
SED 612 Transcript

EPISODE 612

[INTRODUCTION]

[0:00:00.3] JM: When you write a front-end application in JavaScript, you assume that it will run

on the user's browser, but different browsers are compatible with different versions of
JavaScript. If you write an application in the most recent version of JavaScript, you might take

advantage of new language features. A user who's running a old browser can only interpret the
older features of JavaScript. To solve this problem, JavaScript developers use a tool called

Babel. Babel transpiles one version of JavaScript into another version of JavaScript, so that the
code can run on a target browser that would otherwise be incompatible.

Henry Zhu is a core maintainer of Babel and he joins the show to describe how Babel works.

Henry works on Babel full-time and he's supported through Patreon and OpenCollective. This is
a newer model for employment and Henry describes in this episode how he ended up working

on open source full-time, as well as the costs and the benefits of living that open-source
lifestyle.

Before I start the show, we're looking for a videographer. We're also looking for writers and a

couple other jobs. If you're interested in working with us, go to softwareengineeringdaily.com/
jobs. If you're interested in a lower commitment way of interacting with the Software Engineering

Daily community, we have the open-source ecosystem, which is available at github.com/
softwareengineeringdaily. We have open source apps for Android, iOS, as well as the web. The

iOS app just got a major improvement with some added features of downloads and saving
episodes offline, as well as a news feed within the app, so do check out that Software

Engineering Daily app for iOS. If you like the podcast, you might like the app, and we'd love to
have you as part of the Software Engineering Daily open source community. We hope you get

involved.

[SPONSOR MESSAGE]

[0:02:09.1] JM: At Software Engineering Daily, we have a web app, we have an iOS app, an
Android app and a back-end that serves all of these frontends. Our code has a lot of surface

© 2018 Software Engineering Daily �1

SED 612 Transcript

area and we need visibility into problems that occur across all of these different surfaces. When

a user’s mobile app crashes while playing a podcast, or reading an article, Airbrake alerts us in
real-time and gives us the diagnostics that let us identify and fix the problem in minutes, instead

of hours.

Check out airbrake.io/sedaily to start monitoring your apps free for 30 days. Setup takes only a
few minutes. There's no complicated configuration needed. Airbrake integrates with all of your

communication tools, from Slack, to Github, to Jira and it enhances your current workflow rather
than disrupting it. You can try out Airbrake today at airbrake.io/sedaily. If you want to monitor

and get visibility into the problems that may be occurring across your application, check out
Airbrake at airbrake.io/sedaily.

Thank you to Airbrake.

[INTERVIEW]

[0:03:28.6] JM: Henry Zhu is a core maintainer of Babel. Maybe I should say the core

maintainer. Henry, welcome to Software Engineering Daily.

[0:03:35.4] HZ: Thank you for having me.

[0:03:36.4] JM: Babel is sometimes difficult to explain, but I think the place to start is the fact
that different browsers are compatible with different versions of JavaScript, why is that and why

is it important?

[0:03:51.8] HZ: Yeah, I think the browser landscape is pretty unique. There are multiple
implementations of the JavaScript, or what we say ECMAScripts specification. Unlike, say more

of a server-side lane, or even though we have node now like Python or C, everyone uses that
thing, even though there might be multiple compilers, but with the browsers, each vendor they

try to implement the spec the best they can, but they have different teams, sizes, different
release schedules. You can't really know what they're supporting, unless you look at their sites.

More importantly, you don't know what browser your users are using.

© 2018 Software Engineering Daily �2

SED 612 Transcript

If you support all the major browsers, or even IE 11 or less, then you can't assume what they're

allowed to do. Babel is this tool that lets you support the widest range of browsers, but also lets
you write the latest syntax.

[0:04:47.8] JM: When you think about different versions of Java for example, I think many of the

advances that come with a newer version of Java, at least we talked about like from Java 7 to
Java 8, I think were in the flavour of syntactic sugar. Java 8 was comfortably backwards

compatible with Java 7 and the versions that came before it. I don't think in the Java world, you
need something like Babel, where you have these transpiled different versions of Java that can

port to different places. Why is it important to have a transpiler, because that's what Babel is? It
allows different JavaScript versions to be compatible with another, and you can transpile one –

a newer version of JavaScript into an older version of JavaScript. Why is that important?

[0:05:41.2] HZ: Yeah, I think there are a few reasons. With Java, it's like on your end to
upgrade. If your company's on Java 7, they want to go to 8 or 9, you just need to update all of

your code to do that. With JavaScript, you have no idea what browsers your users are doing, so
you can update your own code to the latest version, but it doesn't mean that it will run on your

users’ browser. In order to do that, you would have to either wait until somehow you know that,
but you can't really guarantee. A tool like Babel lets you standardize and not have to think about

what browsers you're targeting.

Also importantly, the reason why we have transpilers is there is – it’s twofold, one is this
backwards compatibility story, but the other is that transponders can actually help influence the

language itself and I think that's the second more important role of Babel is that unlike other
languages, where you – there's a committee of people, which there are for JavaScript as well,

but instead of waiting for the implementers to do all this work in C++ land in the browsers and
then show developers and then make it, at that point it's almost too late for real feedback. With

Babel, it's like we can implement a plugin, because Babel is written in JavaScript and users can
test our ideas, give feedback, like this is not even a good approach at all, or it's not intuitive.

That way, we can more get the community's feedback at a faster pace or even just make sure
you're on the right track.

© 2018 Software Engineering Daily �3

SED 612 Transcript

[0:07:18.4] JM: Yeah, and we'll talk about that role of Babel as a way for developers and

standards bodies to interact with each other. Just to talk a little bit more about the developer
side of things, so Babel is a project that transforms newer JavaScript syntax into backwards

compatible code. If I'm a JavaScript developer, how does Babel fit into my workflow?

[0:07:45.4] HZ: Yeah, so for most at this point, a lot of it is the fact that most people are already
using Babel, and a lot of times, people don't know what the project is because it's so – it’s

infrastructure level now. It's like, all the tools that you use are already using it, so you might not
even know that you're using it, because it's already built into some framework or tooling that

you're using. If you use React, you might use something called create react app, or if you're
using Vue, there's vueCLI, or emberCLI, all these tools already have Babel built in.

One of the issues we have as a project is that it's almost too ubiquitous, too “successful” in a

way. People don't realize they exist, and then it also means that they might assume that it's like
a company, or a lot of people are working on it when it's just a few volunteers and crowdfunding.

