
SED 621 Transcript

EPISODE 621

[INTRODUCTION]

[0:00:00.3] JM: Napster, Kazaa and BitTorrent are peer-to-peer file sharing systems. In these P

to P systems, nodes need to find each other. Users need to be able to search for files that exist
across the system. P to P systems are decentralized, so these routing problems must be solved

without a centralized service routing traffic. Without these centralized service that has all the
information in one place, how can you solve these problems of node discovery and file lookup?

This is the central question that Petar Maymounkov sought to answer with Kademlia. Kademlia

is a peer-to-peer distributed hash table. Kademlia implements the put and get operations of an
efficiently scalable has table without using any centralized service. Each node in the system

maintains its own routing table. When a user queries the system, which is the get operation, that
query is serviced by the nodes coordinating with each other to intelligently route the user to their

target location. When a file is stores, this is a put operation, the update to the file system can
propagate through the network in a decentralized, uncoordinated way.

Petar joins the show to give a brief history of P to P networks and explain why he created

Kademlia. He also explains what he’s working on today.

We are hiring for Software Engineering Daily. The jobs include writers, researchers and a
videographer and several other jobs. You could find them at softwareengineeringdaily.com/jobs.

Some of these are part-time, some are fulltime. If you’re interested in working with us, then
check it out, softwareengineeringdaily.com/jobs, and you can also post jobs on our job board if

you’re hiring people and want to get at our Software Engineering Daily audience. It’s easy and
it’s free. You can just go to softwareengineeringdaily.com/jobs and it’s quite straightforward on

how to post a job.

[SPONSOR MESSAGE]

[0:02:09.8] JM: Citus Data can scale your PostgreS database horizontally. For many of you,
your PostgreS database is the heart of your application. You chose PostgreS because you trust

© 2018 Software Engineering Daily �1

SED 621 Transcript

it. After all, PostgreS is battle tested, trustworthy database software, but are you spending more

and more time dealing with scalability issues? Citus distributes your data and your queries
across multiple nodes. Are your queries getting slow? Citus can parallelize your SQL queries

across multiple nodes dramatically speeding them up and giving you much lower latency.

Are you worried about hitting the limits of single node PostgreS and not being able to grow your
app or having to spend your time on database infrastructure instead of creating new features for

you application? Available as open source as a database as a service and as enterprise
software, Citus makes it simple to shard PostgreS. Go to citusdata.com/sedaily to learn more

about how Citus transforms PostgreS into a distributed database. That's citusdata.com/sedaily,
citusdata.com/sedaily.

Get back the time that you're spending on database operations. Companies like Algolia,

Prosperworks and Cisco are all using Citus so they no longer have to worry about scaling their
database. Try it yourself at citusdata.com/sedaily. That's citusdata.com/sedaily. Thank you to

Citus Data for being a sponsor of Software Engineering Daily.

[INTERVIEW]

[0:03:54.9] JM: Petar Maymounkov is the co-creator of Kademlia. Petar, welcome to Software
Engineering Daily.

[0:04:01.0] PM: Thank you for having me, Jeff.

[0:04:02.3] JM: We’re talking about Kademlia today, and Kademlia is a core component of peer-

to-peer networking. That’s the application that Kademlia is most commonly associated with.
What is a peer-to-peer network?

[0:04:17.1] PM: Okay. So the way I like to look at it is in the form of a distinction between peer-

to-peer software in general and what you otherwise known as cloud software. I’m using these
familiar terms, but the distinction is sort of more general and it’s the following. Peer-to-peer

software, regardless of what it is, is always comprised of multiple computers, so multiple
computing entities which all around the exact same algorithm at the start. A good metaphor to

© 2018 Software Engineering Daily �2

SED 621 Transcript

remember is to think of a colony of ants where all worker ants have the exact same DNA and, of

course, doing different roles, but they all are equal at the start.

Contrast is with cloud software, which is also called distributed software or distributed
algorithms where, again, you have like a collection of computing devices, but every single one is

is running different software has a different purpose, and importantly there is hierarchical
controls structure implied.

Is a good example of this metaphoric thing is a human shepherd is controlling a dog which is

controlling the herd of sheep. So you have different species with different DNAs. So they have
completely different specializations and there is also, as part of their specialization, there is an

implied hierarchical controlled structure with an entity on top.

In the cloud software, the human happens to be the coherent kind of business workflow that the
company wants to implement in the data center and the hierarchical relationship is that, usually,

this is all encoded at some high level orchestration software, which runs other pieces of
software, which do like specific data processing task and so forth. So you have the two worlds

of multiple species controlling each other in an hierarchical way versus identical species that
participate kind of democratically, everybody on their own, but they follow the same algorithm,

so they end up doing something useful as a whole.

[0:06:29.9] JM: Right. So peer-to-peer networks are more of a flat structure, at least from the
beginning.

[0:06:37.1] PM: From the start. Yes.

[0:06:38.4] JM: From the start. Right. Then it may develop certain structures where nodes in

the network play a bigger – Some nodes play a bigger role in the network than others, but
foundationally it’s a flat structure.

