
SED 613 Transcript

EPISODE 613

[INTRODUCTION]

[0:00:00.3] JM: Over the last decade, cloud computing made it easier to programmatically

define what infrastructure we have running and to perform operations across that infrastructure
using code, and this is called infrastructure as code. Whether you want to back up a database

or deploy a new version of a service or introduce a new tier of the load balancers, the changes
that we make across our infrastructure can be done programmatically instead of through a

series of manual steps.

As infrastructure has gotten turned into code, operations people have started working more like
developers, and developers have begun to work like operations people. This convergence is

often known as DevOps. At Google, the DevOps movement was manifested into a role called a
site reliability engineer. DevOps and SRE, site reliability engineering, are not exactly the same

thing, but it is a response to related changes in the way that infrastructure is managed.

In previous shows we've explored DevOps and site reliability engineering thoroughly. Laine
Campbell is a senior VP of engineering it Fastly and the author of the book Database Reliability

Engineering. In this book, Laine describes how the ideas of site reliability engineering can be
extended to databases. Laine joins the show today to discuss the book and how engineering

teams can build effective workflows around databases.

Before we get started, I want to mention, we’re looking for a videographer. We’re also looking
for a writer. We’re looking for several other jobs. If you're interested in checking those out, go to

softwareengineeringdaily.com/jobs. If you want to get involved with us in a lower commitment
way you can check out our open source community at github.com/softwareengineeringdaily.

We’ve got several different apps for iOS, android, the web and they all have open source
contributors. So if you're interested in getting involved, then we would love to have you as part

of our open source community. You can check that out at github.com/softwareengineeringdaily.
You can of course check out those apps at the app store for iOS or for android. With that, let’s

get on with the episode.

© 2018 Software Engineering Daily �1

SED 613 Transcript

[SPONSOR MESSAGE]

[0:02:34.1] JM: Nobody becomes a developer to solve bugs. We like to develop software

because we like to be creative. We like to build new things, but debugging is an unavoidable
part of most developers’ lives. So you might as well do it as best as you can. You might as well

debug as efficiently as you can, and now you can drastically cut the time that it takes you to
debug.

Rookout rapid production debugging allows developers to track down issues in production

without any additional coding. Any redeployment, you don't have to restart your app. Classic
debuggers can be difficult to set up, and with the debugger, you often aren't testing the code in

a production environment. You're testing it on your own machine or in a staging server.

Rookout lets you debug issues as they are occurring in production. Rookout is modern
debugging. You can insert Rookout non-breaking breakpoints to immediately collect any piece

of data from your live code and pipeline it anywhere. Even if you never thought about it before
or you didn't create instrumentation to collect it, you can insert these nonbreaking breakpoints

on the fly.

Go to rook out.com/sedaily to start a free trial and see how Rookout works. See how much
debugging time you can save with this futuristic debugging tool. Rookout integrates with modern

tools like Slack, Datadog, Sentry and New Relic.

Try the debugger of the future, try Rookout at @rookout.com/sedaily. That’s R-O-O-K-O-U-
T.com/sedaily. Thanks to Rookout for being a new sponsor of Software Engineering Daily.

[INTERVIEW]

[0:04:38.0] JM: Laine Campbell, you are senior VP engineering at Fastly. Welcome to Software

Engineering Daily .

[0:04:43.2] LC: Thank you very much. It's great to be here.

© 2018 Software Engineering Daily �2

SED 613 Transcript

[0:04:45.3] JM: So it's 2018, infrastructure as code and cloud computing are allowing us to

update our software architecture more quickly, and more flexibly, more aggressively. How does
this change how we think about database infrastructure?

[0:05:01.0] LC: Well, I think the first thing that happens is we find ourselves in a place where

our database infrastructure isn't keeping up with the philosophy of changes that are happening
in the rest of the organization and we’re finding that we’re making great progress in certain

areas, and then anytime we have to interact with our data stores, we either have to have special
exceptions, or it has to be manual, or painful and people are starting to ask why we can't do the

same things that we do with the rest of our environment, the rest of our architecture with these
data stores. They’re also at the same time terrified of that because of the risk involved.

[0:05:36.6] JM: We have cloud providers these days. We can outsource much of our

infrastructure uptime to cloud providers, but not all of it. Similarly, we can outsource some of our
database administration to our cloud provider. What aspects of database management do we

still need to manage ourselves?

[0:05:55.9] LC: So it is actually a great thing to be able to start to use these databases as a
service to essentially get rid of some of the toil and a lot of the things that have traditionally

consumed a significant amount of time and effort from our database engineers. But it definitely
does not make it so we don't need those database engineers. Instead, it really is pushing those

engineers up to stack, right? So at this point they should have more time, and with that time we
hope that they will be focusing on data access patterns, data modeling itself, making sure that

we are doing data governance. Essentially, all of the aspects that are much more closely tied to
how this application works and then how that data is consumed and how that data is stored

rather than replication backups, failover, all of those things.

[0:06:44.7] JM: Role of the database administrator has been around for a while. How does the
role of database administrator differ from the idea of the database reliability engineer, which is

something that you've written about in this book; Database Reliability Engineering?

[0:07:03.1] LC: So database administration has been around for a while. I myself have been
doing it since the late 90s, and this concept of database reliability engineering is, it’s kind of

© 2018 Software Engineering Daily �3

SED 613 Transcript

nuance paradigm shift, right? I think it's important that we don't – Even as we look at these new

paradigms, even as we look at new ways to do our jobs, that we don't forget about the
importance of operations and reliability and things that we do here alike can sort of just be

abstracted away, but in reality are still core to what we do.