[0:08:39.3] JM: Yeah, so if I'm writing a react application, I get to use the nice world of react

components and building in the react developer ergonomics that that people love. What
developers don't often know is that part of the reason that that's such a nice experience is that

under the hood, one of the things that the react compilation to JavaScript, when because react
itself is not JavaScript, it's you're writing stuff in JSX and then it gets translated into HTML and

JavaScript, but one thing that's happening is that it's taking care of that cross-browser
compatibility for you out of the box and it's doing that through Babel.

[0:09:24.9] HZ: Right, exactly. JSX is not part of JavaScript and yeah, Babel will convert that

into a function call. You could not do it, but the point is that instead of doing it manually or not
writing it at all, it lets you have this nice way of writing react, yeah. It's not completely necessary.

It's just people are used to that and it's a nice way of doing it, and it does it for you automatically.
You're also already going to compile yes, I think, so it's like, you get the JSX part for free.

[0:09:53.5] JM: Babel generates the right version for the right browser at the right time,

depending on what browser is consuming a given application and what version of the browser is
running on the user's device. How does Babel do that? Does it translate the code into a bunch

© 2018 Software Engineering Daily �4

SED 612 Transcript

of different versions and then deploys all those versions, or it somehow senses what the user

agent is and gives the user the right version? How does Babel generate the right version of
JavaScript for the right browser at the right time?

[0:10:26.6] HZ: Yeah, so that thing is, it doesn't actually do that out of the box. It's more low-

level. You can specify what browsers you want to target and it will compile into that. It's like,
think of a spreadsheet of every possible browser version and also every different syntax. If it's

arrow function, is this supported by browser XYZ, or version XYZ, or classes, or different kinds
of syntax.

Then it will do these common denominator of what you support. If you want to do what you were

describing earlier, you need a lot more tooling on top of all that. I'm not sure if a lot of people are
attempting this, but it's definitely been suggested and talked about a lot about should we read

the user agent? They used to do some weird try catch and an eval, where you try to see if the
browser supports that syntax. Or do you do something completely different, where you just,

okay I'm just going to assume that the baseline is IE and then you ship as much code as
possible. People are realizing, yeah, we shouldn't have to do that if we're able to detect certain

things.

The problem with the whole user agent thing is well, it's hard to know if that is actually accurate.
Even if you are, creating a different bundle for every single version can be difficult in the sense,

now your builds might be longer, because you support 10 browsers, you're going to build your
website 10 times and then testing 10 times. Then if you have a bug, then it might be harder to

realize where is that coming from. Is it from Babel itself? Is it because you wrote this weird
code? Is it compiled differently? That just gets a little more complex. Maybe some people have a

better way of doing that, but that's my thoughts on that.

[0:12:12.7] JM: Babel transpiles JavaScript from one version to another. That term transpiler,
how does that differ from the term compiler?

[0:12:22.2] HZ: Yeah. I think there's a lot of bikeshedding on that, and a lot of people get into

arguments over whether we should use –

© 2018 Software Engineering Daily �5

SED 612 Transcript

[0:12:29.1] JM: Sorry, bikeshedding?

[0:12:30.6] HZ: Yeah. Just like whether should Babel be called a compiler or not. We actually

changed all the documentation, I think a while ago so that it just says Babel is a JavaScript
compiler, because it gets confusing, because it's a newer word anyway. People would say

source-to-source compiler, or it's in the same language so that's why we call it a transpiler. Right
now I just say it's a compiler. It just happens to compile to JavaScript, instead of a lower level

language. Yeah, I don't think it's not necessarily that big a deal whether we say transpiler or not.
Yeah, it's still – it changes a form of a code into another form.

[0:13:11.5] JM: Right. Okay, so this transformation, or compilation, or transpilation, or whatever

we want to call it, transforming, converting one piece of code into another piece of code. This
takes three stages; there's the parsing stage, the transforming stage and the generation stage.

Describe these three steps.

[0:13:31.8] HZ: Yeah. I think, you put it well that there's in high-level, there's only three steps. A
lot of people have a hard time grasping what a compiler is, or what it does. I never took a

compiler class, or studied it formally or anything. I just learned everything.

[0:13:47.6] JM: You should be thankful.

[0:13:48.4] HZ: Yeah. Maybe that helped, right?

[0:13:50.2] JM: At least my programming languages class, oh my. I can't believe I had to pay
money for that. It was the most – I'm sorry. I hope the professor that taught me that out there is

not listening, but it was just abhorrent and so boring and so unapplied. I think compilers is one
of this – it is why I'm glad to have you on the show is because, compilers I think has a reputation

as being super academic, super dry, super uninteresting. When in fact, it's a very vibrant and
highly applied area of computer science.

[0:14:24.6] HZ: No, I totally agree. I almost purposely didn't choose to do computer science as

my major in college, because of that, and knowing that it's going to be so boring. Even though, I

© 2018 Software Engineering Daily �6

SED 612 Transcript

had a lot of interest in computer science and programming, but I just wanted to do

visualizations, or just games, stuff like – things that seem fun.

[0:14:42.8] JM: What you study?

[0:14:44.0] HZ: I studied, it's called the industrial and systems engineering. It's more like – more
math, statistics, queueing, transportation. Very different, but also related to program in a way.

[0:14:59.4] JM: Oh, yeah. I know a lot of super creative engineering leaders actually that did

industrial engineering. It's one of those majors that you don't really hear about as much, but you
find all the time. It's just you find people in power who were philosophy majors. It's just like,

“Okay.” That surprises you sometimes, but it sounds like a pretty interesting major. There's a lot
of cross-disciplinary coursework in that thing.

[0:15:28.3] HZ: Yeah. You were able to take – there were a few programming courses,

specifically you could take like, whether it was databases or machine learning, but yeah, I didn't
have to – it was fine, because I was able to just choose electives that I liked just for fun outside

of that. Yeah, I didn't – I hated the idea of wanting to learn about compilers, and now ironically, I
work on one and I like it.

[0:15:51.9] JM: Okay, so parsing, transforming and generation; the three stages of the compiler

of Babel.

[0:15:58.1] HZ: Yeah. The way I like to think about it is when you want to transform your code to
do something, you could do a simple find/replace, right? Say I want to turn all of the variable

names like A into B, you could go through your editor of choice and then do like control+F and
then find all the As and change them to Bs. The problem is that, you don't know if the A that

you're looking for is a variable, or is it in a string, or is it in a comment. The point is that you want
to semantically know if the A that you're using right now is a variable, or a comment, or a string,

or something else.