[0:06:51.9] PM: Right. It’s not known who will become an important player, because it depends

on how they interact with the environment. Whereas with cloud software, it’s set up front, which
is the master and which are the workers, basically, machines.

© 2018 Software Engineering Daily �3

SED 621 Transcript

[0:07:08.7] JM: Yeah. In a cloud software, you might have an application where there’s four
different services and then you’ve got a database service, and the database service services

requests from all four of the other services, and so the database service is probably a priori, a
much bigger player in the network.

[0:07:29.9] PM: Actually, no. It’s a good thing you gave this example. What I mean here is the

layers of control if you look at the company holistically. So the services that you mentioned in
your example as well as the database are all applications that are running inside a cluster, and

the cluster itself is managed by an orchestrating software which starts them in the first place.
You see? This is a higher level of control.

[0:07:59.8] JM: I see.

[0:08:00.4] PM: So the point is that – So maybe from an application point of view, the database

might be more important, but if you really look at like all the way the entire software stack all the
way to the human operators, it’s called a stack for a reason. The stack is the hierarchy of control

basically.

[0:08:18.8] JM: It’s more about the central planning from that perspective.

[0:08:22.0] PM: Right. No, you’re exactly right. The simple point here is that central planning
always creates a hierarchy of control because that’s just the nature of it. So that’s a good way of

putting it. Yeah.

[0:08:33.6] JM: Right. The earliest peer-to-peer systems that reach widespread application that
I know of or things like Napster, Kazaa, Limewire, these distributed file sharing systems. And I’d

like to talk through these as an example of an early application of your distributed hash table
technology, Kademlia, and I want to start with the technologies that came before Kademlia,

which is that you had peer-to-peer systems that were built with a centralized database, like
Napster, and then you had peer-to-peer systems that were built with a technique called flooding.

© 2018 Software Engineering Daily �4

SED 621 Transcript

Explain the peer-to-peer technologies, the peer-to-peer stacks that were used for this role of the

distributed file sharing network that came before Kademlia. What were the pros and cons of
those systems?

[0:09:31.8] PM: Right. The first one was Napster, and this was simply the model where you put
the whole database of songs and the locations of their files. You put it in one computer and all of

the clients, all the users would access this one computer as a database. The drawback of this at
the time actually was more legal than computational.

I mean, nowadays, someone might say this doesn’t scale, but actually back at the time the real

problem was that a subpoena was sent to the address of the Napster company and a subpoena
suffices to stop the service until further resolution. So actually at the time I was thinking that the

subpoena process – So the creation of peer-to-peer systems, at least the reason I created
Kademlia initially was both to create scale, but also to essentially make the subpoena process

language applicable, because if you had a service that – Or applicable in a very difficult way. So
if you had a service that was sprawled across a thousand homes, especially across different

legal boundaries, it would be very difficult to subpoena all of those. So at the time, really, it was
more about resilience towards kind of legal boundaries to make systems like this available in

multiple regions basically.

[0:11:02.8] JM: Yeah. So the next technique was this flooding, which I think is the multicast kind
of methodology. Can you explain what flooding is?

[0:11:12.7] PM: Yeah. So I should back up to say that the main computer – Sort of the main sort

of computational benefit of talking about this peer-to-peer system is flooding or DHTs, is after all
indeed that you get to have much more space as you’re using more computational devices. You

have a replication, so some pieces might be available in multiple geographic regions. But the
big point is that you get all these new space.

You can describe many more songs and sort of save them in this communal memory, which is

much bigger than just one computer’s memory. Now, the issue that comes with storing
information though is how do you retrieve when you’re looking for something specific, and this is

when the distinction comes between flooding or other methods.

© 2018 Software Engineering Daily �5

SED 621 Transcript

I would say that, first of all, all peer-to-peer technology is generally disperse the information of

the database that they are memorizing. They disperse it evenly across its notes, and the
difference is have to do with how do they kind of market target so that they can find pieces

efficiently on a query. Because they are simply key value stores, in other words they just save
some data under a given string, usually the query simply find the data associated with a given

string. So how the filing is done differentiates flooding from other algorithms.

Flooding is the simplest algorithm. It’s the first one that a peer – In a peer-to-peer system.
Flooding simply just means that every node in the peer-to-peer system would ask every other

nodes that they’re connected to and this would continue until it floods the whole networks and
collects all possible answers basically.

[0:13:04.6] JM: So the commonality between Napster, which was the centralized database, and

flooding, which is the – I guess there’s no centralized database, but you have to ask everybody.
So every query is – You have to query all N nodes in the system potentially or something on the

order of N. But in each of these systems, we’ve got the same basic setup, which I didn’t really
discuss. But you have a bunch of MP3 files, for example, and MP3 files are kind of big. So you

can break them up into chunks and allocate them across the network.

