
SED 582 Transcript

EPISODE 582

[INTRODUCTION]

[0:00:00.3] JM: Cloud computing lowered the cost and improved accessibility to tools for storing

large volumes of data. In the early 2000s Hadoop caused a revolution in large-scale batch
processing. Since then, companies have been building ways to store and access their data

faster and more efficiently. At the same time, the sheer volume of data has increased and
machine learning has given rise to methods of extracting signal from seemingly inconsequential

data points.

This confluence of factors gave rise to the role of the data engineer. A data engineer defines the
data pipeline and supports data scientists and machine learning engineers. Tobias Macey hosts

the Data Engineering Podcast, where he covers the fast-moving world of data engineering,
including databases, cloud providers and open source tools.

Tobias and I covered a range of topics in the data engineering space, we also spent significant

time discussing the world of software engineering podcasting, which is niche, but it's always fun
to find a kindred spirit in the software engineering podcasting world.

[SPONSOR MESSAGE]

[0:01:12.7] JM: Today's sponsor is Datadog, a monitoring and analytics platform for cloud scale

infrastructure and applications. Datadog integrates seamlessly with more than 200 technologies,
so you can track every layer of your complex microservice architecture all in one place.

Distributed tracing an APM provide end-to-end visibility into requests wherever they go across
hosts, containers and service boundaries.

With rich dashboards algorithmic alerts and collaboration tools, Datadog provides your team

with the tools that they need to quickly troubleshoot and optimize modern applications. See for
yourself. Start a 14-day free trial today and Datadog will send you a free t-shirt.

© 2018 Software Engineering Daily �1

SED 582 Transcript

Go to softwareengineeringdaily.com/datadog and get your free soft t-shirt. Thanks for listening

and thanks to Datadog for being a sponsor. Let's get back to the show.

[INTERVIEW]

[0:02:18.8] JM: Tobias Macey, welcome to Software Engineering Daily.

[0:02:20.7] TM: Thanks, Jeff. Thanks for having me.

[0:02:22.5] JM: You're the host of the Data Engineering Podcast, as well as the podcast about
Python which is called podcast.init. I want to focus most of our conversation around data

engineering. I've done some shows recently about it. Data engineering started with the Hadoop
ecosystem, arguably. Unless you go back to pre-Hadoop days, but I think most people started

talking about this term around the Hadoop times.

Then it was followed by these open source tools, like Storm and Kafka, and then more recently
things like Spark and Flink, and then there's a ton of proprietary tools. Describe the timeline for

data engineering and how it got to its present-day state from your point of view.

[0:03:11.0] TM: Yeah, so the origination of data engineering, I guess if you want to go far
enough back was really with the database administrators, because they were the who were

responsible for making sure that your data was available and backed up and had an appropriate
shape and schema for the application to be able to access it.

In terms of the modern view of what data engineering happens to be, the next iteration was in

terms of the business intelligence suite of people being able to pull data out of application
systems, and then modify it and analyze it for being able to create usable reports for the c-suite,

or people higher up in the business to be able to understand how things were operating. Then
as you mentioned, Hadoop came in and allowed for much more massive scale of data

processing.

Then when that started to become too slow, a lot of the streaming systems came in. Throughout
all of this there's been the so called ETL, or extract, transform and load paradigm with a number

© 2018 Software Engineering Daily �2

SED 582 Transcript

of different tools available for that with some of the more recent notable additions being things

like Airflow and Luigi, or Oozie for the Hadoop ecosystem.

[0:04:22.9] JM: There are this set of trends that led to data engineering becoming its own role,
but in the past I think those data engineering tasks were subsumed into roles like DBA, or I

guess software engineer. Maybe even data analyst perhaps, but data engineer was a newer
role. You only started to see that in the last two to five years. Why did data engineering become

a distinct job title? Was there so much work to be done that we had to allocate specific job roles
to the task of data engineering?

[0:05:00.5] TM: Yeah, I think part of it is as an offshoot to the growing trend in data science,

where businesses were realizing that their data scientists and data analysts were spending a lot
of their time just trying to gain access to and manipulate the raw data to get it to a usable state.

Then they started breaking off data engineering as a distinct role, so that they could gain more
value from both sets where they understood that the processes of actually gathering and

collecting and storing and shaping the data was complex enough to merit its own responsibility
and that would free up the data scientists to focus on what they do well, where they're not

necessarily experts in distributed systems, or systems administration and getting things
deployed.

They're more interested in just digging into the data and using their own tools for analyzing it.

Whereas, the data engineer is responsible for things like collecting the data, whether it be from
event system such as clickstream data, or extracting it from application databases, and then

transforming it to be then load into a data warehouse, or using things like Kafka, or Flink, or
Storm for being able to do on-the-fly transformations and some coarse-grained analysis to get it

to where the data scientists are able to take advantage of it and really extract the value from it.

[0:06:22.5] JM: In your first response, you addressed some of the different classes of data
engineering tools, so you talked about of course the databases where we used to throw all of

the data and then eventually, we got to these distributed file systems like HDFS, or arguably S3.
Those are places where you can store indiscriminate types of data and in any file type. It

doesn't just have to be in the in the format of whatever is your core database.

© 2018 Software Engineering Daily �3

SED 582 Transcript

Then we've got these processing systems that developed, like Spark and Flink. Then there's

also these workflow orchestration tools, like the air flows of the world, and then I think there's
proprietary ones. Google has something –

[0:07:10.4] TM: Cloud dataflow.