The database engineers’ world than what we're looking at here is people who really just like
traditional reliability engineering. If you can call something so young traditional that we need

people who do approach the concept of managing data from a software development
perspective, but who can combine that with operations. People who are willing to develop a

depth of expertise around state of modeling, around the risks of data loss or data corruption,
being able to take widely distributed systems, micro service systems and provide the same rigor

that in the past they might've provided in terms of replication and ETL, et cetera and creating
what is an architecture wide focus on the data flow and helping to take that kind of knowledge,

helping to take that kind of expertise and push it into the software development organizations.
Because I think that is a lot.

Really, the key here is we know that we’re never going to have enough database administrators,

just like we’re never going to have enough security people. So this database reliability engineer
needs to approach their job as the work instead of being gatekeepers to the database, to the

data itself, is how to enable self-service, how to enable scale from software engineers, how to
get them in the databases, working with the data in a way that still manages risk and where

recoverability guardrails are crucial, but no longer is it a case of, “Well, I need to wait for this
database administrator to approve and gate keep all of these,” but instead this database

administrator has – Or in this case, this database engineer use their expertise, use their depth
to create these self-service patterns that I know will work that I can apply.

Oh, here's one that based on the heuristics given to me from past where I’ve worked with, these

specialists. I know that it is time to go work with the data engineer on the really crucial items that
just can't be handled without someone put deep domain expertise, because you still do need

that deep domain expertise.

[0:09:45.1] JM: As you said, the SRE role is fairly new to the public. It's a role that has been in
the domain of Google for a long time, this site reliability engineering role within Google, which

© 2018 Software Engineering Daily �4

SED 613 Transcript

we've done a couple of shows on. When Google started talking about it more publicly, they

came out with that SRE book. Many companies looked at that and said, “There is something
there that is appealing to me. The SRE idea takes DevOps and does something to it that either

makes it more concrete or puts it in some different light that allows me to understand what I
should be doing in my operations, my software operations side of things more acutely.” What is

it? What did the SRE role that came out of Google do to the DevOps, the broader DevOps
community? What realizations did it make people have about software engineering?

[0:10:49.2] LC: That is an excellent question and one that I'm sure no matter how I answer I’ll

get in trouble for. The semantics arguments are very fun. What I personally view is that DevOps
got this idea particularly for young, rapidly iterating organizations that we didn't need to silo

away the concept of operations from our developers. In fact, developers who had access to the
operating characteristics of their systems often wrote better services, wrote better applications.

I think that that was crucial and created a lot of value. Then what I think we started to see after

that was a lot of people believed in the concepts of DevOps and they saw it work in certain
places, but as enterprises and larger organizations, older over organizations went to do it, there

were certain impedance mismatches. I think SRE is really the next step from this. It's this
concept of we recognize that our developers should be brought as close as possible to the

operating characteristics of the systems that they build, but at the same point there always will
be this need for a core team of experts who can bridge the gap between operations and our

developers even if they are practicing DevOps principles.

This idea of a team that is focused on scaling by teaching, by providing reuse really takes things
the next step, particularly for environments that just simply can't get the traction with DevOps

alone. It is sort of an expansion on the model and a mature model for a larger company where
you’re never going to be able to give full access to your developers to do all the operations, nor

do a lot of your developers want to, but you still want to give, embed in their teams these
operators, these database engineers who have deep domain expertise and have shown to

teach that to partner and pair that and bring that expertise into the decision-making of the day-
to-day service developers.

© 2018 Software Engineering Daily �5

SED 613 Transcript

[0:12:59.2] JM: At many of the organizations I've talked to, I’d get the sense that they are not

full-time database engineer. So if you think about a company like Uber, I did a show recently
about Uber’s data platform in which they have a Hadoop cluster, and an Elasticsearch cluster,

and Presto, and MySQL, and MemSQL and all these different databases and data things, but
there's no particular engineer for any one of them. There are data platform engineers who help

with the uptime of the data platform. There are people who are writing applications against front-
facing APIs that are exposed out of that data platform, but there's not an actual person who is

working on any one particular database. In an organization like that, who is practicing database
reliability engineering? Is it all of us, or are you advocating for a specific role of a database

reliability engineering?

[0:14:07.6] LC: It’s dependent on the company itself. I think, particularly, if you look at older
companies that have a long tradition particularly in Oracle, even mainframe data stores, SQL

server, they have experts in these systems, and the idea that these are the people that only
work on the data stores is one that I definitely don't think needs to be there anymore. Even at

Fastly, we don't have anyone whose job is purely to work on the data stores themselves, but at
the same point we have people who started their careers and built their careers being database

engineers, database architects, who are now becoming platform engineers who are taking that
expertise and not only focusing on MySQL, but starting to work on this general principle of how

do I build a platform as a service in Google Cloud.

Since I think the type of skillset, the type of brain that makes a good database engineer often
translates quite well into those platform architects that tends to be where we’re going. But if you

don't see those teams with people who I consider and, again, I don't necessarily think a
company needs a database reliability engineering team. I think it can work. I think it's one

model, particularly for environments that have significant data store needs. At the same point, I
think even if you have a more generalist team of platform engineers, I would imagine if you look

at Uber or anyone else, you've got database reliability engineers without the title doing that
work, and I think that's the more important thing here is do we have people who not only deeply

understand the storage mechanisms, the MVCC locking and concurrency characteristics, the
optimization, all of those things, but are they also good teachers? Are they also people who can

build patterns that can be applied elsewhere? That's what you end up getting out of those
experts rather than trying to build this silo team.