If I’ve got a little bit of extra storage on my computer, maybe I store a chunk of an MP3. If you’ve
got a slightly bigger set of space, maybe you can store a larger chunk or a multiple sets of

chunks. The real difficulty is how do you have efficient lookups of those chunks. How do you
retrieve those chunks efficiently and have those chunks addressed in, hopefully, a distributed

way so that the network is resilient to any particular node going offline and the queries are
faster. But underlying at the storage system is kind of the same for the different peer-to-peer

network technologies that we’re talking about. Is that right? Do I have a correct understanding?

[0:14:22.3] PM: Yeah. The setup is the following. Actually, the actual songs are present only on
computers that people actually care to have them. I’m ignoring optimizations just to see the

clean module. Songs are where they’re being used by somebody. So on some subset of users
for any given song.

© 2018 Software Engineering Daily �6

SED 621 Transcript

Now, if a new users wants to find a new song and download it, they make a query that contains

the name of the song, and what they’re trying to get in return is the list of people who currently
have the song. Really, they’re looking up in this metastable where under the song name, you

want to have a list of every person that currently has the song on their computer.

Now, what you described about, chunks, this is an additional layer of optimization which kind of
goes beyond – So this is completely separate. It just is the notion that the files themselves might

be separated into smaller pieces and instead of looking up, different algorithms might also hash
them on additional nodes that are not necessarily listening to the songs.

Then the only modification happens in your algorithm is that when you look up a song, you’re

not for the files, for the people who have the files and area listening to them. You’re asking a
slightly more technical question, “Where are all the people that, for any reason, might have a

piece of the file?” But this is an optimization having to do with efficient kind of storage.

[SPONSOR MESSAGE]

[0:16:06.5] JM: In today’s fast-paced world, you have to be able to build the skills that you need
when you need them. With Pluralsight’s learning platform, you can level up your skills in cutting

edge technology, like machine learning, cloud infrastructure, mobile development, dev ops and
blockchain. Find out where your skills stand with Pluralsight IQ and then jump into expert-led

courses organized into curated learning paths.

Pluralsight is a personalized learning experience that helps you keep pace. So get ahead by
visiting pluralsight.com/sedaily for a free 10-day trial. If you’re a leading team, discover how your

organization can move faster with plans for enterprises. Pluralsight has helped thousands of
organizations innovate, including Adobe, AT&T, VMWare and Tableau.

Go to pluralsight.com/sedaily to get a free 10-day trial and dive into the platform. When you sign

up, you also would get 50% off of your first month, and if you want to commit, you can get $50
off an annual subscription. Get access to all three, the 10-day free trial, 50% off of your first

month and $50 off a yearly subscription at pluralsight.com/sedaily.

© 2018 Software Engineering Daily �7

SED 621 Transcript

Thank you to Pluralsight for being a new sponsor of Software Engineering Daily, and to check it

out while supporting Software Engineering Daily, go to pluralsight.com/sedaily.

[INTERVIEW]

[0:17:45.5] JM: We’ve outlined the problem that we’re trying to solve. Whether we are trying to
address specific MP3 files or we’re trying to address chunks of files across a distributed storage

network, we’re just trying to address something. We’re trying to build a system where if I want to
find a specific MP3 that is stores somewhere in the system, first of all, I’m going to have to know

if that file is on the system. I’m going to need to understand if there’s the presence of the file.
But if I know that the file is present, if I have some way of searching for it, I also need to know

who to ask for that file, because if we’ve got a peer-to-peer network of millions of nodes, the
whole idea of peer-to-peer is that I don’t have to be connected to all of those nodes. I can ask a

node in the network to find the adjacent nodes and ask their adjacent nodes and then those
nodes to ask other nodes, and there should be some way that I can locate where in the network

the file that I’m looking for is located.

This is the challenge that you were solving with the Kademlia algorithm, the Kademlia algorithm
for a distributed hash table. If I understand it correctly, the role of the distributed hash table in a

peer-to-peer network is to be a routing table. It’s supposed to help you understand where to find
information in the network. It’s not like you’re storing the information itself in the distributed hash

table.

[0:19:17.5] PM: It’s actually the other way around. The core algorithm is a routing algorithm
which we can describe, and this algorithm is in service to just providing a data obstruction to the

programmer, which is exactly the same as a hash table. But they call it a distributed hash table
just to indicate that it’s implemented in some peer-to-peer way. But really what’s happening is

that we have a routing algorithm, which is the implementation of what’s otherwise known as a
hash table.

Because hash table is a data service. It has two functions; put a value under a key and query. Is

there a value under a given key? That’s just like the semantic meaning of a hash table. It’s a
question and answer thing. You can view as a data model. Basically, it’s a table that has two

© 2018 Software Engineering Daily �8

SED 621 Transcript

columns. The first column is the key, which is a string, and the second column is the value. The

routing algorithm is am implementation of these hash table database in a peer-to-peer system.

So maybe I can try to tell you how it works to see –

[0:20:32.0] JM: Sure. But just to be clear, am I completely mistaken that the routing table is
core data structure for the Kademlia network?

[0:20:41.6] PM: The routing table is a core data structure for the Kademlia algorithm, which is a

routing algorithm.