[0:07:11.5] JM: Cloud dataflow. Right. Take me through the different classes of data

engineering tools and what is the size of a company that needs to have all of these things in
place and what are the things that are more rudimentary and might only be used by smaller

companies?

[0:07:29.7] TM: Yeah. I mean, that's a massive space to discuss, but to break it down at a
coarse granularity, as you mentioned there databases which can take the form of either an

application database, which is usually referred to as an OLTP, or Online Transaction Processing,
which is things like your e-commerce store being able to accept orders, or a user facing site, like

a forum; the database would store just the user comments and interactions and maybe user
profiles.

Then there's also things like an OLAP, or Online Analytic Processing database, which is

generally architected a little differently in terms of the schema, sometimes you might use a
different database engine and that's more tuned for being able to do interactive analysis. It

might have some data that's pre-aggregated, and that would be used for something like a
business, intelligence dashboard where you can quickly dig into certain reports.

There is things like the data warehouse, which is a larger volume of data. Much more care and

effort is put into determining what the schema is going to be, because that generally determines
how capable or effective you are at being able to actually run any analysis on the database,

because of the volume. That's also usually the destination of an ETL pipeline. That brings us to
another class of tool, which is the extract, transform and load, which historically may have been

things like the sequel server integration studios from Microsoft, or there were tools like Pentaho,
or Jaspersoft that had a lot more GUI-driven click and point get the data from here, run this

transformation on it, dump it into here.

© 2018 Software Engineering Daily �4

SED 582 Transcript

Now with the explosion of open source tools and different points of integration that you might

need to do, or enriching the data, then you've got more flexible tools such as Airflow or Luigi or
Oozie. I'm sure there are huge classes of them that I'm leaving out here, but as far as other

tooling, there are things that we've – streaming that we mentioned with Spark and Samza and
Flink and Kafka, and that's more for being able to do high-volume data, where you're generally

just piping it from one place to another doing minimal transformations. That's for being able to
do things like event sourcing, or command query responsibility segregation, stuff like that.

[0:09:51.2] JM: From all of these different fields, obviously data engineering has so much

information that you could potentially explore. What are the areas that you're trying to focus on
within the data engineering podcast?

[0:10:05.5] TM: Really I'm trying to explore the breadth of data management as a whole. Data

engineering is it's generally defined as in some cases just a subset of that, because it's focusing
more on these large-scale systems. Even for a smaller company, you might use just something

like Redash or Metabase, where you just have a tool they can tap into all your existing data
sources and extract data directly from there to generate some rough dashboards to get a high-

level view of what's happening.

Some of the other things that I'm trying to focus on are the underlying storage systems, so one
of the topics that I've been thinking about and figuring out how to put together is an episode

about distributed file systems, and doing some compare and contrast between them along
similar lines. One of the episodes I did a little while ago was talking about serialization formats,

where I had the original authors of Avro and Parquet on to discuss their relative merits and how
they fit into the overall space of data engineering and data storage.

[0:11:07.9] JM: How do those data serialization formats compare? I haven't dove into that too

much, except on a few shows where we talked about Apache Arrow, I think, but that's not
exactly a serialization format. What have you learned in diving into the serialization formats?

[0:11:26.3] TM: Yeah, so that episode in particular is very interesting, because Avro is more

useful as an archival system and it's more row-oriented. You're able to maintain a schema of the
data and evolve that schema over time. That's useful for things like long-term storage, data lake

© 2018 Software Engineering Daily �5

SED 582 Transcript

that you might put into S3 or HDFS, and just access somewhat infrequently, or if you need to be

able to access a record at a time.

Then Parquet is column-oriented, so that's more for if you're doing some active analysis on the
data and you want to be able to query subsets of the fields and aggregate across all the files.

Then the two formats are actually interchangeable, where they have mechanisms for being able
to translate an Avro schema to a Parquet schema, so that you can for instance store all of your

Avro files in S3, or some data lake and then move them into a transactional system, whether it
be HDFS running Hive or using Presto on top of it for being able to do that interactive analysis

across it.

[0:12:33.8] JM: You mentioned they're shuttling data from S3 to HDFS and HDFS being a place
where you can have your data be more operational. I was under the impression that you could

just operationalize S3 data. Aren’t there a number of people who use S3 as their data lake?

[0:12:52.6] TM: Yeah, you absolutely can do that. It's just that when you're working with S3 in
that capacity, you have things to keep in mind, such as the pricing for API requests, and if the

systems that you're using to do the analysis live outside of Amazon, you might be paying
network costs, and the latency is may be higher for if you're trying to do more transactional

workflows. Whereas, if it's in HDFS, it's generally going to be slightly more i/o optimized and the
systems doing the analysis might be more closely located in terms of the network topology.

[0:13:27.2] JM: Have you had a lot of conversations with people where they're trying to get their

costs of their data engineering infrastructure down? Because many of the conversations I've
had, it feels like there is not – cost restriction is not a big deal. The focus is more on, we've got a

ton of data and we know there's value there. At any expense, we will just try to figure out how to
make use of this data.

[0:13:51.8] TM: It's not something that has come up a lot in terms of the podcast episodes I've

done, but I have spoken to people where they may for instance move from Redshift to Google
BigQuery, because it's easier for their data scientists to do the interactions. Then they also have

systems in place to be able to monitor the size and scope of the queries that are being
executed, so that they can have that as a feedback to the data scientists to say, “Hey, maybe

© 2018 Software Engineering Daily �6

SED 582 Transcript

don't run this specific query, because it's costing us a lot of money in terms of the overall data

that you're scanning.” You might be able to cut down costs by leaving out this column that you're
not actually using further in the analysis with things like that.