© 2018 Software Engineering Daily �6

SED 613 Transcript

[0:16:11.9] JM: And the SRE world has a number of subjects that are always worth discussing,
and there are things like incident response and run books that we could talk about and I'm sure

we will talk about. If we’re trying to articulate what database reliability engineering is, is it those
ideas, those abstract ideas, like incident response and run books and the other aspects of site

reliability engineering and drawing a line from those to the database reliability, the database
world, or is it something different than that?

[0:16:55.7] LC: I think that is part of it. Obviously, if you need a database, someone who has

deep knowledge on the date level – Sorry, I’m losing my power of speech there for a moment.
Who can then apply those principles and say, “Okay. These are the things that anyone who is

deploying a data store should automatically get these monitoring templates. They should
automatically get these failover, the tooling and run books associated with it.” These are the

areas we need to abstract out so a generalist can perform some typical tasks and these are the
areas that we can start applying to the CICD platform as well around how to apply change to

these systems. So you do become – I think the DVRE should and can become almost linchpin
in a reliability organization as a whole who can take those principles, take them down to the

level of depth necessary to apply them to the data stores and also who can learn from other
reliability experts on risk management, on service level objectives, incident response, all of

these areas and build a richer, deeper team. That's one side of it.

But I think the other side is this concept of the DVRE should be focusing on eliminating the
gatekeeping, and that means building guardrails, providing education, collaboration, teaching

people how to work in these environments and making sure, whether it's through shadowing,
and embedding, or it’s through self-service, that we’re building systems that are less risky to

allow any software engineer to work within, because obviously the level of risk involved with
working within the data stores is much higher than within your web server or even your caching

tear or anything else.

[0:18:50.8] JM: Eliminating the gatekeepers. When you say gatekeeper, are you referring to the
barrier to getting a question answered for – If you have some data related question, the fact that

you have to go to somebody on the data science team or the data engineering team and have

© 2018 Software Engineering Daily �7

SED 613 Transcript

them figure out how to write your query against the Hadoop cluster. Is that the kind of

gatekeeping you're talking about?

[0:19:15.5] LC: No. I think that’s more of a symptom of just centralization and siloing. I'm talking
more along the lines of we don't allow people to push DDL, make table changes into the data

store, or we don't allow people to necessarily write SQL or do data modeling without X-X-X
reviewing and approving, or the CI platform works great and we’re even doing continues

deployment or some level of continuous delivery. But, hey, when it comes time to apply the
changes to the database, we now need a human from this specific team to come in and apply

them. That’s more of the kind of gatekeeping I'm talking about.

[0:19:55.7] JM: Why is that important? Why is it important for anybody in the organization to
feel empowered to write queries against the database?

[0:20:03.4] LC: Well, I mean, the data is the life blood of the system of the business, and the

more that people can query or interact with the data, the more experimentation you’re going to
have, the more knowledge and database decision-making is going to be driven there. Similarly, I

think it's a matter of velocity, right? All companies right now are competing based on how quickly
they can get features out, how quickly they can ideate on them and pivot and change, and

almost all of that at some level will require changing what data is stored or changing how you
access that data. If you are dependent on a core team of people for that, then they will inevitably

slow you down and then you will use in the competition for feature deployment and ideation.

[SPONSOR MESSAGE]

[0:21:02.8] JM: Test Collab is a modern test management solution which integrates with your
current issue manager out-of-the-box. For all development teams, it's necessary to keep

software quality in check, but testing is complex. There are various features to test. There’re
various configurations and browsers and platforms. So how do you solve that problem? That's

where Test Collab comes in. Test Collab enables collaboration between software testers and
developers. It offers wonderful features like one click bug reporting while the tester is running

the tests, collaboration on test cases, test executions, test automation integration and time
tracking. It also lets you do a detailed test planning so that you can configure platforms and

© 2018 Software Engineering Daily �8

SED 613 Transcript

browsers and configurations or any variables in your application and divide these tasks

effortlessly among your team for quality assurance.

All of the manual tests run by your team are recorded and saved for analysis automatically. So
you’ll see how many test cases passed and failed with plenty of QA metrics and intelligent

reports which will help your application’s quality. It's very flexible to use and it fits your
development cycle. Check it out on testcollab.com/sedaily. That's T-E-S-T-C-O-L-L-A-B.com/

sedaily. Testcollab.com/sedaily.

[INTERVIEW CONTINUED]

[0:22:41.5] JM: I think I'm understanding what you're saying here. You're saying that if you can
get to a culture that has well-defined incident response, for example, you won't be as afraid of

changing the database or having the intern write a new query against the database, because
even if the intern brings down the database, you have a well-defined way of responding to an

incident so you don't need to be afraid of that in turn query.

[0:23:13.4] LC: Exactly. The guardrails are in place to manage that and they’re at different
levels, right? Like you said, incident response as a whole detecting when there's a problem.

Obviously, architecturally, you can create environments where access to data can be done on a
data store that is not the same as the production data store. But similarly if you've created an

environment of continuous recovery, this idea that your backups are not only running, but
they’re always being tested, they’re used every day in standard deployment practices, standard

test and integration practices and there is not a single backup that exists that hasn't had some
level of integration or testing against it, you’re going to be more comfortable with this idea of

letting people iterate on the data models because you know recovery works. It works well and it
works fast.