[0:20:48.4] JM: Right.

[0:20:48.8] PM: These writing algorithm can be used directly as – Can be reused basically as a
hash table, but this is a second layer. This is the application layer basically of the Kademlia

story.

From the point of view of a user, you really – A user is somebody who’s sitting on one computer.
From their point of view, if they’re using the Kademlia library, they just say “join network”, and

then they have the two functions that they can apply against the network, store a key value or
query for a key.

So what they see as a program is just service interface with basically a database, simple

database interface with a store and a retrieve function. That’s what the user sees. But what’s
happening inside the – The question is; how is this database implemented? This is where the

Kademlia routing algorithm comes into play, because the idea is that the Kedemlia –

So let me try to explain it briefly. The Kademlia algorithm tries to – Basically, imagine a
hypothetical space, like a high-dimensional hypercube for instance, but it’s some high-

dimensional space that is – Or you can think of it like a sphere, a high-dimensional sphere.
Then, basically, every node that joins the network gets a random address. It’s like on the

sphere. So it’s like this is a mental model. They just get an address where they live in this
imaginary sphere.

© 2018 Software Engineering Daily �9

SED 621 Transcript

We associate keys with any stringed key that the user might try to put in their database. We
associate the string key uniquely also with the location on this hypothetical sphere and we

simply postulate which ever node is closest on the sphere to the key is the node that I should try
to find and ask about the key. This would be the node responsible for these keys.

The reason why we need the hypothetical sphere, is because every node, just like it works in

social networks on the globe. Every person knows people that are near them geographically or
near them contextually, like for instance job-wise or language-wise. But one way or another,

they have these local links, but if they want to send a letter – So this is the famous social
experiment. If you want to send a letter to somebody far away, it’s enough to say the name of

the person, the country, something general about them and just pass it on to one of your
contacts that is roughly going closer and have them just keep passing through local contacts

until they get to the destination.

So we created the exact same situation but in an imaginary sphere and everybody’s contacts
are the nodes that they’re close to them on the sphere. We’re just creating an imaginary world

so they know how to route through it.

[0:24:08.5] JM: Okay. So I want to make this less abstract for people. So let’s say I login to a
peer-to-peer file system that is using a Kademlia distributed hash table. When I join the network,

I get assigned a node ID. I find another node somehow. Describe what happens when I onboard
to a Kademlia network.

[0:24:32.5] PM: So to onboard, you have to have a connection from outside to somebody who’s

already in the network. So you onboard through another node, and during the onboarding
process – The purpose of the onboarding process is so that you become a member of the

network. So to become a member of the network, you need to accomplish two things. First, you
need to pick an address for yourself, which is usually some random number.

So these places you kind of – This gives you an address in this space of participants. Then after

you have the address, you need to establish contacts to a small number of other participants,
and these are contacts that you’re going to be maintaining overtime. These are going to be your

© 2018 Software Engineering Daily �10

SED 621 Transcript

neighbors so to speak. They’re going to do favors for you in terms of routing and you

reciprocate.

But now who you’re neighbors are, this is essentially the content of your routing tables. Who
your neighbors are, initially you get help from the node that introduces you to fill your routing

tables. So when you’re being introduced, you pick your address. Your address essentially
determines who are the people that are near you currently in the network, so the person, the

contacts that is introducing to the network will actually query the network for you, find the IP
addresses and generally information about the nodes that are closest to you, to your address,

deliver it back to you so you can populate your routing tables with information about your
neighbors. From them on, you’re independent, because are now alive in the network and you

have physical, which usually means TCP, contact to your neighbors in these address space. You
can just keep maintaining this overtime basically.

[0:26:31.6] JM: Once I’ve joined the network, I can find other nodes. I also need to be able to

find files or I need to be able to locate – Or I need to be able to help service a query. If I am just
a node in the peer-to-peer network, I not have my routing table that tells me how to find certain

nodes in the network. How do I locate another file, or what role do I play as a node in the peer-
to-peer network in finding files?

[0:27:01.6] PM: Every node essentially services requests for finding files, and these requests

come from your neighbors. Actually, they can come from anyone. So the way it works is that
somebody says, “I’m looking for a file with a given key,” and all you do is that you look at all of

your neighbors and you see which neighbor is closest to the key of the file and you forward the
question to them. So that’s the algorithm. That’s all everybody does, is they simply forward the

question to whoever neighbor is closest. Finally, the person who the node that actually produces
the answer is whichever node actually sees that they have the file itself on their storage.

So every node essentially first checks whether they have the file in their database, in their file

system, wherever they store it. If they don’t have it, they forward the question to a neighbor that
is closer, and if they don’t have a neighbor that is closer to the file address and they themselves

don’t have it, it means that the file just doesn’t exist in the system.

© 2018 Software Engineering Daily �11

SED 621 Transcript

[0:28:16.7] JM: Yes. That would be the get operation. If we’re thinking of Kademlia in terms of

the distributed hash table, somebody issues a get operation for a movie or for a song or
whatever file they’re looking for. They issue the get operation to any node in the network and

then the get operation effectively propagates through the network.