[SPONSOR MESSAGE]

[0:14:37.9] JM: Azure Container Service simplifies the deployment, management and
operations of Kubernetes. Eliminate the complicated planning and deployment of fully

orchestrated containerized applications with Kubernetes.

You can quickly provision clusters to be up and running in no time, while simplifying your
monitoring and cluster management through auto upgrades and a built-in operations console.

Avoid being locked-in to any one vendor or resource. You can continue to work with the tools
that you already know, so just helm and move applications to any Kubernetes deployment.

Integrate with your choice of container registry, including Azure container registry. Also, quickly

and efficiently scale to maximize your resource utilization without having to take your
applications offline. Isolate your application from infrastructure failures and transparently scale

the underlying infrastructure to meet growing demands, all while increasing the security,
reliability and availability of critical business workloads with Azure.

To learn more about Azure Container Service and other Azure services, as well as receive a free

e-book by Brendan Burns, go to aka.ms/sedaily. Brendan Burns is the creator of Kubernetes
and his e-book is about some of the distributed systems design lessons that he has learned

building Kubernetes.

That e-book is available at aka.ms/sedaily.

[INTERVIEW CONTINUED]

© 2018 Software Engineering Daily �7

SED 582 Transcript

[0:16:13.3] JM: You started this podcast about data engineering exclusively. Tell me your

roadmap to just starting that. Why did you get interested enough in data engineering to start a
podcast entirely about it?

[0:16:26.2] TM: I've worked as a Systems Administrator and as a software engineer and most

recently as a “DevOps engineer,” take that as you will. I’ve been interested in the data systems
and the systems that are used for processing the data and the complexities around that for a

while, largely because of my roles of being responsible for those systems, whether it's just
managing the databases, or as a software engineer being cognizant of the way that the

database schema can impact the performance of an application, or how that data can be used
for other business purposes.

There are a large number of podcasts that are out there that address things like data science,

and maybe focus specifically on the Hadoop ecosystem, or business intelligence systems, but
there wasn't anything that I had found that addresses more broadly the topic of data engineering

and the people who are doing that work. It seemed something that was interesting both
personally, and it seemed a topic area that wasn't receiving the attention that it was due.

Similar to when I started podcast out in it, I saw a gap in the market for podcasts, so it was

something that I wanted to listen to. Nobody else was doing it at the time, so I decided that it
was time for me to take up that mantle as well. So far, I've been happy with that decision and it's

been growing slowly, but steadily and I've been happy with how things have been going that far.
Also, it's just an excuse for me to talk to intelligent and interesting people who are working in the

space, so that I can personally learn more about it.

[0:18:04.2] JM: Yes, I can share that intention with you. Why do you think people listen to
podcasts about software engineering? Because this surprises some people, when you tell them

like, “Oh, yeah. I do a podcast about software engineering.” They’d be like, “Why would anybody
want to listen to that?”

[0:18:20.7] TM: Well, I think a lot of it is just inherent in a lot of the people who work in the

industry, because they're interested in learning how to solve different problems, or just improve
their skills in the space so that they can become more effective at their job, or so that they can

© 2018 Software Engineering Daily �8

SED 582 Transcript

leverage that into a new skill area so that they can maybe start a new career, or start in a new

area of a business.

Top podcasts are a great way to do that, because of the – basically just because of the nature of
the medium, where as you've discussed in your show before, you can listen to a podcast when

you're going for a run, or commuting, or doing the dishes, whatever it might be. Whereas,
videos or textual media require much more dedicated attention. Podcasts are a good way to just

keep up to date with what's going on, learn new information. If there's something that interests
you, you can then take it upon yourself to dig deeper, maybe with references that are cited in

the podcast, or just by doing your own research.
[0:19:17.1] JM: What's your own podcast listening experience like? How many hours per week

are you listening to podcasts?

[0:19:23.8] TM: Probably too many. I was just looking at Pocketcast recently. I think I'm up to
something on the order of about 80 different shows that I subscribe to. Most of them I listen to

about every episode, though I do it at 3x speed so that I can actually get through them and not
[inaudible 0:19:38.3] –

[0:19:38.4] JM: You’re one of those people.

[0:19:40.7] TM: Yeah, I am one of those people. Yeah.

[0:19:42.5] JM: Does it ever feel unhealthy to listen to that much podcasting information?

Because obviously if you told people you watch that much Netflix, they would be concerned for
your health, but podcasts it's like it has more of an intellectual air to it, at least these days.

[0:20:00.1] TM: Right, and also again with the nature of visual media, it's much more all-

consuming. There's not really anything else you can be doing with that time. Whereas with
podcasts, you can still be productive and occasionally I'll even put on a podcast and listen to it

while I'm doing work for my day job, or some of my consulting that I do on the side. Not all the
time, because occasionally it just gets to be too much flowing at one time, so I'll have to pause

it. Mostly, I listen to it when I'm commuting, or when I get up in the morning and I'm starting to
get ready for work, stuff like that.

© 2018 Software Engineering Daily �9

SED 582 Transcript

I try to keep a healthy of topic areas too, so I've got a lot of tech podcasts, but then I also listen
to things like LeVar Burton Reads for just some casual entertainment. I listen to some podcasts

about economics and general news, so I try to keep up to date with a broad range of topics,
though technology is definitely very heavy-focused within that list of shows that I subscribe to.