Similarly, I think a lot of people are comfortable now with this idea of any number of read

replicas available that you can distribute work across queries, across everything else, and that
model works well. We even get to the point where someone might be willing to say, “Okay. I'm

willing to apply a little bit of chaos engineering and shoot a replica in the head, because I know I
have a load balancer. I know I have extra capacity,” but then it's taking it to the next step and

© 2018 Software Engineering Daily �9

SED 613 Transcript

saying, “We actually have tested for failovers of the data persistence, the writing to the database

well enough that that primary data node could even get shot in the head,” and we know exactly
what will happen. We have back pressure mechanisms or secondary persistence mechanisms

in place to make sure that we don't lose data and we test it regularly. At that point, you get to the
point where no one is even concerned about “What happens if I have to you'll fail over the

primary node?” and that is a significant paradigm shift and how people think about the data
stores, is the comfort with the risk that comes with letting people create failure situations on the

primary notes that are taking writes in versus failure situations in the more horizontal read notes
of a data store.

[0:25:16.8] JM: There are some challenges that people can encounter when they're trying to

make these cultural changes, and I think database reliability engineering, as I'm hearing it from
you, is really about a mindset shift. It's about a cultural shift as supposed to being about any

specific role change or any specific point organizational change. It's more about a shift in
mindset to being able to move faster and move more comfortably.

I went to the DevOps Enterprise Summit. I think it was like a year and half ago, and it was

interesting because there were a lot of organizations that I would –I don't talk to them on
Software Engineering Daily, but they are companies that are doing software engineering and it's

some company in the Midwest that has lots of software engineers and they have lots of software
engineering problems and lots of legacy issues and they come to the DevOps Enterprise

Summit because they're trying to learn to move faster and you see them struggling and
eventually succeeding in figuring out how to adapt their organization. But the point is that I want

to avoid Software Engineering Daily becoming this place where I just like talk about these things
in theory and don't witness them where the rubber meets the road.

So I’m very curious, because you work at Fastly, and that's a high throughput, intense

engineering project building a CDN. So when you think about applying these kinds of mentalities
that data database reliability engineering mentalities to a CDN, like Fastly. I mean, a CDN is in

some ways just a big database that has a lot of operational challenges around it. What are the
challenges that come to mind in trying to implement database reliability engineering practices?

© 2018 Software Engineering Daily �10

SED 613 Transcript

[0:27:08.0] LC: It is interesting that you talk about Fastly and this concept of our edge network

being giant global key value data store, because that is what it is, and I laughed when I first
joined the company and saying, “Someone who spent their entire career working in databases

comes to a company that doesn't really have a lot of data of significant size.” In fact, we don't
store logs for customers, right? We make sure that those laws go directly to their customers, but

we don't store them. Our entire edge storage is essentially volatile and doesn't need to be
persistent. So it was pretty funny that I was coming to this organization, but our CEO, Artur

Bergman, consistently said, “No. You are just working on one of the largest data stores ever.”

In many ways, they've already applied a lot of those concepts to manage an edge, to manage a
data store that is so distributed. We've already had to solve for velocity. We’ve already had to

solve for reliability in terms of making sure we can recover. In this case, we don't have to worry
that much about recovering our data, but we do have to make sure that we’re not running in split

brains or places where the data isn't there.

So the edge side, I think a lot of customers have already solved those kinds of problems for
that, but then when you look at the control plane side of our system, where the systems that

provide the interfaces for customers to Fastly and how it works, or looking to get data out of our
systems about how their end-users are experiencing Fastly and what's going on there. That is a

place where we are undergoing an active cultural change in what we do, and because our data
store is in those environments aren’t huge, but they have to be reliable, right? Our customer

can't lose the ability to configure how their edge works. At that point, they’re in deep trouble.

So we have a case where we said, “How do we optimize for reliability without impacting how
frequently we can iterate and change and grow for those control plane environments?” There

are particularly cultural changes involved, because for one thing, I think people who are used to
operating a fleet or operating a very horizontally distributed system, when you ask them to start

looking at potentially becoming on-call and become regular operators for the data store, they put
their hands up. They’re like, “Nope. I don’t want to touch that. That is something terrifying,” and

culturally you have to, first off, make sure that you can't just hand someone who is a generalist,
a data store and say, “Manage this without training, without runbooks, without ideally some level

of abstraction on failover and backup studies very easy, and that you can teach people to do
and show them, “No. It actually works very well,” and that's what you end up having to culturally

© 2018 Software Engineering Daily �11

SED 613 Transcript

do, is to build the self-service, build the guard rails and start to teach these people and show

them, “No. Look. You can do this look. Look. We’ve now invested in a proxy layer that allows
you to do a failover in the middle of the day without anyone noticing. Now, let's go have each of

you do this. Now, let’s shadow an operator from – Or even a developer who does database
engineering with a failover and show them how it works. Show them how our recovery works.”

It takes time and it is a matter – It takes time not only for those engineers who are terrified of

working in those environments, don't necessarily want to. But then on the other side, for the
managers, for the risk folks, the compliance folks, everything else, to show them that you can

create an environment where you’ve de-risked this, you’ve created this ability and to what
happens in your data stores so that they themselves feel like this isn’t Wild West. This isn’t, “Oh!

Everyone's in there doing anything now,” because, honestly, some holders companies are just
getting to the point where they're starting to give people a little more system access outside of

their core area. So then to tell them, “Well, now, everyone can work in the data store,” and that
isn’t necessarily true anywhere. Not just anyone can work in the data store. There is still risk.

This is still one of the most important – Actually, I would say the most important area of our
architecture.

So it's not like we’re just saying, “Okay. Day one, there you go.” There is rigor involved in

teaching people how to work and how to evaluate risk and how to learn from it, and on the other
side, it is teaching those folks who do the risk management, the compliance manager, the

incident management and showing them the auditability aspects of it, the controls that are in
place to mitigate any impacts the guardrails that have been done, and that comes to a lot of

more core areas of SRE and even DevOps around what are the metrics we’re tracking? What
are the controls in place? What are the processes that we’re doing to make sure that we are

optimizing for recoverability of a system rather than trying to build this sort of robustness that's
actually incredibly brittle and fragile, because it's robust, so no one's ever had to actually deal

with a failure for the last two years. So when it comes, everyone's hair is on fire.