[0:28:43.8] PM: Yes, but the important point is that it propagates efficiently. So it doesn’t end up
flooding, because if you remember, the rule is if somebody doesn’t find the file or the value or

the key on to their node, then they forward the question but they don’t forward it to all of their
neighbors, which would be flooding. They forward it to the neighbor that is closer to the key. So

they only forward it to one neighbor. So the query goes in a path towards the node that would
have it as supposed to flooding every time.

[0:29:18.8] JM: Yes. Okay. So the get operation for a hash table typically has the parameter of

a key. So the key might be the name of the movie. Let’s say it’s Titanic, Titanic.mov or
Titanic.mp4 or whatever it is. So the results of the get operation will be the actual file. So if the

parameter is a string with the name of the file and the result is going to be the file, we have this
key and this value and the –

[0:29:57.0] PM: So let me just correct you. The result is not the file. First, when you have a

query, like Titanic, or this might be a file name, whatever it is. It’s some textual key. These key
first gets converted through just a hash function into a number, and this number is a number in

the same space as the keys of the Kademlia nodes.

Because you want to have a connection between the address of a node and these keys. So
they both have to be numbers. You reduce the structural query to a number. This number is

treated as an address just like the addresses of the Kademlia nodes themselves. Then you
simply postulate that you’re looking for the nodes whose addresses are closest to the address

of your query.

[0:30:56.9] JM: The key space gets broken up among the nodes based off of the different
numerical rangers. Titanic is going to hash to some specific number and that number will be in

some key space, and then the key space again is broken up across the network. How is that
defined? How do you balance the key space among the different nodes in the network?

© 2018 Software Engineering Daily �12

SED 621 Transcript

[0:31:25.1] PM: The key space in general is always something huge. Let’s say it’s 160 bits. This
is an enormous huge key space, and then the question is how do you know which keys go to

which nodes in the network? So the answer to this question varies dynamically. So the answer
simply is whichever nodes are currently alive and are closest in terms of their key, so the

address of a node is their key.

So whichever nodes are currently alive and are closest to the key for a query, they are the ones
responsible for this query. We can just say numerically closest. It happens to be the geometric

notion of closeness. That’s a little bit more elaborate than numerical difference. But for the sake
of this discussion, it’s enough to say that the nodes whose own addresses are numerically

closest to the keys, they are responsible for that particular key. So does this make sense?

[0:32:25.3] JM: Yes, it does make sense. The missing piece that I don’t understand yet is if I
make a query to the network, there are some deterministic routing that allows me to find the file

Titanic based off of how that Titanic query consistently hashes to a node that’s going to lead me
to wherever the Titanic file is close to. I’m having trouble connecting how the file, the location of

the file gets – When I joined the network, my routing table is established. Then I upload Titanic,
right? I’m having trouble connecting the fact that if I have Titanic, if I’ve uploaded Titanic after

my routing table has been established, how is there is a connection between the key space, like
when somebody enters in a query?

[0:33:19.5] PM: I think I know what your confusion is. Because what you call to upload Titanic is

actually a two-step process.

[0:33:27.5] JM: Okay. The put operation.

[0:33:28.9] PM: Yes. I think you’re conflating, basically the actual file versus the indexing. So
let’s start from what happens. When you upload Titanic, when you hit upload on your

application, under the hood two things happen. The file is already on your computer. So maybe
it just gets declared as it’s being shared. But the more important thing that happens is that you –

Your computer, using Kademlia, finds the other node, the node closest to the notion Titanic. It

© 2018 Software Engineering Daily �13

SED 621 Transcript

computes the key for the word Titanic. This is the file that is being uploaded on your computer,

but you have to tell the network that you have it.

So you actually have to store a key. Under the Titanic key, you have to store the information that
you are being identified, whoever you want, the IP address or otherwise, that you have the file.

The information of storing this meta-pointer towards you, this is what the Kademlia algorithm
does, and this information is not going to be stored on your computer. Your computer says,

“Initiate the storage operation,” but this operation is going to trickle through the network until it
reaches the node in the network which happens to be responsible for the key space around

Titanic. That’s how you inject the information.

[0:34:56.2] JM: I understand. Yes. To try to rephrase what you just said. If I’m going to upload
Titanic, I am going to perform the same hashing operation to figure out what is the number that

maps to Titanic and then I’m going to find the nodes in the key space who are responsible
wherever the file Titanic falls in that key space and I’m going to tell them, “Hey, I’ve got Titanic,”

and if somebody in the network wants Titanic, you tell them to go contact me.

[0:35:27.7] PM: Yes. You basically leave an envelope which says Titanic on the outside. On the
inside it says how to find you. So anybody who’s looking for Titanic, they’re going to also end up

discovering that same node that’s responsible and they’re going to look at your envelope and
just see where to go next.