What we do is we use intermediate representation of the code. Instead of a string, we use what
we call an abstract syntax tree, an AST. An abstract syntax tree is just a separate form that lets

© 2018 Software Engineering Daily �7

SED 612 Transcript

you know what part of the code you're in. The way I think about it is like in English, or languages

we have, like that whole – your sentence grammar, tree structure where it's like, “Oh, this is a
verb and this is a noun, like parts of speech and all that stuff.” In the same way, we have that

with code. It's just defined more formally.

In the three stages, you're just trying to convert the string into an AST. The parser is the piece of
the tool that converts your first – your file that reads the string, it turns it into an AST. Then the

second step is the transformation phase. It just is the part where you have that AST and you
change the AST around. Then the last step is the generator, which is you can just think of as a

printer. It takes the AST and then it spits it back into a string.

Before with the find and replace thing, you're just taking a string and then making a string again,
but we have this intermediate step where we change the form of it into an AST, change that and

then print it out again. Also, an AST it sounds really crazy abstract syntax tree, but the way I
think about it is just JSON. A lot of us use JSON to send data around. We know that there are

nodes and there's properties on these nodes, and all we're doing is just moving the data in
there, because it's easier to manipulate.

[SPONSOR MESSAGE]

[0:18:24.5] JM: In today's fast-paced world, you have to be able to build the skills that you need

when you need them. With Pluralsight’s learning platform, you can level up your skills in cutting-
edge technology, like machine learning, cloud infrastructure, mobile development, DevOps and

blockchain. Find out where your skills stand with Pluralsight IQ and then jump into expert-led
courses organized into curated learning paths.

Pluralsight is a personalized learning experience that helps you keep pace. Get ahead by

visiting pluralsight.com/sedaily for a free 10-day trial. If you're leading a team, discover how your
organization can move faster with plans for enterprises. Pluralsight has helped thousands of

organizations innovate, including Adobe, AT&T, VMware and Tableau.

Go to pluralsight.com/sedaily to get a free 10-day trial and dive into the platform. When you sign
up, you also get 50% off of your first month. If you want to commit, you can get $50 off an

© 2018 Software Engineering Daily �8

SED 612 Transcript

annual subscription. Get access to all three; the 10-day free trial, 50% off your first month and

$50 off a yearly subscription at pluralsight.com/sedaily.

Thank you to Pluralsight for being a new sponsor of Software Engineering Daily. To check it out
while supporting Software Engineering Daily, go to pluralsight.com/sedaily.

[INTERVIEW CONTINUED]

[0:20:03.6] JM: That term abstract syntax tree, I think we could break that down into what it is.

Abstract, it's a higher-level, easier to interpret from both a human point of view and the
computer’s point of view representation of computer code as it's going to be evaluated; that's

abstract. The syntax is you're referring to something that is related to language, that's a lingual
structure and it's a tree, that's a data structure. You could represent this as a non-tree structure.

You could probably represent it as a hash map, or a graph if you wanted to, but this happens to
be in a tree format. When you think about those terms; abstract syntax tree, it's actually not the

most complicated thing in the world. It's just a data structure that represents programming
language code.

[0:20:52.3] HZ: Yeah. I think that's a great summary for sure.

[0:20:55.0] JM: Okay. The abstract syntax tree gets built. When it gets built, is there a place

where the human needs to look at that abstract syntax tree and do something with it to
manipulate it – as the programmer, if I'm a programmer that's building something that required,

let's say I'm a react programmer and I'm interfacing with the point in the react compilation code
that uses Babel. Do I need to know how to manipulate that abstract syntax tree?

[0:21:27.4] HZ: Well, if you're just writing a web app, then I guess in some sense you shouldn't

need to know how any of it works.

[0:21:33.4] JM: Sorry, what I meant is – let’s say I’m a react core developer that is building code
for that cross-browser compatibility.

© 2018 Software Engineering Daily �9

SED 612 Transcript

[0:21:41.3] HZ: Actually, even if you're a library author, you wouldn't need to know it. If you're

trying to make your own Babel plug-in, or change how it works, then yes, you definitely need to
understand that part. The react, like JAS as itself has its own spec and whatnot. It has different

AS nodes and different names for all these parts. If you have a JSX element, like a button,
right? The capital B button, and you have there like your less than sign and button and greater

than sign. Then that itself has a name, right? There's JSX element and inside, there's JSX
opening tag, JSX closing tag, and then there's JSX attribute. There's different names for these

things.

When you're talking about what these things are, it's a good way to at least use those terms. If
you're trying to make the code that actually transforms that into JS, then yeah, you'll need to

understand those terms.

[0:22:39.0] JM: What's a Babel plug-in?

[0:22:40.1] HZ: Yeah. A Babel plug-in I would just say is one of the individual steps in the
second part that we were talking about, where we have the parser and then we have the

transforms in the middle, and then we have the generator. The plugins are just individual
transforms. A plugin is just the fact that Babel is – it doesn't really do anything by default and

every plugin, or every transformation of syntax can be its own plugin that you can even write
yourself.

Even the core plugins are not any different from a plug-in that you would write yourself. It's just

the ones that we give to you that you can add, but you can fork them and you can make your
own plugins, you can change whatever you need. It's just JavaScript file that finds – yeah, it will

just convert syntax. The way it actually works too, we use this thing called a visitor pattern,
which is a common thing that compilers do. Basically, when you're writing your plugin, it's like – I

think of it like jQuery actually. jQuery, when you're using it you have the dollar sign and you put
stuff inside of that function call. What you do is you select elements on the page and the dom,

and in the same way, we do that with Babel, but with the nodes in the AST.

When you're using jQuery you might like, “Oh, I want all the A tags, or all the H ones and I'm
going to do something to that, right?” In Babel, it's like, “Oh, I want to find all the functions, or all

© 2018 Software Engineering Daily �10

SED 612 Transcript

the classes or all the arrow functions specifically and I want to do something.” In the same way

you're trying to find something; you “visit” a node, and then you either change it, or you just
analyze it, or you can throw an error, stuff like that.

[0:24:27.2] JM: You need to do this changing to the AST in the event that may be an old

browser is going to react to – or I should say respond to disambiguate. In case an old browser is
going to respond to some portion of my code in an unfriendly way, I want to be able to handle

that response in a specific way, is that right?