[0:20:53.8] JM: Have you become a more isolated person as more podcast content has

become available to you?

[0:21:00.4] TM: I don't think so. I mean, to be honest. I've been fairly isolated for a while. I have
a family that I spend a lot of time with. I have a full-time job that I do. I've got the podcasts that

keep me busy. and then I also do consulting on the side as a part-time engagement just as
another way of learning new things and getting some extra income.

[0:21:21.0] JM: Right. Yeah, I guess maybe –I don't mean to project my own podcasting

experience, but I did a show a while ago with the guy who does the Y Combinator Podcast,
Craig Cannon. He was the first person to really bring this to my attention, because he had been

thinking about it for a while, but he just has found himself becoming more introverted and more
isolated the more he listens to podcast, and he's actually – he's the first person I've talked to

who said he had to tamp down the amount of podcasts he was consuming, because it was too
much, too addictive, too much in this audio-only world where you go an entire day not

interacting with anybody just listening to podcasts. It sounds like you're not a victim of such
introversion.

[0:22:07.8] TM: Yeah. I think that depends too. I mean, partly on personality, but also partly on

the types of podcasts you’re listening to. Some of the ones that I subscribe to are related to
freelancing and business development. A lot of those will have calls to action of actually going

out and networking with people and talking to people.

If you have the motivation from other sources to actually go and relate to people and have some
interaction beyond just consuming media, then that will help with preventing that type of extreme

introversion.

© 2018 Software Engineering Daily �10

SED 582 Transcript

[0:22:40.0] JM: The space of motivational small business type of podcasts, I found that space

to be super useful before I started Software Engineering Daily, just in terms of getting into the
mindset of thinking about small business, or entrepreneurship; very crowded space of the small

business podcasts. Are there any ones that stand out for you?

[0:23:06.6] TM: Some of the ones that I've been listening to for a while are the freelancers show
from devchat.tv network. I recently started listening to – blanking on the names, of course. I

listen to the podcasts, I know the topic areas, but I don't pay as much attention to the actual
podcast name, but I can add some links to the show notes afterwards for people who are

interested in seeing what my listening list and my listening habits happen to be.

[0:23:29.8] JM: Yeah, sure. I'm sure we'll go back to data engineering in a sec. I'm always like
to prod people who are deep affinity for podcasting about some of their listening habits. Does it

feel the podcast ecosystem is evolving, or does it feel it's in stasis to you?

[0:23:46.6] TM: I think that for a while it was in a steady state of podcasts were mainly for
people who were very tapped into that space, but they're becoming a bit more popular. It seems

people are experimenting with different ways of doing it. I think there are more new entries into
the market, so it's forcing people who have been in it for a while to rethink ways to stay relevant,

or stay interesting.

I definitely think that there is a lot of room for improvement and then there's also some
technological changes, such as Apple releasing the listening metrics for people who are

listening to podcasts by Apple devices. There's more of a focus on figuring out how to gain
usable metrics in terms of listening audience with people building dedicated apps, or maybe

people who are creating calls to action in their podcasts to get some feedback from the users.
There's definitely a lot of room for new innovation and improvement in the podcast ecosystem

as a whole.

[0:24:51.0] JM: How do you explain technical concepts in this format?

[0:24:55.8] TM: It's definitely not always an easy thing. A lot of times what I’ll try to do is focus
on the architectural aspects of projects for people that I'm interviewing and discuss some of the

© 2018 Software Engineering Daily �11

SED 582 Transcript

ways that it has evolved and the challenges that they faced that have forced those different

evolutions, or new approaches for tackling some of these problems. I don't necessarily want to
dig down into the API level of you make this call to get this reaction. I try to keep it broad strokes

about what is this technology useful for, what are the challenges that you've faced both
technical and social, because a lot of times the hardest problems in a software project is

marketing at getting people aware of it, maybe issues with people who have a negative reaction
to it. A lot of times, the hardest problems in technology are the people and not the software.

[0:25:47.7] JM: Okay, so different companies move at different speeds. There are many

companies that they set up Hadoop and they've got HDFS. Maybe they have some nightly hive
jobs, and then they gradually build infrastructure to make their batch jobs shorter and shorter. I

think over time more and more of these companies have transferred to a place where they can
have some shorter latency jobs in addition to these overnight batch jobs.

On the far end of the quickly developing company spectrum, you have companies that are well-

developed in their real-time infrastructure. They have data that makes it very quickly from the
ingest point to the operationalized, materialized viewpoint. There are a lot of companies that are

still earlier in that transitionary phase to getting their data operationalized. Do you have a
perspective for the roadmap that companies typically take from that migration from a totally

batch Hadoop HDFS infrastructure to a more real-time, if we're talking about the extreme end of
the super modern infrastructure? Is there a tried-and-true roadmap, or is it just like janky and

everybody's got their own thing that they do?

[0:27:15.7] TM: It's definitely very context-dependent, where some companies may not even
have the infrastructure for setting up Hadoop, where they’re may be just using Redash, or

Metabase, or something similar to gain and that need to do some rudimentary analysis directly
against their application databases. Then they might add some ETL jobs to pull that data out

and put it into a dedicated database, whether it's just another PostgresSQL instance, or
something more purpose-built like Redshift or Snowflake.