[0:35:48.0] JM: Does Kademlia account for the fact that when people are looking for a file they

don’t often know exactly what the file name will be? In other words, they need to search. They
need to do some kind of fuzzy matching. Does Kademlia itself account for that?

[0:36:02.8] PM: Kademlia itself doesn’t. Kademlia is an exact search due to the hashing

function that’s applied to the query. So people use combinations and sort of compositions of
multiple instances of Kademlia or just different name spaces of different key spaces to create

indexing effects. But in general, there’s a limit to this, which is purely information theoretic.

This is actually the reason why the first file sharing systems were not very high quality products.
There was a lot of noise, because you could only find things using exact matches. Later, with

© 2018 Software Engineering Daily �14

SED 621 Transcript

the advent of Google, it became clear that in order to rank who gets meaningfully ranked

searches, you need sort of structural semantic information, and this is kind of beyond Kademlia.

[SPONSOR MESSAGE]

[0:37:06.7] JM: Stop wasting engineering time and cycles on fixing security holes way to late in
the software development life cycle. Start with a secure foundation before coding starts.

ActiveState gives your engineers a way to bake security into your languages’ runtime. Ensure
security and compliance at runtime.

A snapshot of information about your application is sent to the ActiveState platform; package

names; versions and licenses, and a snapshot is sent each time the application is run or a new
package is loaded so that you identify security vulnerabilities and out-of-date packages and

restrictive licenses, such as the GPL or the LPGL license and you identify those things before it
becomes a problem. You can get more information at activestate.com/sedaily.

You want to make sure that your application is secure and compliant, and ActiveState goes a

long way at helping prevent those kinds of troublesome issues from emerging too late in the
software development process. So check it out at activestate.com/sedaily if you think you might

be having issues with security or compliance.

Thank you to ActiveState for being a new sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:38:37.1] JM: If somebody logs on to the network, they’re looking for Titanic. They search the
correct – They don’t search, but they enter the correct name. They enter Titanic in the specific

way that it’s indexed in the Kademlia network and they are routed to me. They ask the network
and the network finds a path to me and says, “Hey, this guy has Titanic. Go ask him for the file.”

Then the person asks me for the file. I’ve got a movie file that I’m going to give them. How do
they know that I’m not going to give them a virus instead of giving them the actual Titanic

movie?

© 2018 Software Engineering Daily �15

SED 621 Transcript

[0:39:18.2] PM: Well, they don’t know because this is just implied in the interaction. They’re

looking for something that advertises something. I mean, there’s no – The short answer is they
don’t know and there was a lot of sort of bad content and viruses that were being spread using

precisely what you’re describing. So the way things work now – So nowadays, the mitigation of
false content happens from the way in which you discover the files. Because nowadays people

first look on the web for rankings of, let’s say, Bit Torrent files, which are ranked according to the
Bit Torrent – They’re described through their Bit Torrent addresses.

So, first, you benefit from Google’s ranking on those. So you actually are getting a highly vetted

Bit Torrent link. Then you go to Bit Torrent and you’re not looking for Titanic anymore. You’re
looking for a specific Bit Torrent source of Titanic. You see, you find the quality – You create the

step where you want to find, see about a quality link happens on Google and then you go to a
file setting system already knowing which file you want represented, for instance, with a Bit

Torrent address and then the Kademlia network is just used to find this specific file.

Usually, the Bit Torrent files are also signed. When you discover the file on Google, you also
discover the signature of the file’s content. Eventually, when you downloaded some Bit Torrent,

you can verify that you’re getting the content that was advertised on Google. That’s why it works
today. Peer-to-peer systems never actually fix the problem of finding quality information. They

just became systems for looking up specific file replicas identified essentially by their content
digest, so like a shard. You actually use Google to rank just through the meta information.

[0:41:37.0] JM: I think this gets at what you’ve said earlier, that Kademlia has a scope.

Kademlia itself is not a peer-to-peer network. It solves a problem within a peer-to-peer file
sharing network. It solves the problem of a distributed hash table.

[0:41:53.2] PM: Yes.

[0:41:54.0] JM: So things like building a search index or ensuring that the file that gets

delivered is secure is not a virus. Those are not exactly in the scope of Kademlia.

[0:42:05.8] PM: Yeah, not at all. Yeah.

© 2018 Software Engineering Daily �16

SED 621 Transcript

[0:42:07.4] JM: When Kademlia came out, this was 2002, and it was revolutionary in how fast it

could route people to the right location. What was the public reception to it in 2002? What were
the early applications of it?

[0:42:22.1] PM: I think one of the earliest ones was my friend Jed McCaleb’s eDonkey file

sharing system and then Overnet. I believe from there it started spreading to most of the other
clients.

[0:42:38.2] JM: Right. Now, people today often associate Kademlia and other peer-to-peer

systems with Bitcoin, because it’s kind of the trendiest application of peer-to-peer networking,
but Bitcoin itself does not use Kademlia. Bitcoin is a peer-to-peer system, but it uses flooding.

Why does Bitcoin use flooding and not Kademlia?

