
mailto:jeff@softwareengineeringdaily.com