[0:32:09.4] JM: One aspect of database reliability engineering that I have seen you talk about is
capacity planning, and capacity planning is really important because you need to know in

advance if your database is going to grow in size to something that's beyond what your current
provision capacity can tolerate, because you're going to need to plan to buy more database

© 2018 Software Engineering Daily �12

SED 613 Transcript

nodes. So I imagine this is an issue at Fastly among other companies, but describe the capacity

planning process for a database reliability engineer either through the eyes of Fastly or more
generally.

[0:32:54.2] LC: It is a very multidimensional approach, right? So first of, it’s understanding of

the scaling pattern that you've employed and understanding the constraints therein. Are you still
in the phase where you are vertically scaling your database nodes or have you gotten to a point

where you have decided what a good unit of work is for horizontal node and apply your models
to that?

So it's understanding that part first, and there are certain areas and constraints within there that

you have to look at. There is no single one. I think a lot of people, when they’re thinking about
database capacity, they might be thinking about storage, obviously, disk space. Some so people

are thinking of memory and working sets, but then there's other constraints around concurrency
within the system, which varies tremendously based on what database you’re using, if you’re

using a relational store or you’re using Redis or something similar. Their connection then
concurrency models are quite different.

So first off, you have to build the model in place of what are the constraints that could potentially

max out, bottom out? From there, with load testing, ideally you identify where those two max
out. At that point then you start deciding, “Okay. Based on the load testing that we’ve done,

based on the scaling model we've done, we know that when this metric hits here, this metric hits
here, that we have to start doing this.” Then once you've sort of said, “Okay. That's how we get

through the current model,” we know then the next step is going to be either functionally
partitioning our data store, or sharding it, or anything else. Let's start to look at when that

constraint is going to come in place and start deciding the amount of effort needed to shift to
that, because you don't want to optimize too early, and start to look for those key factors as well.

That's great if your loads are linear and you can sort of just know, “Okay. Well, this happens, this

happens, this happens,” but the reality is this is data storage. So within that, if you are a young
company or a rapidly iterating company, you're constantly changing what you do, and that

means you’re going to have different indexes, different tables. So even – It's not just a matter
then of saying, “Okay. Well, X customers means X amount of storage, X amount of queries.”

© 2018 Software Engineering Daily �13

SED 613 Transcript

Instead, then you have to keep up with all the changes that are coming into your system. That is

where ideally you’re teaching your developers to not only understand what they are doing in
terms of data access and data storage from a functional perspective, but you’re making sure

they understand the underlying characteristics of that data store and how that applies to
change.

Okay. Well, we know that this data store it's a binary tree index. You always, on a new table, get

a primary key, which adds an index immediately and then we know that based on the
characteristics, it's going to also need this. We know with these data types, that that happens.

So at that point if you taught your software engineering team about the data store, and that's
one of the key areas where it gets scared when people try to abstract the engineers away from

the data store. You then don't have advocates for capacity. For people who will understand the
impacts of their changes not just from the perspective of performance and functionality, but also

the underlying sort of longer-term shifts and the workload that will completely invalidate your
capacity models. That's where I think a reliability engineer for databases with deep domain

expertise is invaluable, because they can teach people the impacts of a data type change, a
table change and index change.

[0:36:39.7] JM: The job of the SRE – And a lot of that Google SRE book is about automating

yourself out of any manual work if possible. If you can write a script to do something that you're
doing manually, you should write that script. Are there any tasks that the database reliability

engineer should keep as manual tasks just to force themselves to do the process in order to
have more scrutiny over that process? Because I think it’s like a mental trick that sometimes

people play on themselves where they say, “You know what? I want to leave this process as
manual, because I’m kind of afraid of automating it.”

[0:37:19.2] LC: Yeah. So I think automation itself is an interesting topic and I think this idea that

we can automate almost all of our manual work. You probably could, but would it be the right
amount of time and effort to automate everything? So I really ask people when they look at a

process and trying to decide what to automate and what not to sort of value stream out the
various components of the overall process. What is either takes a lot of time and effort? What is

risky and having a human do it over and over again creates risk is a repeatability of software,

© 2018 Software Engineering Daily �14

SED 613 Transcript

obviously, that precludes no bugs or anything else. It makes it easier for something to happen

without a human error coming into it or being attributed to a problem.

So when I ask people to look at what's automated, it doesn’t matter of saying, “Okay. So what
de-risks the day-to-day operation of the system, and then what potentially you adds risk?” Just

because something – There’s nothing that should be automated that a human shouldn't be able
to still do. So, for instance, failover, right? If you get to the point where you have primary server

failover or a secondary server, the read replica failover is automated, there are still times when
you should regularly test those, because what if the automation is down. What if it’s a bug in the

automation software itself and a cascading failure therein?

So you absolutely do need to teach people how to do the day-to-day traffic shifts and recoveries
that an automated system can do. The same for a data recovery, right? Yes, you should be

using this as part of your everyday work. You should be automating the testing and as much of
the recovery as possible, but you still should be asking your engineers to some reasonable level

of frequency to test or restore themselves, to test a failover without that automation. Otherwise
they will get in the same – Just like I said before, where you have a reliable system that's fragile

because no one's tested the failovers. Even an environment that's incredibly resilient to this
through automation, if you haven't tested those processes themselves, then you’re going to

come into the same thing. So I think anything that is a matter of recovering a service to
functionality for users can, and if you can appropriately de-risk, should be automated. But,

nonetheless, you need processes in place for regular game date and testing and just to make
sure that people can do it if and when those systems fail.