[0:43:01.6] PM: So Bitcoin is solving a different problem. So Bitcoin is peer-to-peer at the level
of the exchanges. All exchanges talk to each other as peers. Meaning that they have to replicate

– Or rather just the replicas of the chains even in a single exchange or cross exchanges. But
there are fewer nodes. There are usually company or corporate nodes that have a lot of

resources to start a whole blockchain. There’s a small number of them and they all have to have
the entire database, the same copy of the entire chain.

Whereas in Kademlia, everybody has a piece of a database and nobody has the whole, so that

you can benefit from as much storage as possible. In the blockchain setting, you’re not trying to
benefit from storage, because everybody – At least all the exchanges want to have the entire

blockchain there. So then the algorithm is completely different, because there’s no need for
looking up anything. Whenever you want to make changes, you have to tell all of the other

participants, or if you have to reach a consensus of some sorts, you have to essentially talk to
all of the other participants, because that’s the definition of consensus.

It’s a different application, but it is peer-to-peer in the sense that they’re all equal and they

behave according to the same rules against each other. Nobody is more important than the
other.

© 2018 Software Engineering Daily �17

SED 621 Transcript

[0:44:32.4] JM: IPFS does use Kademlia. IPFS is a system that has a cryptocurrency

associated with it, but IPFS itself is not a currency. Why does IPFS use Kademlia?

[0:44:46.9] PM: I believe that they use it for the same – Without going in great detail, because
I’m not familiar in the detail, but they generally use it similarly to the file sharing case that we

discussed, but essentially they can – They have lots of files that are stored on different people’s
machines, and then they have meta-information, which says where the files can be found. Well,

this meta-information is essentially key values, that the key is file block and the value might be
where it’s stored. They use the Kademlia algorithm precisely to index those most likely, and they

have probably more sophisticated users on top of this. But this is likely a good example.

[0:45:36.6] JM: At some point in your career, your focus shifted from distributed hash tables,
which are commonly used for decentralized distributed systems. You started focusing more on

centralized infrastructure. You worked at DARPA, you worked at Google for a while. Tell me
about that shift in focus going from the world of decentralized distributed systems to the

centralized distributed system world.

[0:46:06.8] PM: So my longer term vision for – I think both peer-to-peer systems and distributed
systems essentially embedded in nature. Distributed systems just correspond to kind of

coherent organisms, so animals. Whereas social interactions between them using social
protocols correspond to essentially peer-to-peer systems.

In the software world, you want to have both if you want to – So peer-to-peer systems with

Kademlia became clear that they’re possible, because you were always a little timid to even
believe that it will work at scale, that the math will work, but it worked out. But then the longer

term vision is now peer-to-peer systems, you have to connect very intelligent nodes that are not
just routing and making hash table storage.

So let me give you an example of what this vision looks like. Every person could potentially

have their own cloud application running in some commercial cloud of their choice; Amazon,
Azure or in some other country. This cloud application can be essentially the representation in

the digital world in the following sense. It can, first of all, do services for them. For instance,
back up everything that’s going through their personal devices as well as it can represent them

© 2018 Software Engineering Daily �18

SED 621 Transcript

through protocols in interactions with other [inaudible 0:47:35.1] personal cloud assistance

essentially.

So these interactions can be much more complex than just doing either just file searches or
crypto transactions. But in general you can have simply a standard where people can have –

Okay. So this representation in the cloud. Now, because it’s pretty clear that even for your own
personal kind of node, representation for your presence in a peer-to-peer system, nowadays,

just running a single computer doesn’t capture everything that you might want to do. People are
sophisticated users of the internet now and people manage databases and they provide

services to other people.

An individual has to be able to modularly be able to sophisticate its applications that
represented them in a peer-to-peer society on the internet. So how do people create

sophisticated fully kind of self-sustained requiring no personnel software? That’s the question of
essentially building distributed systems.

But the reason I got interest in this is because companies build distributed systems and sustain

them because they’re able to benefit from people, engineers, like operations engineers who
continuously fix problems that they’re not fixable automatically. In some sense, corporate

software is always leaking and there’s lot of people and stuff to make it work. You can afford this
if you want to build a personal cloud application, because by definition, every individual is just

one person. So they need to be able to reliably create modular applications in the cloud that
represent their interests without needing the sophistication of a whole company.

I believe this is possible. I believe that through proper engineering methodologies and

techniques, in particular, languages and other such techniques, it is possible to make
programming of large distributed systems simple and save the way programming for a single

application used to be for a single computer.

[0:49:52.8] JM: Why the focus on the languages? The idea of looking to a language to simplify
the interaction with distributed systems.

© 2018 Software Engineering Daily �19

SED 621 Transcript

[0:50:03.8] PM: Well, a language is simply a development tool that allows you to sort of

compose lots of pieces together and kind of gives you some facilities to make sure that they fit
well so that you’re managing your things. It basically kind of lets you know when you’ve made a

mistake in your own kind of designs.