Then if somebody already has the Hadoop infrastructure, they might use something like Apache

drill to just put a sequel interface on top of the data, so that you can get more transactional
analysis out of it. Then if you're talking about event stream data, people might decide to set up

© 2018 Software Engineering Daily �12

SED 582 Transcript

Spark, or Kafka, or they might go with some of the increasingly available hosted solutions,

whether it's confluent with Kafka, or Databricks with Spark. That can be an easy on-ramp to the
big data world, where you don't necessarily have to have the in-house capacity to set up and

manage these systems, which can definitely be very complex to get set up and get right.

With the fact that there are so many companies being built around some of these solutions and
companies such as Astronomer, or Stitch that will handle your ETL for you, it becomes a lot

more accessible for smaller to mid-sized companies to actually be able to leverage their data
more effectively.

[0:28:54.7] JM: When you say small, how small are we talk – what's the smallest company with

a significant data engineering pipeline that you've seen?
[0:29:02.8] TM: I mean, generally a lot of small companies, like I said will use these hosted

solutions. I don't have any specific cases in mind for small businesses with a significant
presence in the data engineering space. Speaking personally, I'm actually currently in the phase

of we've got Redash setup, tapped into our application databases, we've got read replicas so
that we don't lock-up production transactions.

We're starting to think about setting up the ETL workflow for being able to build up a data

warehouse, but I think one of the best pieces of advice for people who have event or
transactional data that they want to be able to capture is to just very quickly establish a schema

around it and then even just dump it into S3 or Google file storage, so that you have the data
available for when you do build up a more robust solution, you can then transfer it into your data

warehouse, or your live analytical systems.

[0:30:05.3] JM: I know in the earliest days of the data engineering cloud products, you would
have a company like AWS, or Cloudera that would take these open-source projects and they

would productize it in a pretty straightforward fashion. The Clouderas and the MapRs and the
Hortonworks of the world did a great job of building these companies that would come in and

make Hadoop work on your infrastructure.

AWS came out with, I think the elastic MapReduce stuff, which was from my point of view a
more self-serve model of the Hadoop installation that these companies would do. Then more

© 2018 Software Engineering Daily �13

SED 582 Transcript

recently you have companies unveiling these products that they built from scratch, so you have

– I mean, I guess AWS has been doing this for a while. Kinesis is probably what? Eight or 10
years old, something like that, maybe seven years old.

[0:31:05.0] TM: It has been for a while.

[0:31:06.7] JM: You have, obviously Google's got products Dataflow, Azure has cosmosDB, so

companies are building stuff from scratch now. It's not just the open source solutions. Are there
any notable data engineering products from cloud providers you've seen recently where there's

just no parallel in the open source community?

[0:31:30.6] TM: I think the only one that really stands out significantly to me right now is the
glue project from Amazon. I mean, they're definitely open source systems that are capable of

doing similar things, but the –

[0:31:42.6] JM: What is Glue?

[0:31:43.6] TM: Glue from Amazon is a metadata store and provides a lot of automation around
your ETL workflows, where it does schema introspection for your source data, and then it will

provide the transformation steps for instance, for taking some JSON data from S3 and loading it
into your Redshift cluster, or being able to take data flowing through Spark and move it into

another destination system. It provides a lot of the fine detail work for you, so it relieves some of
the overall workload on your data engineering team for tracking and codifying some of that

information.

It's a fairly recent product. I think they just announced it at their last re-invent, but it's a pretty
interesting product that I think might motivate some people to at least partially move on to

Amazon, to be able to leverage it.

[0:32:36.8] JM: We did this series of shows recently around streaming infrastructure. One of the
big questions I had at the beginning was that I didn't really understand what streaming meant,

so there are a lot of contexts that the word data streaming is mentioned in the data engineering

© 2018 Software Engineering Daily �14

SED 582 Transcript

world. Can you explain streaming to me like I'm five-years-old? Explain some of the different

ways that the word streaming gets used?

[0:33:06.0] TM: Yeah, so as with so many things in tech, it's a very overloaded term. Originally it
was used as a juxtaposition of the batch workflows that was popularized by MapReduce on top

of Hadoop. Some of the early entrance to that were Storm and Spark. Then that there are
different gradations of streaming too where Spark technically has what are called micro batches,

where every N number of seconds, it will process a batch of data.

By all intents and purposes, it's streaming the data through. Whereas, things like Flink are more
true streaming, where every single event gets processed through the pipeline. Then there are

things like Kafka and Pulsar, where they're more of a durable cue, so you can stream the data
into them and out of them, but they're not generally doing any actual processing on top of that

data. Spark and Storm and Samza and [inaudible 0:34:06.2], those are all pipelines for being
able to ingest data, maybe do some transformations, or do some machine learning algorithms

on top of the data and then pipe that data out to another system, or maybe consume it directly
from the spark or the storm pipeline.

Whereas Kafka and Pulsar are as I said, just a cue where you put the data in and then it sits

there until you take it out so those are useful for being able to do things like fan-in or fan-out
topologies, where one producer is putting in data and then you have multiple systems that are

consuming from it, or if you want to do the event-based application architecture, where all of
your transactions end up in a Kafka topic and then you have a consumer that will replay them

and then that ends up being the final record in your database for instance. Then you can also
take those same events and travel back in time to see what the state of your information was at

any given point.

[0:35:03.8] JM: Pulsar, that's an Apache project?

[0:35:06.1] TM: It is an Apache project. It originated at Yahoo and it's somewhat of a competitor
to Kafka. They've actually got an API compatibility layer, so that you can drop it in wherever

you're using Kafka, but it's got a bit more flexibility in terms of the ways that you can use their
cueing. Then also the storage layer is separated from the queue processing layer, so it uses the

© 2018 Software Engineering Daily �15

SED 582 Transcript

Apache bookkeeper project underneath. There's a bit more granularity in terms of how you

define the durability and the high availability of the system.