[0:39:51.3] JM: We've had some differing opinions on the show of the idea of using a write-

ahead log is a tool for recovering from an incident. For people who don’t know, the write-ahead
log is this append only log that a lot of transactional databases have, that it's not the actual

database itself. It's a history of the changes across a he database. So if you have the write-
ahead log up into timestamp X and then you have the database of timestamp X, the database of

timestamp X is great because that's a transactional data store, but the write-ahead log is useful
because you can actually understand the entire history of how the database has looked from

what you can reconstruct from the write-ahead log.

© 2018 Software Engineering Daily �15

SED 613 Transcript

Now, that said, the write-ahead log is much more verbose than the database. So there are these

differing approaches. So, Tammy Butow from Gremlin now, she does chaos engineering. I
asked her about this question, like, “Should you use the write-ahead log as a means of recovery

from some kind of incident where you can reconstruct up into timestamp X?” Her approach was,
“Yeah. I mean, if you need to look at the write-ahead log, but you should have recovery

mechanisms in place such that the write- ahead log is not your source of restore. You would
much rather just have database snapshots as your recovery vector. Do you have an opinion on

one of these two recovery mechanisms?

[0:41:26.4] LC: Like any good database engineer, it depends. So I think one of the things I talk
about in the book in the recovery section is this concept of recovery in depth and having a multi-

tiered approach, because you can't always guarantee exactly how you're going to have to
recover a data store. Day-to-day, what you use to get a system back in service or to provision

new instances, add capacity, that absolutely should be snapshots wherever possible.
Something that is on fast storage that is easily put in place and allows for quick transport of

data. Those are ideal for that solution.

Then you have this concept of – And it used to be the idea of a logical versus a physical backup
and you might – If you’re in the MySQL world or MySQL.parade, that is similar in many ways to

what you're talking about, because to restore, you have to basically apply and insert for
everything.

In this case, you’re capturing the changes, but those changes, first off, they can corrupt, they

can get corrupted. So you can't depend on them completely. They’re very time-consuming to
recover from, because you have to apply every change. But they do have places. Some of

those places are when you are reconstructing data after a very complex corruption, and that
corruption could come from something in the distributed system environment itself or it could

come from the corruption based on an application and some really interesting logic there. You,
of course, are going to need to reconstruct that.

So in those cases, it's a great tool. One tool you didn't even mention, which is also very

interesting, is the idea of versioning objects in the database. Just like if you look like an object
store and the idea that you can version what's in that bucket and then reapply it. There's no

© 2018 Software Engineering Daily �16

SED 613 Transcript

reason that you can't store previous versions of an object as you mutate it. If you mutate a row

on a database, if you always store previous version of it and you had a large bug, you can
actually programmatically let the application fix things in a just-in-time approach. So when a

customer comes in, either engaging them and saying, “Hey, we have previous two versions.
What’s the most recent one?” That’s obviously a very blunt example, but making it so that you

have multiple ways to restore your data, particularly as your datasets grow and you get multi-
petabyte and even multi-terabyte, this idea of ever recovering your database directly from a

backup of record is less and less likely.

So at that point you have to look at, “How can I incrementally fix this in a way that it doesn't
destroy my system for days at a time?” for weeks at a time in some cases. On the other side of

it, “How can I make my datasets as portable as possible to allow for creating test environments
on the fly, creating – Adding to the past and anything else.

[SPONSOR MESSAGE]

[0:44:28.4] JM: Citus Data can scale your PostgreS database horizontally. For many of you,

your PostgreS database is the heart of your application. You chose PostgreS because you trust
it. After all, PostgreS is battle tested, trustworthy database software, but are you spending more

and more time dealing with scalability issues? Citus distributes your data and your queries
across multiple nodes. Are your queries getting slow? Citus can parallelize your SQL queries

across multiple nodes dramatically speeding them up and giving you much lower latency.

Are you worried about hitting the limits of single node PostgreS and not being able to grow your
app or having to spend your time on database infrastructure instead of creating new features for

you application? Available as open source as a database as a service and as enterprise
software, Citus makes it simple to shard PostgreS. Go to citusdata.com/sedaily to learn more

about how Citus transforms PostgreS into a distributed database. That's citusdata.com/sedaily,
citusdata.com/sedaily.

Get back the time that you're spending on database operations. Companies like Algolia,

Prosperworks and Cisco are all using Citus so they no longer have to worry about scaling their

© 2018 Software Engineering Daily �17

SED 613 Transcript

database. Try it yourself at citusdata.com/sedaily. That's citusdata.com/sedaily. Thank you to

Citus Data for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUE]

[0:46:13.5] JM: Let’s talk about the concept of failover more generally. How much failover do
you need, or how do you calibrate the level of failover that you need for a given database

application? I mean, you can have your failover to different nodes in the same data center. You
could have multi-geolocation, multi-availability zone distribution for different failover recoveries.

What's the model for determining the level of failover that you need?

[0:46:44.3] LC: Yeah. I think it is a – I mean, it’s a general risk management exercise in terms of
looking at the failure scenarios involved. You mentioned a lot of them just now. What're the most

typical failures? Are they node failures? Are they nodes that then have to be recreated? What's
the likelihood of a zone failing? What’s the likelihood of a region failing? Then deciding based on

the application itself, what uptime that needs based on service level objectives. Then
understanding, of course, databases are often multitenant. So you have many applications on

them. So the more centralized your database is, more services on it. The recognition that, well,
all services within that database will then have to be set up at a level of redundancy and

replication factor necessary for the most critical, and that's a case where you can start looking at
functionally partitioning your workload so that services that are less sensitive to downtime can

be put on systems that are less available.