So, ultimately, the language is the point where the author – So, in my example, maybe a person
who tries to build a cloud application. The author expresses themselves to the machine. So the

language is what faces the human. First of all, by virtue of this, it has to be useful and natural.

Now, there’s another detail which is that people like to think in one language. Generally, when
people switch between languages, whether it’s natural or programming, inefficiencies arise

because languages present different mental models. So I think a lot of people hold the opinion
that in a hypothetical world, ideally, everything that you need to express to make a program run

should happen in one language because this is the most effective way both for the programmer
to express it. But also if a software is expressed in multiple languages, there is no tool that

makes sure that the parts that are in different languages talk coherently to each other, because
such a tool will essentially – So people use sort of ad hoc solutions. They define protocol

languages for connecting technologies and so forth, but this complicates the process. If
everything is in one language, one is able to kind of have an end-to-end check of a large system

directly at compilation time as supposed to writing integration tests.

I mean, the simple answer is that different languages mix mental models and ultimately has
become – I hold the opinion that actually there is only one mental model that describes all

programming workflows. So this is simply essentially directory cyclic graphs, which is from the
compiler point of view, this is known as the SSA representation of functions, which means it

stands for a single static assignment.

But the bigger point is that it’s a dependency graph, a dataflow of calculations. So this is the
basic way in which we describe a computation under the hood of any programming language or

under the hood of how higher level cluster pipelines are created. So there is a uniform way,
semantic, behind how we build things and it’s not reflected in a technology, because technology

grew overtime and that’s why it kind of is very disparate.

© 2018 Software Engineering Daily �20

SED 621 Transcript

[0:53:03.7] JM: All right. Interesting answer. I want to close off with just a broader question. So

the two biggest distributed systems communities today, I think broadly speaking, you could say
are Kubernetes and then the cryptocurrency ecosystem. You have these two disparate

communities and the Kubernetes community is vibrant with corporations that are looking to
revamp their infrastructure. They’re looking to revamp their operations and there’s a whole of

money going into Kubernetes for those reasons.

Then you have the cryptocurrency ecosystem where they’re trying to reframe the entire way that
humans do transactions throughout the world as well as the immutability and the append only

and censorship resistance and so on. Is there any overlap that you see between these two
communities that has been interesting to you?

Because, I mean, maybe they’re totally disjoint and it wouldn’t make any sense for there to be

overlap. But I just see it as strange, like I went to Cube-Con. I think you were there or maybe
you didn’t go. In any case, it was strange. You have this distributed systems conference and

nobody was really talking about cryptocurrencies, which I mean distributed systems is so big
that we need to have sub-conferences within that. But I don’t know. I just found it interesting. I

don’t know if you find that thread interesting to pull on.

[0:54:31.3] PM: I mean, I think that’s actually a very interesting observation. I haven’t thought
of it. I’m sure that my partner Joseph Jacks, my partner in business, would have an interesting

answer to this. My interpretation is that perhaps the cryptocurrency community is not – I don’t
know this for a fact, but perhaps it’s not contributing essentially tools back into the Kubernetes

ecosystem.

I don’t know if this the case, but the reason I say this is because the tendencies that people who
are trying to promote new tools for working with Kubernetes tend to be at these conferences. I

will say that the crypto community in general is interacting at least in meetings and discussions
with the companies that are focused on building Kubernetes product. But from the projects that

we have been looking at in terms of tools and the ecosystem, none of them have come from
cryptocurrency companies.

© 2018 Software Engineering Daily �21

SED 621 Transcript

Cryptocurrency companies are new. I suppose they haven’t had enough time to create a quality

product, because, I mean, any tool for Kubernetes probably requires at least a couple of years
to come to a point of maturity where you would be able to show it at a conference. So maybe

this is part of the reason why.

[0:55:55.2] JM: Yeah. We’ll see. Petar, thank you for coming on Software Engineering Daily. I
am excited about whatever you and Joseph are building. I know it’s kind of a stealth project right

now, but whatever it becomes, I’m sure it’ll be exciting.

[0:56:08.3] PM: Thank you so much.

[END OF INTERVIEW]

[0:56:12.2] JM: GoCD is a continuous delivery tool created by ThoughtWorks. It's open source
and free to use, and GoCD has all the features you need for continuous delivery. Model your

deployment pipelines without installing any plug-ins. Use the value stream map to visualize your
end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add continuous

delivery to your project.

With GoCD running on Kubernetes, you define your build workflow and let GoCD provision and
scale your infrastructure on-the-fly. GoCD agents use Kubernetes to scale as needed. Check

out gocd.org/sedaily and learn about how you can get started. GoCD was built with the
learnings of the ThoughtWorks engineering team who have talked about building the product in

previous episodes of Software Engineering Daily, and it's great to see the continued progress on
GoCD with the new Kubernetes integrations. You can check it out for yourself at gocd.org/

sedaily.

Thank you so much to ThoughtWorks for being a longtime sponsor of Software Engineering
Daily. We are proud to have ThoughtWorks and GoCD as sponsors of the show.

[END]

© 2018 Software Engineering Daily �22