[0:35:38.2] JM: Okay, well you outlined the thing that was always confusing to me for a while,
which was that, okay gap streaming, or your streaming data from point A to point B over a

network. Then you can have the abstraction of a stream that is sitting in Kafka for example,
where you have an append-only queue of data points, or files perhaps. Is that an accurate

distinction to draw there between these network point-to-point communications where streaming
is occurring, versus the abstraction of a stream that you operate over?

[0:36:17.3] TM: Yeah, I think that's a good way to break it down. The network stream, that can

be absolutely anything. That can be a video that you're watching on Netflix that's streaming over
the network. You can have the data stream going into your Kafka or Pulsar queue, you can have

your streaming analysis that's happening in Spark or Samza, there's also over the past couple
years the advent of streaming SQL with things like pipelineDB, where you can define a SQL

query, and then as new data gets written into the database, that SQL query is continually
updated so that you can actually have that streaming query fed into another system, so it's a

different way of doing your continuous analysis of a data point, so you're not necessarily running
a complex machine learning algorithm on it, but you're enriching new data with existing

references from another table for instance so. Yeah, there are a lot of gradations of streaming
and overlaps in terms of some of the usability of those systems.

[SPONSOR MESSAGE]

[0:37:25.2] JM: The octopus, a sea creature known for its intelligence and flexibility. Octopus

Deploy, a friendly deployment automation tool for deploying applications like .NET apps, Java
apps and more. Ask any developer and they’ll tell you that it’s never fun pushing code at 5 p.m.

on a Friday and then crossing your fingers hoping for the best. We’ve all been there. We’ve all
done that. That’s where Octopus Deploy comes into the picture.

Octopus Deploy is a friendly deployment automation tool taking over where your build or CI

server ends. Use Octopus to promote releases on prem or to the cloud. Octopus integrates with
your existing build pipeline, TFS and VSTS, Bamboo, Team City and Jenkins. It integrates with

© 2018 Software Engineering Daily �16

SED 582 Transcript

AWS, Azure and on-prem environments. You can reliably and repeatedly deploy your .NET and

Java apps and more. If you can package it, Octopus can deploy it.

It’s quick and easy to install and you can just go to octopus.com to trial Octopus free for 45
days. That’s octopus.com, O-C-T-O-P-U-S.com.

[INTERVIEW CONTINUED]

[0:38:56.6] JM: When you talk to these data engineering providers or companies that are

building data engineering infrastructure, what are their concerns around streaming? Because
I've asked the questions of how do Spark and Flink and Kafka streams trade-off against one

another?

There are the trade-offs of the durability and the latency, but I think also there's the relevant
trade-offs around what are the programming paradigms that you're allowed to use in these

contexts? Do you want to be using standing SQL queries like pipelineDB? Maybe you want to
write your application in a way where you have standing SQL queries, then maybe you don't

want to have to go in and write a complex Java application in order to support that same
functionality, which you might have to do if you were programming in Spark.

[0:39:52.1] TM: Yeah. I mean, there are so many different contexts in which these systems get

used and abused. One of the things that's interesting is that the Python language has actually
started to become a common platform for being able to interface with these systems, although

there are of course trade-offs there in terms of having to translate the data from one format to
another as it goes from being a Python object to a Java object in the case where you're

interfacing with spark, but then tools like Apache Arrow are becoming the universal
representation of the data. so that it's an in-memory way of translating between different

languages and runtimes.

I think that there is a lot of innovation happening in terms of different streaming systems, but
there is also a lot of effort being put into making some of these systems more easily

interoperable and interchangeable. There's actually a specification that I saw briefly, I haven't
looked deeply into it, that's called open streaming that's trying to create a unified data format, or

© 2018 Software Engineering Daily �17

SED 582 Transcript

API for making it easier to make all these different systems work together, so that it's easier for

people who are trying to interoperate with them both at the source and the destination level.

[0:41:08.8] JM: Isn't that what Apache Beam does?

[0:41:11.3] TM: Yeah. Beam has become one of the unifying layers of multiple streaming
systems, where the Beam engine can integrate with different systems, but I think the open

streaming standard that they're trying to create is more along the lines of making it so that Kafka
and Spark, etcetera, are able to interoperate better.

Again, there are multiple competitors in every space and standards processes come about from

multiple places. As the old XKCD comic goes, there are 99 standards for this one thing. I'll go
ahead and create another one situation, now there are 100 competing standards.

[0:41:50.7] JM: Right. The Beam conversation, Apache Beam and Google Dataflow and

Apache Beam are too closely related projects. Dataflow, I find an interesting case because you
hear tons of adoption of Kubernetes, you hear tons of adoption of Tensorflow, you hear tons of

adoption of BigQuery. You don't hear as much about Google Cloud Dataflow, and I'm sure
people are using it and I'm sure it's a great project.

It's just I wonder, because the other Google cloud services seem completely beloved and

rapidly adopted, but in terms of the streaming infrastructure, it seems like Spark and Flink have
a little bit more traction than Dataflow. Do you have a sense of why that is?

[0:42:34.5] TM: Well, Dataflow is actually more about defining the workflow, so it's actually a bit

more analogous to Airflow, or Luigi. Whereas the streaming data pipeline in Google –

[0:42:43.4] JM: Oh, this is what I was missing.