[0:24:51.3] HZ: Yes. For the core reason that people use Babel, yes. If you sent an arrow
function to an older version of IE, it would just throw an error and be like, “I don't know what the

syntax is.” We would find all the arrow functions and then turn them into regular functions. Also,
I would say that you can use Babel for things that are not really about supporting all browsers.

There are a lot of community plugins that people write, or that you can do a lot of – you can do
anything you want, right? You can change and then transform the code.

[0:25:24.7] JM: Actually, let's go through a couple examples. In case somebody was a little bit

confused by the Babel plugin example, give maybe two examples I want a more a conventional
example of the Babel usage, where I'm a developer, I want to write a plugin that manipulates the

abstract syntax tree in a specific way. Then maybe give an example of somebody who's doing
something off the beaten path. I don't know if it's static analysis, or something else that's not just

transforming it for cross-browser compatibility.

[0:25:56.0] HZ: Yeah. For a cross-browser thing, we can use the example of a class. In Java,
there's classes, and JavaScript now there's also classes, and the syntax is just class space, like

A and then open curly, close curly. That won't work in older browsers. It will just throw an error
like, “What's class?” If you use Babel, then it will actually convert it into the equivalent, and the

equivalent is a function call. We find all the classes in the AST and then we just convert that into
functions. That's the, I guess straightforward thing that Babel does.

If you're trying to – you can do a lot of things with your own plugin. One example could be when

you use react, it converts JSX into what we call a react.create element. If you use that JSX, you
actually have, because it converts – using JSX actually means you're using a react. That means

© 2018 Software Engineering Daily �11

SED 612 Transcript

you have to require that at the top of your file. Then someone wrote a plugin where it's like,

every time I use JSX, it automatically adds import react, from react at the top of your file for you,
and that's just – it doesn't mean that everyone has to do that. It's just something you could, just

because they thought of it.

The way I think about it is do you want to do something at build time that you might have wanted
done at runtime, or something that's more of a yeah, a developer-friendly thing? Maybe I want –

a lot of people write their own Babel plugin console things, where it's like, maybe they put a
comment above a function and they automatically add a console.log that this function got called,

or it better debugging experience. Only in development environment maybe output more
comments, or make the code say something differently. Those can be really helpful.

There are plugins that help you do code coverage. There's a lodash plugin that I don't know if

you need to use anymore, but it used to allow you to – all right, it still allows you to import from
the lodash namespace like package, but then when you use it, only it transforms it so it only

uses a specific function that you use. If you only use pick, then it will transform the regular
import, like lodash import, pick from lodash to import, pick from lodash/function/pick or whatever

the namespaces.

You can also do stuff like in production and maybe you don't need all these extra code, so strip
that away, or maybe optimize certain things in production. Yeah, I think there's a lot of different

things. You can just have fun too. Sebastian, he's the creator [inaudible 0:28:34.2]. He made a
plugin a while ago called Babel plugin, emoji fly or something, and it turned all the variable

names into emojis, just because he can, so you can do a lot of stuff.

[0:28:44.7] JM: I want to give people a chance to catch up for again, if they missed some of the
ideas of what Babel was that you explained. Let's take again, the example of I've got a react

application that I've written. At some point, that react application is going to turn into raw
JavaScript and HTML. It's written in JSX, it's going to get translated into JavaScript and HTML. I

believe, it's been a while since I wrote a Java – a react application, or also since I did a show
about anything react related I think, but I think there's this notion of you can have server side

rendering, as well as client side rendering so you can just ship the react code to the client
browser and have react be imported to the client’s browser and then the client’s browser is

© 2018 Software Engineering Daily �12

SED 612 Transcript

responsible for translating the react into – from JSX into HTML and JavaScript and CSS, and

then it gets rendered on the page, but that can be an expensive process.

Therefore, you can also do this server-side rendering, where you ship – the react application
gets rendered on the server, and then you ship just the raw JavaScript in the HTML and the

CSS directly to the client, so the client doesn't have to take care of that transformation process.
If you take those two approaches, where in those approaches does the Babel process take

place?

[0:30:10.9] HZ: All right, that's a really good question. I would say that – I mean, the
recommended thing is that you always run Babel as a build time step. Before you do any of

those things, you run – you write all your code, you run it through Babel and then you send that
to the client. The only reason I can think of at the moment for wanting to transpile on the client

side is for a use case, like our REPL. On a Babel REPL, we – it lets you test out syntax, there's
like two panes, there's a left and a right and then you can type whatever you want on the left

and it automatically compiles it on the right for you. If it's for your production app, there's no
reason for you to have to do it on the client. Unless, you do the whole – we try to figure out what

browser it is and then we do it on the fly.

Then you have to load all of Babel in the browser, unless you do it in a web worker, or
something. Even if you're doing server-side rendering, you would run Babel and then you would

– and then you would send it to the client.

[0:31:10.9] JM: There's a few terms that I want to explore to help describe what Babel does.
Can you define the term polyfill?

[0:31:20.7] HZ: Yeah. Yeah, this is actually a pretty big source of confusion. Polyfill is you can

just say, it's a piece of code that yeah, I guess they fill, or emulates, or implements a certain
functionality that will be in the browser, or already is in the language. What I would say is that it's

different from syntax. A polyfill would be like there's a – that you can use a capital P promise, or
a symbol, or all these different – we call them built-ins, things – you can think of it as a standard

library basically of JavaScript. If you don't know if a browser supports it, then you would write –
you could use a polyfill instead.

© 2018 Software Engineering Daily �13

SED 612 Transcript

A lot of people, what they'll do is like this – they could check if it's supported in the browser.
Then if it's not, then they require their own thing. This is different from what Babel does,

because Babel converts syntax. It doesn't convert promise into a different piece of code. It
could, but that would be really awkward, because that means every single time you use

promise, it would implement the whole promise, or the whole function every time. When instead,
you could just import the polyfill once and then it's a – it would be there every time you use it. I

don't know if that helps.

[0:32:49.1] JM: Well, is an example of that like, if I have an arrow function in my code and I
want to make the arrow function compatible with older browsers, I might write a polyfill to satisfy

the functionality of the arrow function in different ways on different browsers?

[0:33:05.8] HZ: That would be an example of the syntax.

[0:33:09.2] JM: I see.

[0:33:10.1] HZ: There's no way for you to polyfill per se for the browser, because it would just
air at the parse level, because the browser itself is trying to read through your code and it's like,

“Oh, I saw this parentheses and this other parentheses. I don't know what that is.” It just
completely errored out. If you use Babel, then it'll convert it to a function and knows what that is.