So it's, first off, understanding that those multitenant workloads and what you need to optimize
for there. Then it’s a matter to your service level objectives and risk tolerance and deciding from

there how long does it take you to restore service and is that acceptable to the business and
what's the likelihood?” It’s all just a calculation at that point of what’s the cost of my downtime,

which can be hard to quantify, but you need to come up with some level of model that puts that
in place. What are the mitigations? Whether from a feature flags, putting your application in

read-only mode, anything else? What are the mitigations that give you more time? Taking all
that into account, it’s just a simple calculation of cost versus cost of being down versus the cost

of maintaining those services.

© 2018 Software Engineering Daily �18

SED 613 Transcript

Obviously, if you're doing the reliability engineering model right, the more databases you add

doesn't add a linear cost to operations, but there still is a cost to that complexity. I think that's a
nuance that has to be very carefully considered, is when you start going multi-data center, multi-

region, your distributed system starts having much higher latency across connections, which
adds its own risk, whether that's a risk of collisions, weird failovers that create split brain

scenarios.

So at that point, you have to start considering, “Okay. If I have come to the conclusion that I
need this, this and this, am I taking into account the complexity of those distributed systems and

the potential failures that come from having –” Just because you set up replication across
regions into databases doesn't mean that it's going to work well. It doesn't mean that you're not

creating more risk than if you had just optimized for the ability to easily redeploy a service in a
different zone than always having a hot spare available with one second latency in the

replication string.

[0:49:44.9] JM: As you explained earlier, much of your positioning on this database reliability
engineering topic is about spreading the knowledge within the organization, having more

egalitarian access to database knowledge. Do you have any favored practices for evangelizing
information within an organization about databases?

[0:50:14.0] LC: Let’s see. So I'm a big fan of pairing, and I think pairing between teams. So

pairing a database engineer directly into a team of software engineers can be incredibly
valuable. So, for example, I was engaged for a little while with [inaudible 0:50:32.1] on their

infrastructure as a service system, and I am not a software engineer. I’ve written sort of
procedures. I’ve written shell scripts, but I am not a computer scientist and I would not consider

myself a programmer of any worth. But as you know, pivotal is very intense on their pairing, so
we did it anyway and I learned a huge amount and those software developers who had access

to a database expert, while they were building the services, they got tremendous value.
Because it was pairing, it was active problem-solving based on what they needed to know right

then versus just a piece of content that may or may not be applicable to what they're doing. So I
think the more you can build these matrixed or just even temporarily paired teams that cross the

database function with the other functions that you ideally are giving information to, the more

© 2018 Software Engineering Daily �19

SED 613 Transcript

likely that that information is going to stick and those people are going to get more used to

working together.

Similarly, I think the shadowing with on-call, even if you don't want to make software engineers
on-call for the database services themselves, pairing them up for shifts so that they can just

watch and understand or pairing them up for the changes, right? It’s like, “Well, we'd like to add
these three columns history indexes to this table that's a multi-terabyte.” Making sure that they

actually understand how that works and what are the processes involved at the persistence tier
to apply a change of that size without impacting customers is a great way for them to have

respect for the data store, but also start to understand it. So that respect becomes an informed
respect rather than the sort of mysterious, “I don't ever want to touch the side of the system.”

Another thing I like, particularly for software developers looking to make changes to the data

stores or queries, is a library of patterns and even anti-patterns. So the this idea that, “Okay.
There are a finite number of mutations you might want to make to a table or a data model,” and

so as we do those changes and as a database person embeds with a team and teaches them,
let's then add that to the pattern library so that in the future when a developer says, “I want to do

this,” they know immediately where to go to look at how to do that without having to consult a
database person.

[0:52:52.1] JM: So in many businesses, the customers are going to be price-sensitive to

whatever service you're offering them. So if you have a person who is familiar with the database
infrastructure, they can find ways to cost save on that infrastructure. Would you consider the

idea of finding cost savings within database infrastructure to be in the purview of a database
reliability engineer?

[0:53:22.7] LC: Absolutely. I mean, cost savings is essentially just a trade-off, and at that point

someone who understands the implications of the trade-off can partner with finance or with
anyone who is responsible for the OpEx of that environment assuming a cloud data store and

come to those conclusions.

So, I mean, anywhere your cost savings is or they’re going to come from reducing throughput,
producing storage, reducing availability and replication factors. Each of those trade-offs comes

© 2018 Software Engineering Daily �20

SED 613 Transcript

with a potential risk implication. The database engineer or reliability engineer can then take that,

their knowledge of the system, and it can be anyone who’s familiar enough with that system to
say, “Okay. If we are going to make this cost savings trade-off, then this will impact our ability to

hit our service level objectives,” whether they’re an availability objective, or a latency objective,
or a durability objective, because that's all it really is then, is an exercise of understanding the

trade-off, the potential risks and deciding if that service, that new service with the cheaper cost
factor is still a service that a customer would be comfortable working with.

[0:54:32.3] JM: I touched on the Tammy Butow conversation I had a while ago and I was talking

to her mostly about chaos engineering. What do you think about the idea of instituting random
failures in the database? Is the database too sensitive? Too exposed? Too chaos engineering

type practices?

[0:54:52.7] LC: I think that you can absolutely start to explore chaos engineering with a data
store that's designed for that purpose. I will be up front, just like you said, where does the rubber

hit the road on theory versus practice?