[0:42:45.2] TM: Yeah, so the streaming data pipeline in Google was actually the Google cloud
pub/sub, which is just a public subscribe system, which is along the lines of Kafka, or Kinesis.

© 2018 Software Engineering Daily �18

SED 582 Transcript

[0:42:54.9] JM: Oh, my God. This is what I've misunderstood the whole time. Dataflow has

nothing to do with the Spark, or the Flink side of things. Is there just not really a Spark-Flink type
of competitor in the Google ecosystem and the Google suite of technologies? They just have

workflow managers and a pub/sub system?

[0:43:16.2] TM: Yeah. I mean, I'm not as familiar with the complete suite of Google projects. but
yeah, I think the intent is that basically you would use the Dataflow with the pub/sub for being

able to tap into the publish/subscribe system, perform an operation on it and then submit it back
to another publish, so you can get something analogous to a Spark system that way. Spark has

become the elephant in the room for streaming analytics, so I think Google is relying on
leveraging that ecosystem without trying to necessarily compete with it as much, because it's so

well-developed and well-established as the somewhat de facto standard.

[0:43:56.8] JM: How does somebody architect something in Dataflow? Do you need to use
Spark, or Flink together with the Dataflow, or do you just write Python programs and you can

schedule them using Dataflow?

[0:44:11.3] TM: Dataflow is actually its own execution engine and it has, I know Python and a
Java API, they may have added other ones since the last time I looked. Yeah, you would use

dataflow in conjunction with some of the other Google resources. Because it's all within
Google's data centers, there's the fabulous network bandwidth and low latency, so that's one of

the reasons for staying within the Google ecosystem.

[0:44:33.7] JM: Interesting. I went to Strata recently and I was trying to see the world through
the eyes of these different data companies, namely Databricks and Confluent, because these

companies have a lot of momentum behind them. They're trying to figure out a narrative, I think.
Like Databricks and Confluent seem to have somewhat different versions of an ideal stack. Of

course, in the Databricks version, there's more centralization in Spark. In the Confluent version,
there's more centralization in Kafka. Do you have an idea of how these different visions contrast

with each other?

[0:45:15.9] TM: I think it really just plays into what you're trying to do with your data in motion,
where if you're trying to perform active analyses on the data as its flowing through, then Spark

© 2018 Software Engineering Daily �19

SED 582 Transcript

and Databricks would be more useful to you. Whereas, if you want a persistent record of events

as they happen and a scalable way of being able to ingest and process that data, then Kafka is
more the solution that would fit your workflow.

[0:45:45.9] JM: I know you haven't been covering machine learning too much, but you can't

have a data engineering podcast without having some concept of how machine learning works,
or at least how the data ingest for machine learning works and how it's used on after it’s

processed. How are you approaching machine learning in your podcast, as well as from a
personal standpoint, are you trying to teach yourself different aspects of machine learning?

[0:46:12.6] TM: Yeah, I'm definitely trying to keep up to date, at least at a high-level with some

of the trends and machine learning. A lot of the more ML and AI-focused topic areas I end up
covering in podcast.init, because there are a lot of Python tools that play into that. Most recently,

I released an episode about a project called polyaxon, which is a layer on top of Kubernetes for
being able to scale deep learning training algorithms, so it's in some sense the CI and CD

system for deep learning, where it has compatibility with Tensorflow and Keras and PI torch and
things like that.

Then from the data engineering space, I try not to dig too heavily into the machine learning and

heavy analysis aspects of it, because of the fact that there are so many other podcasts that
cover that. It's difficult though, because there's a very vague boundary between what is data

engineering, versus what is data science. Now it's becoming even fuzzier with the recent
discussions around the machine learning engineer position.

It's always difficult to figure out where do I draw the line of topics that I want to cover, and I also

try not to focus too heavily on one subset of the space, so I don't necessarily want to do 10
episodes in a row about different databases, because well they’re definitely very critical to data

engineering, they're also not the entire picture. It's always difficult figuring out what the balance
is for topics as you try to keep on top of how things are evolving within the space.

[0:47:46.7] JM: Not to mention, the struggle I have is if you go very deep on a topic, you can

develop some proficiency in it, like I just did 25 or 30 shows on blockchain stuff. By the end of it,
I started to feel comfortable in having conversations around these topics. Machine learning is

© 2018 Software Engineering Daily �20

SED 582 Transcript

not something I've done that with, data engineering is not something I've done that with. I still

feel pretty out of my comfort zone talking about these topics.

There's this tradeoff where if you go deep, then you can develop a good repertoire and you can
know the vocabulary, you can know the concepts to discuss, you can talk about the tradeoffs

with some degree of fluency, but then your listeners will be like, “Why are you still doing shows
about serialization formats? I'm tired of this.”

There's a trade-off between you're either developing a proficiency in something and doing too

many shows on it, or you're a mile-wide and an inch thick on a wide variety of topics. I don't
know, it's a trade-off I haven't quite figured out myself.

[0:48:50.7] TM: Yeah, it's eased a little bit for me, because of the fact that the two podcasts that

I do are one, they're not as broad as yours as where you're trying to encompass the entirety of
software engineering, and I'm focusing just on the subsets of data engineering and Python,

which are both subject areas that I work fairly closely with for my day job and in my consulting. I
gain the general understanding of the area, just by virtue of working with it all the time, and

keeping up to date with what's going on in those areas. Though, there are definitely a lot of
cases particularly with podcast.init where I might be interviewing somebody who has written a

Python library for doing experimentation for doing psychology experiments, where I'm obviously
not terribly adept at the ins and outs of psychology, but I at least have the focal area of Python

to be able to branch out from.