When I said that example of a promise, when you use promise you have to do new promise, or
something like that. If I typed in promise, it's not going to error in the browser, because it's just a

variable name. It will just know – It will just think it's undefined, because if you type promise in
the browser and the console, it'll just be like, “Oh, I don't know what that is.” Then what you can

do is say like promise equals function, blah, blah, implementation.

[0:33:56.2] JM: Okay, right. Because the problem is it would error silently. You want to – I
guess, is that the main difference?

[0:34:03.6] HZ: Yeah. With the syntax error, it will tell you immediately like this doesn't – I have

no idea what this is. If it's a – what I'm saying is a built-in, or standard library function, you're

© 2018 Software Engineering Daily �14

SED 612 Transcript

free to implement it yourself, even though you probably don't want to do that, because you're

probably going to have bugs.

[0:34:19.3] JM: Another term, source map. What is a source map?

[0:34:22.7] HZ: Yeah. I think it explains it in some way. The thing is that if you use Babel, it
doesn't even have to be Babel. You can use a minifier, like Babel minify, uglify, or even simply

bundling or concatenating your code together. When you open it and try to view the source, or
go to the element or the source inspector in your browser dev tools, it won't be the same thing

as what you're writing. The source files are different from what you're actually shipping to the
browser. Sometimes and most of time, it's really hard to understand what's going on.

Maybe you have 10 files and then use something like web pack, and then you bundle them to

one file, when you're trying to look through debugging, or just looking through the code, it's all
going to be one file, and then you're going to have to look through and figure out like, “Oh, this

file was like a.js was this part of the giant file.” The same thing with syntax. You're writing your
arrow functions, but now they're regular functions and you don't know exactly where that is.

Maybe the variables got renamed, maybe if you minify that you have no, idea because you
wrote this really awesome name that's long, right? Now they're all ABCD.

Source maps were created so that yeah, it's literally a mapping between every – there is

different forms of it, but this character, or this line and column corresponds to this other line and
column. In the browser, it shows you, it recreates the original file for you so you can read it.

[0:35:57.4] JM: Babel allows people to try out new browser features more aggressively,

because they can – as a developer, they can try out that feature and then in their production
code and then write a Babel translation that makes it backwards compatible. How does this

affect web development?

[0:36:19.8] HZ: I would say that it allows people. There's two things. One is if you're using
things that are not in the language and things that are already in language. I'm going to talk

about things that are already in the language, like finalize in the spec. It lets people not have to
wait until all the users that they support are able to – you can use that and state a syntax

© 2018 Software Engineering Daily �15

SED 612 Transcript

natively. In some sense, you don't ever really know if all your users support it, unless you start

dropping browsers or just airing like that. In some sense, you could say that maybe you always
want to use a transpiler like Babel, because you can't really know.

Unless you're doing an internal thing, or you know you only support the latest version of a

browser. Yeah, it just lets you not have to think about it. This shouldn't be something you had to
think about in the first place.

[0:37:10.6] JM: You alluded earlier to the fact that Babel is actually able to be a medium of

conversation between the ECMAScript standards body, this is TC39. These are the people who
make standards that JavaScript adheres to. ECMAScript is a standard that JavaScript adheres

to. There are other implementations of ECMAScript, JavaScript is by far the most popular so
you could just think of ECMAScript as the JavaScript standards body, I believe, you could

correct me if I'm wrong. How do ECMAScript standards get defined and why is Babel an
important place for discussions between developers in the standards body to take place?

[0:37:54.4] HZ: Yeah. TC39 is the committee, technical committee 39. I don't know about the

other committees. I don't even know if there are 38 other ones. Yeah, so they meet every two
months, and they – There are companies that can join the committee and they can send

representatives from those – for those companies. Examples of those companies could be all
the browser vendors, so whether it's Google, so Mozilla, Apple, Microsoft, and also other

implementers. Then there's also the – so represents from them. They could also be developers
that work on those companies, or the implementers of those JavaScript engines themselves, so

like people working on V8, SpiderMonkey, Chakra, so the people writing the C++ code.

Then also, there are more programming language experts where they are the ones that they
have a lot of history in the background of programming in general. They have a lot of experience

in making languages, and then there's also just developers that are – but are more involved in
the tooling and the spec side of things. I think you can also talk about the history of how this –

the committee has evolved over time.

Maybe initially, it was just Brandon and then a few people and most of the people are super
involved in languages, and then some implementers, and then they had more and more

© 2018 Software Engineering Daily �16

SED 612 Transcript

implementers of browsers. Then eventually, we have more and more developers that can

advocate for the developers that aren't using language, because the people implementing are
the programming language experts. They might not be the ones using JavaScript in the day-to-

day, right? I think it's – that's why it's been in the committee's interest to get more and more
people involved, so that we have a better sense of what the community needs, what they want,

and what are the problems in the language. Not just from maybe an academic point of view, but
from what – this is what we need, because we're dealing with this issue.

Maybe people are implementing libraries, or polyfills for themselves and we can implement that

in a language, or they're writing code in such a weird way that maybe we should have a syntax
on top of that, or we want to just change part of the language to do things that were never

possible in the first place. There's so many different ways that people can shape the language,
and I don't know if we could say that any one person or group is like, “Oh, I want a language –

the JavaScript to be an object-oriented language, or I want to be functional, or I want to do
XYZ.” There's a lot of players and we want to take that into account. That's why maybe it seems

a little crazy at times, because it's the biggest language and all of the web and IoT and all these
things, it's hard to really grasp what that looks like.

[SPONSOR MESSAGE]

[0:40:48.2] JM: Citus Data can scale your PostgresSQL database horizontally. For many of you,

your PostgresSQL database is the heart of your application. You chose PostgresSQL because
you trust it. After all, PostgresSQL is battle-tested, trustworthy database software.

Are you spending more and more time dealing with scalability issues? Citus distributes your

data and your queries across multiple nodes. Are your queries getting slow? Citus can
parallelize your SQL queries across multiple nodes, dramatically speeding them up and giving

you much lower latency. Are you worried about hitting the limits of single node PostgresSQL and
not being able to grow your app, or having to spend your time on database infrastructure

instead of creating new features for your application? Available as open source, as a database,
as a service and as enterprise software, Citus makes it simple to shard PostgresSQL.