A lot of this database reliability work is still being tested and practiced and some of it is
conceptual. Most of it I’ve seen somewhere or I’ve done, but where you start getting into the

world of, “Hey, we'd like to have a chaos agent that can shoot a write master or a write primary
in the head and we’re comfortable with that being a non-planned exercise,” there aren’t too

many companies yet that are actually willing to do that. But I think of that – When I work with our
engineers at Fastly and look at the data source, that is the aspirational goal, the 20% of the

OKR that probably won't get met that I asked them to architect and design for, is this idea of, “If I
came in on Sunday morning and shut down that data store,” which I can't do because I’m an

executive and I don't have access to anything in our systems. But if I could or if we wanted a
system to do it, would we be able to sustain it?”

Right now I think it's just having those thought exercises and doing a tabletop walk-through of

what would happen and why and then starting to do a control failure and see if what hypothesis
was actually happened is a great start to that. Then when designing, starting to think about that

as well. Are we to a place where we could easily do this and where most people would feel

© 2018 Software Engineering Daily �21

SED 613 Transcript

comfortable? No. But I think it is a worthy thought exercise and it's a worthy design factor to add

into your architecture.

[0:56:36.3] JM: What should the average software engineer take away from this conversation
about database reliability?

[0:56:42.6] LC: Well, I think they should – Ideally I think what they should take out of this is that,

one, they know that what they feel is a security factor of having a team of experts that they can
rely on. Being there for them is one that they probably can't depend on, just because those folks

don't scale. They should be looking for areas where they can gain knowledge about the data
stores they're working with, particularly the ones they are working with rather than relying on

abstractions away. They should be looking for opportunities where if they have the ability to get
knowledge from database experts, that they can start sharing it within their teams.

Similarly, I hope that they take away from this the idea that they should be able to work within

the data stores. Obviously, that requires guardrails, but if they start thinking about how they can
do their work every day and without necessarily being blocked by subject matter experts who

aren’t in their teams. When they start to think about that and start to think about the guardrails
that they can put in place so that if a data server fails, that their replication still work even if

partially or an integrated state, the more opportunity they will create for them to have that kind of
velocity by working within the data stores.

[0:57:57.9] JM: You’ve written a book with Charity Majors, and she was on the show a while

ago talking about – Well, we mostly talked about her past experiences with the acquisition of
Parsed by Facebook. That was actually a really good set of stories, but I like Charity a lot. She's

very entertaining and has a whole lot of information to impart that's quite useful for people who
are in this, I think, probably the space of operation/logging/monitoring/infrastructure

conversations. What have you learned from Charity Majors?

[0:58:36.2] LC: I've learned how to drink from Charity Majors, how to drink properly. I grew up in
New Orleans. I already knew how to drink. But outside of that, one of the most wonderful things

about what Charity’s knowledge is the fact that it is a pretty much nonstop informed by real life
and real life decisions and trade-offs.

© 2018 Software Engineering Daily �22

SED 613 Transcript

Charity came into the database world, as she calls it, the accidental DBA, and I came into this
world as the crazy person who decided the first day of their world in computers that they wanted

to be a database engineer, which probably, it’s a psychological dysfunction that should be in the
DSM. But Charity’s outlook on, “No. I didn't ever plan on being a database engineer and yet I

was forced to,” is a very different view than mine. So that paradigm and her approach to looking
at this is very different from mine, right. She also comes from the startup world and I came from

the world of Travelocity. I joined Travelocity when it was still a startup, but it was owned by
Sabre and EDS, and these are very traditional mainframe and server system. So I learned a lot

from those environments. I even did ITIL and various other things that can be considered
archaic now.

So combining this iterative just-in-time approach that Charity takes to building an environment,

because you don't even know if your business will be in business the next day, versus the
careful planning and meticulous design that I bring in to an environment that’s already built,

scaled, at that point needs to be made faster and more agile is it's a great mix. It's a great
complement or two skillsets.

[1:00:22.5] JM: Laine Campbell, thank you for coming on Software Engineering Daily. It’s been

great talking to you about database reliability engineering.

[1:00:27.2] LC: Oh, it is my pleasure. Thank you so much for having me.

[END OF INTERVIEW]

[1:00:33.6] JM: At Software Engineering Daily, we have user data coming in from so many
sources; mobile apps, podcast players, our website, and it's all to provide you, our listener, with

the best possible experience. To do that we need to answer key questions, like what content our
listeners enjoy? What causes listeners to log out, or unsubscribe, or to share a podcast episode

with their friends if they liked it? To answer these questions, we want to be able to use a variety
of analytics tools, such as mixed panel, Google Analytics and Optimizely. If you have ever built a

software product that has gone for any length of time, eventually you have to start answering
questions around analytics and you start to realize there are a lot of analytics tools.

© 2018 Software Engineering Daily �23

SED 613 Transcript

Segment allows us to gather customer data from anywhere and send that data to any analytics
tool. It's the ultimate in analytics middleware. Segment is the customer data infrastructure that

has saved us from writing duplicate code across all of the different platforms that we want to
analyze.

Software Engineering Daily listeners can try Segment free for 90 days by entering SEDAILY into

the how did you hear about us box at signup. If you don't have much customer data to analyze,
Segment also has a free developer edition, but if you're looking to fully track and utilize all the

customer data across your properties to make important customer-first decisions, definitely take
advantage of this 90-day free trial exclusively for Software Engineering Daily listeners. If you're

using cloud apps such as MailChimp, Marketo, Intercom, AppNexus, Zendesk, you can
integrate with all of these different tools and centralize your customer data in one place with

Segment.

To get that free 90-day trial, sign up for Segment at segment.com and enter SEDAILY in the how
did you hear about us box during signup. Thanks again to Segment for sponsoring Software

Engineering Daily and for producing a product that we needed.

[END]

© 2018 Software Engineering Daily �24