© 2018 Software Engineering Daily �17

SED 612 Transcript

Go to citusdata.com/sedaily to learn more about how Citus transforms PostgresSQL into a

distributed database. That's C-I-T-U-S-D-A-T-A.com/sedaily, citusdata.com/sedaily. Get back the
time that you're spending on database operations. Companies like Algolia, Prosperworks and

Cisco are all using Citus, so they no longer have to worry about scaling their database. Try it
yourself at citusdata.com/sedaily. That's citusdata.com/sedaily.

Thank you to Citus Data for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:42:33.4] JM: Is there dispute between the different browser manufacturers over things in

JavaScript that relate to the businesses of the different browser manufacturers? For example, I
can think of Safari and Chrome having different ideas for what level of advertisement should be

in a browser. I can imagine that potentially percolating down into decisions in JavaScript. Does
that happen?

[0:43:07.4] HZ: I haven't been on the committee for that long and I'm not – I’m actually still a

guest and that's its own conversation, but I guess, that could be part of it. I don't really know if
that comes up that often, but you could say that in the end, every representative does represent

their company and they have certain interests. Maybe just the way they do their business, they
might want a certain feature that other people don't want. No one's going to like – also the way

the committee works is by consensus, so if someone says no, then it's not going to go forward.
You need to actually be a champion and convince everyone this is a good idea, and that can be

pretty difficult to do. You can't just be like, “Oh, I need this and this is what we need,” and that's
it.

[0:43:51.5] JM: Okay. What has been your interaction with the browser manufacturers since

getting involved in TC39?

[0:44:00.0] HZ: Well, I guess the thing is that I didn't really have that much interaction with
people until I decided to go. Even now, it's – we're trying to figure out what that looks like. It's

weird still that I work on this project that's seems to be pretty important to the committee and
even our ecosystem, but we’re not – it's not anything about funding per se. It doesn't mean that

© 2018 Software Engineering Daily �18

SED 612 Transcript

people have to pay me, or the project. It's just we don't even have enough resources, or people

to work on the project itself. It's like, I don't have to be the one working on it. It’s just, we all
expect all this work to be done, but we stop thinking who's the one doing that. It’s like, well if no

one's going to do it, you can pay to do it. It's like, yeah, we should get more resources.

A very simple example of this and I'm saying this more, which is good, is company getting
involved in the project by the fact that if they're the ones championing a new proposal, a new

feature or whatever it is, they can be the ones that implement the Babel plug-in and that will
help move the proposal forward, because it's like, “Oh, I already implemented it.” Then hopefully

after we release that, then you have feedback from the users and developers and they have a
better sense of the confidence that this is a good idea. That's a really simple straightforward way

of how TC39 Babel can work together. It's actually moving that more formally into the process,
instead of just like, “Oh, Babel will implement it.” It's just like a – it's just there, black box thing.

[0:45:36.9] JM: You do work solo now. You're supported by Patreon, and what's the other thing?

[0:45:44.0] HZ: OpenCollective.

[0:45:44.9] JM: OpenCollective, which is like Patreon, but looks more like – I guess you can

support a group of people, rather than –

[0:45:53.6] HZ: Right.

[0:45:54.3] JM: - one person. If somebody wants to contribute to you specifically, they can
contribute to Patreon. If they want to contribute to the Babel project in aggregate, then they can

contribute to OpenCollective. In any case, you're not part of any specific company. You're doing
this solo. What are the pros and cons to that approach?

[0:46:17.7] HZ: Yeah. I would say I am solo in the sense yeah, I'm not at a company. We do

have a lot of other people on the team, so I'm not working on Babel by myself, so I just wanted
to make that clear. Yeah, so the pros and cons. Yeah, I guess I'm qualified to talk about this.

Before, I was just doing this for fun in my free time. At the time, I was working at Adobe on the
Behance team in New York. I was doing all that and I realized we're using Babel at work and

© 2018 Software Engineering Daily �19

SED 612 Transcript

being a maintainer, it didn't make sense to me that I would – we would have issues, or we want

things to be in the project, but then why would we wait for me to do it in my free time when I
could just get paid to do it if we actually need it?

I asked my boss if I could work on it at work, they actually graciously gave me half time; 50% of

my time doing it at work. The pros of that is that I don't have to stress out about working and
then going home and then – most people why would you even want to do more code when you

go home, because you're tired and you have other things to do, but I just happen to like it a lot. I
had that privilege. Being able to working at work, it lets me, I don’t know, not have to go crazy

with doing that outside of work.

There are some issues. One is the fact that in the end, you have to compromise maybe in the
sense of the company wants certain things and that you might want certain things and you have

to find things that align for both. Maybe that's just a discussion you have to have. It's fine. That's
good. There's also this personal sense of almost guilt. That's not a fault of anyone there. It's just

the culture where it's like, well if I'm the only one doing – it doesn't even have to be the I'm the
only one doing open-source, but if I'm the only one doing half my time on this project, no one

else is really involved. Everyone's working on things for work, for deadlines and meetings and
everything that we're talking about is about Adobe or Behance stuff. I'm always going to feel a

sense of doing my own thing, which may be freeing, but also I'm not a part of the greater
community, of the culture of the company.

It's not emphasized enough, so it's like, even if it's your job, you're always going to feel like, am I

doing the right thing, or should I be spending more time on work stuff? That part is difficult,
right? Unless, you built a team and you're talking about it and you're always going to feel it's

different, right? Then also just that maybe over time, you either find out you don't really want to
do open source that much, unless you're okay with just like, I want to take a – it's different

where you're just like, I want to take a break from my regular work. It's just a side thing, and
that's totally fine.

For me, I guess I realized over time I want to be more invested in this and I believe in what the

vision of this project is, to the point where it's like, “Yeah, I actually do want to do this full-time. I
don't want to work on other things.” It helped me to think about what that would look like, and if I

© 2018 Software Engineering Daily �20

SED 612 Transcript

need to explore other options if they're not willing to do that, because if I work on our product

team, I don't know if it makes sense for someone to differ them to pay someone to work on open
source full-time and there's no tooling team, even if you're at a big company. I didn't find any

company that would be willing to do that. That's why I ended up trying with this experiment with
doing on my own.

[0:49:50.9] JM: Wait, are you saying there wasn't any company you could have gone to, to work

for – work on Babel full-time?

[0:49:56.6] HZ: Yeah, I didn't find any company that would be doing that.

[0:49:59.0] JM: Really? Facebook would not be able, for example, would not be able to hire you
to work on Babel full-time?

[0:50:04.6] HZ: No.

[0:50:05.3] JM: That's so surprising to me. I remember, maybe it's – I guess, it's different. The

OpenSSL thing I remember, where there was some vulnerability a while ago in open SSL and
people were like, “How did this happen?” It was like, “Well, there was one or two people that

was supporting it and they were open-source developers and they weren't really supported in
any particular way.” It was like, “Well, oops.” As a community was a tragedy of the commons. I

guess, there was never really a post-mortem and figuring out of what to do to support open-
source people. Do you remember the OpenSSL case? Was any precedent set there?

[0:50:48.3] HZ: I think because it was so bad that – It’s like, “Why are we waiting for a

catastrophe to happen for this thing to happen?” It’s like, “The fact I'm still working on it now,
maybe it's bad because then no one knows what the current situation is.” It's almost that – the

same issue with node, where they didn't have a release for a whole year and that's when people
are like, “Oh, something's gone wrong,” and then suddenly all this thing happened. For us it's

like, “Well, I'm still doing it, and all these people are still involved, and it's still working for people,
so there's no issue.”

© 2018 Software Engineering Daily �21

SED 612 Transcript

I don't want to have to step away almost on purpose, just to make people feel the pain thing. I

guess morally, but maybe I should just so that people realize it. Yeah, for that issue, it was I
think, a bunch of companies got together and they were able to fund. Even then it's like, are you

only funding for that one year? What's going to happen next year when there is no apparent
issue? It's like, you have to maintain this thing forever for a long time. You can't just pay for that

one year. Maybe that person doesn't even want to work on it and maybe they need to retire, or
they have kids, or all these different things. Just because you added in money for that one time

isn't really going to solve the problem at all. That's just for their project, right? What about all
these other projects that haven't had that catastrophe happen?

The ironic thing is that that already happened with Babel in a different way, with left pad, which I

don't want to have to bring that up again. It's funny, because that's my username now. With that,
that was a good example of not about – anything other than the fact that Babel is used by so

many projects, or whatever ecosystem it is. Babel was the main project that used left pad as a
dependency. Once that got unpublished, everyone started like, “Whoa, what happened to my

build and all that?” I think, that was a great example of that. It's so ubiquitous that just because
that one project wasn't able to get downloaded, everyone started complaining about everything.

That was two years ago. It's like, we're still trying to figure things out and you have to deal with –

people talk about issues in poorer class, but that's just the project, right? There's also the
ecosystem, there's all the products that are using Babel too and how we get them to upgrade to

be on the latest thing, making sure they're using the best practices. Then also the language and
moving that forward. There's all these different things that could be multiple full-time people

maybe, and yet, we have a few people that are doing it and trying to figure things out.

At the same time, you have people that are new. It sucks, because they don't know how it works
and they don't know who's working on it. I don't I blame them for saying like, “Oh, it's

complicated, or why doesn't this work?” Then on the maintainer side, you're like, “Well, you don't
understand what I'm dealing with.” Then there's all this entitlement and complaining on both

sides, and it's no wonder that all these people get burnt out, right? It’s just a weird situation.

[0:53:51.6] JM: Is it working out for you, or are you feeling you're not making enough at this
point and it's a frustrated experiment?

© 2018 Software Engineering Daily �22

SED 612 Transcript

[0:53:59.4] HZ: Oh, no. For me right now, no I feel really good. I mean, yeah, so there's stress
in many different ways whether it's money or not knowing enough about business, or sales, or

insurance, or taxes and all those things, but I'm doing this because I believe in a certain – a
vision of what the project is, but also what open source is. Not because I think it's all going to be

okay in the sense like, I know what I'm going to do, but I like working on this issue not just for
Babel, but for open source in general and I would like to see it change. I would to see the

culture of not how we use open source, but how we care about open source, how we maintain
open source, how we steward it. I want that to change.

Not just from a developer point of view, but a company point of view, and from people outside

looking in, like what's this programming thing about? What's open source about? I don't want it
to be about making all this money and VCs and that thing. It's like, there's another side of open

source, where it's about community and helping people and serving. I think that's really
important.

Also to a little bit different is just, that you shouldn't have to sacrifice everything to do open

source. You shouldn't have to compromise where it's like, “Oh, if I want to do open source, I
have to decide to not make any money, right?” Or that in order to open source, I have to have all

this free time, or be younger and all that stuff. It's like, no. Anyone can get involved. It doesn't
mean everyone has to, or should, but changing the culture around that. Maybe the best thing we

could be doing is just the fact that companies should allow people to do open-source during
work.

[0:55:44.8] JM: There's also the futurist capitalist notion, that the solution to this problem is to

have open-source protocols do an ICO and make their protocol into something that can be
publicly traded. It sounds like that's not really the issue for you at this point. It sounds like, it's

not you need some new medium of people paying for it, it's fairly straightforward. If you want to
invest in the protocol, support Henry Zhu through Patreon, or OpenCollective, it's really that

simple and it's more a question of are there enough individuals? Are there enough
corporations? Or is there a single corporation who could just say, “Okay, we're going to stand up

here and contribute or virtue signal,” or whatever is the value to them for supporting you.

© 2018 Software Engineering Daily �23

SED 612 Transcript

Somebody needs to do it. Otherwise, it's a tragedy of the commons. The conversation needs to

progress. I mean, well, I think the conversation is progressing, but if it doesn't progress from
discussion into action, then we'll see more open SSLs, we’ll see more left pads, we will see

more crises.

[0:57:00.3] HZ: Yeah. It's really just, it's not normal, because we haven't done it before, right?
People just expect open source to work. They just use it, it's there, no one thinks about who's

working on it, especially if you're new, right? If you're not new, it's just like if something works,
there's nothing to complain about, but you forget that the maintenance cost is way higher than

the initial cost. We need companies, or people to step up for the first time. Once one company
starts donating, then other people are going to start doing. They're going to start wondering,

“Why are we doing it too?” It's almost just like competing, but – competing in teams and
donating and trying to change that attitude.

Instead of like, “Why are we donating? This is a waste of money.” It's like, “Why aren't we

donating?” Because this is something we rely on and we need this as a community to take
ownership of the things that you're using and to realize like, “Yeah, this is important to us and

we're doing this together.” Not like, “Oh, this is not my responsibility, or this is not my issue.” It is
your issue if you're using it.

[0:58:03.9] JM: Does it need to be a philanthropic line-item for these corporations, so that if

they give to Patreon open source, maybe they can do a tax write-off or something?

[0:58:18.4] HZ: I mean, that would be nice, because that would be more in-line with, “Oh, it's a
non-profit,” and then they can get – Yeah, they can write it off all that. That's definitely a way to

explore it, but there's also just like, it's literally in their interests if they want to sustain their
business to do this. They've built their businesses on top of open-source. There is this goodwill

thing, but that's more of a marketing thing. It's like, “Oh, we're supporting open-source,” so then
now we make people see them better, or in a different light, or that you have better recruiting,

because we contribute to open source or we employ people in open source. That's definitely a
thing, that's why people work at companies, and that's definitely an incentive.

© 2018 Software Engineering Daily �24

SED 612 Transcript

Just yeah, changing the perspective around how people are using it, it's interesting. I think

another issue is people – and usually companies would rather donate to the OpenCollective.
This my experience, rather than at Patreon. They would rather donate to the project, rather than

the people. That intuitively makes sense. They're like, “Oh, we need this project. We don't care
about the person,” even though maybe that person is the person that works on the project, but

what happens when that person leaves? What happens when that person doesn't want to work
anymore?

We can think idealistically that there's this money in a pot and then random people will show up

and they're going to take the money and make the project better, but it's like, do they really care
about the project? Are they just trying to make money? How does that actually when that work

out? How do we divvy up the money? There's a lot of issues with just paying people as well. I
can’t say that just because we have money, suddenly everything's going to get better either.

There's a community issue, there's an issue with how to do that.

Maybe that's why a lot of people are like, “Oh, we need to just employ people.” I think, this
doesn't mean there's one way of doing this. There are a lot of different ways, there are a lot of

different projects. Not every project is as big as Babel. It is simple, but it's also pretty
complicated too. Just a lot of moving parts to all these, right? There's a trust issue too, right? It's

like, a company decides why are we going to give money to this random person? I would say
that you're already trusting random people right now to use their code. You're trusting me right

now to maintain this thing, but yet, you're not willing to pay, because for some reason people are
like, “Oh, you're going to use the money in the wrong way.”

You were giving about lots of money to people that are doing startups that are unproven too. It's

funny, open-source is like, if you told an investor we have this tool or project or company where
90% of the world is using it, or whatever it is, but we don't have – we don't make any money,

they'd be really willing to give you money. We just can't give the money back. Yeah, it's a really
interesting social problem, where it's like, yeah, in the end maybe it's not really about

programming per se. It's why it's really cool to be able to talk with friends that aren't in tech at all
and they have – they're really fascinated that this is even a thing.

© 2018 Software Engineering Daily �25

SED 612 Transcript

[1:01:19.0] JM: All right, well let's close on an aspirational note, because you mentioned that

you have a vision for what this looks like. For anybody that's using Babel under the hood, they
probably feel like, “This is a solved problem. I don't really need to contribute to this. It takes care

of my problems,” but it sounds like you have a real vision. To entice people to go to Patreon, or
to go to OpenCollective and give to what Henry Zhu is going for here. Explain your vision. What

are you trying to do with Babel? What's the big goal?

[1:01:52.7] HZ: Yeah. People could sponsor just for the fact that it takes a lot of time to maintain
a project, right? Just to keep the status quo. Babel is a little unique, unlike other projects that

just might go away, because people don't want to use it anymore, or it's not necessary.
Inherently, Babel moves with the language. If you want JavaScript to improve, then you'll want

to support the efforts that we're doing with Babel. As long as you're using JavaScript and you
want JavaScript to be better. Even if you don't, it is the most popular language right now. A lot of

people are using it for the first time. It's like, how do we create better language for new people,
people that are more experienced, and different use cases, whether it's on the web or not.

I would like to figure out how the project can be more of an educational resource too, whether

it's teaching people how it's compiling things, that's – I think this is probably one of the most
accessible compilers there are, just because it's for JavaScript, it's written in JavaScript. You

can write your own plugin. It’s like, how do we get people that want to be involved with
programming languages and compilers, which seem to be very unapproachable things and

guide them through that process? Doesn't mean everyone has to become a compiler engineer,
or even contribute to the core code, but you can contribute to our website, the docs, the REPL.

There are a lot of really cool tools out there that are not consolidated that we could use help in.

Things that people haven't even created yet. It's like, people like to ask me like, “Oh, I want to
get involved in all the source, tell me what to do.”

I don't know what interests people. I want to find out what interests you, and to help you guide

through that process. Unfortunately, I'm just that one person, so talking to a hundred people, a
thousand people, or even just 10 people it's difficult. Yeah, I want to encourage people to get

involved and know that it is a process, it will take time. It's fine to just do open source for a day
or two, but there's also a cool thing in just working on something for a long time, to be

© 2018 Software Engineering Daily �26

SED 612 Transcript

committed to some yeah, vision or purpose for what this thing represents in terms of like, “Oh,

this is a feature of how languages can work.”

Hopefully, our project is a good representation of what the open-source can be in terms of a
community and trying to build on that. I think I'm trying to figure out open-source in general, but

then through this specific project. How do we make a community that's not just about code?
Bringing people that are good at documentation, or writing, or videos, or art, there are a lot of

things that we can be doing. A lot of the work I'm doing now is not coding at all. Whether it's
fundraising, or talking to people, or doing meetups, stuff like that, there's a lot that can be done,

and a lot of things that we're not even thinking about, so I'd like to encourage people to get
involved and yeah, find what interests you, what inspires you.

[1:04:53.8] JM: Henry Zhu, thanks for coming on Software Engineering Daily. It's been great

talking to you.

[1:04:56.6] HZ: Thank you.

[END OF INTERVIEW]

[1:05:01.1] JM: Every team has its own software and every team has specific questions about
that internal software. Stack Overflow for Teams is a private secure home for your teams’

questions and answers. No more digging through stale wiki's and lost e-mails. Give your team
back the time it needs to build better products.

Your engineering team already knows and loves Stack Overflow. They don't need another tool

that they won't use. Get everything that 50 million people already love about Stack Overflow in a
private secure environment with Stack Overflow for Teams. Try it today with your first 14 days

free. Go to s.tk/daily.

Stack Overflow for Teams gives your team the answers they need to be productive, with the
same interface that Stack Overflow users are familiar with. Go to s.tk/daily to try it today with

your first 14 days free. Thank You Stack Overflow for Teams.

© 2018 Software Engineering Daily �27

SED 612 Transcript

[END]

© 2018 Software Engineering Daily �28