It's definitely a challenge to try and figure out, is this a show that I can do proper justice with this
topic area, and how much research do I need to do ahead of time to be able to speak

intelligently about it and craft useful and informative questions about the space, which I have
varying levels of success with, where some episodes I might come out of it saying, “I didn't do

nearly enough research ahead of time to be able to properly enumerate the space that this tool
is trying to solve, for instance.” It's an ongoing battle, sometimes I'm more successful than

others.

[0:50:24.0] JM: Indeed. Your background; you did physics in undergrad and then eventually you
went back for computer engineering. I think your second degree, you got mostly through self-

© 2018 Software Engineering Daily �21

SED 582 Transcript

directed online study, but you had some direction because it was – you did some online

learning.

When I went to college, I was so bad at it. I was so undisciplined. I didn't really learn as well as I
probably could today. I sometimes think about how nice it would be to go back and just crush it

with a manor of discipline that I've learned over time. It sounds that was what you were able to
do, but maybe you haven't had success with your physics degree. I know there's a lot of people

who are listening to this, and they're retraining from a different field, or they're retraining from –
they're going back to school to study computer science, or to study software.

They're trying to reinvent themselves. I'm wondering if that was how you felt about your return to

school for computer engineering, if it was a self-reinvention, or if it was just an evolution from
the same things you were pursuing in physics. If you have any advice for people who are going

through that reinvention process.

[0:51:42.0] TM: Sure. Yeah, so when I first got out of high school, I did with all the teachers and
guidance counselors tell you to do, just go straight to college. I was very interested in science at

the time and still am, and so I decided, “Oh, I'm going to go and get my PhD in theoretical
physics, because that's fascinating stuff.” Got into college and realized that one, that wasn't

really a viable career direction. Two, I just didn't have the focus and motivation to do a proper
justice.

I actually ended up leaving school for a while and just got a job. After working at just run-of-the-

mill manual labor job for a couple years, I realized that I needed to go back to school for
something that would actually provide a decent living. I've always been very interested in how

things work and how they're put together, which is why I was interested in doing physics in the
first place. I also grew up doing construction and I've always been fairly capable with computers,

though I hadn't really ever done any proper software development, or software engineering.

As I was looking around and researching what to get my degree in, I settled on computer
engineering, because it's somewhat of a hybrid between electrical engineering and computer

science, and so it covers that nice middle ground where you’re able to comprehend the problem
from both ends. I feel it's taught me a lot of the necessary fundamentals to have appropriate

© 2018 Software Engineering Daily �22

SED 582 Transcript

mechanical sympathy, so that what I'm working on automating cloud architecture, or writing

software, I have at least a tangential understanding of what's happening at the physical layer to
be able to write my programs in a way that it doesn't needlessly stress that infrastructure.

As you pointed out, when I went back for my degree in computer engineering, I did it online. At

the time, I already had a fulltime job, I had a family. I did it nights and weekends with a lot more
focus and dedication. I was able to get a lot more value out of it and I actually ended up starting

as a Systems Administrator after about a year into the degree.

My schooling and my day job were able to play nicely off of each other in terms of what I was
learning in both places. I feel that was one of the really key elements to my success in my

degree program and in my subsequent career as a software engineer and as a systems
administrator and somebody working in the tech industry.

[0:54:15.0] JM: Oh, yeah. Well, that apprenticeship phase of either having internship while

you're in college, or you did it having a copacetic combination of going to school either online, or
in person together with a fulltime job where you're actually applying some of the skills that you're

learning. The the feedback loop between those two domains can be really productive and
satisfactory, because you're not throwing away money on a degree while you're not making

money from that knowledge, and you're not going to a job where you don't feel yourself leveling
up as much, because even if even if you were, you would be learning on the side. It's the

education plus occupation path is pretty rewarding.

[0:55:06.7] TM: Yeah, absolutely. That's also part of why I continue to do freelance consulting,
is because it provides another outlet for learning new things and being able to play my day job

off of my consulting. I might take on a consulting engagement where I'm working with
Kubernetes, where that's a system that I'm working on evaluating for my day job. There are a lot

of potential synergies between the two activities.

[0:55:36.0] JM: All right. Well, Tobias Macey, I will continue to listen to the Data Engineering
Podcast and anybody who enjoys the topics that I have covered in a skin-deep manner; Kafka,

or Spark, or these other systems that Tobias has dove into a little more deeply, I recommend
checking out the Data Engineering Podcast. Thanks for coming on the show.

© 2018 Software Engineering Daily �23

SED 582 Transcript

[0:55:57.8] TM: Thanks for having me.

[END OF INTERVIEW]

[0:56:02.0] JM: Apps today are built on a wide range of back ends, from traditional databases
like PostgresSQL, to MongoDB and Elasticsearch, to file systems like S3. When it comes to

analytics, the diversity and scale of these formats makes delivering data science and BI
workloads very challenging. Building data pipelines seems like a never-ending job, as each new

analytical tool requires designing from scratch.

There’s a new open source project called Dremio that is designed to simplify analytics on all
these sources. It’s also designed to handle some of the hard work, like scaling performance of

analytical jobs. Dremio is the team behind Apache Arrow, a new standard for end-memory
columnar data analytics.

Arrow has been adapted across dozens of projects, like Pandas, to improve the performance of

analytical workloads on CPUs and GPUs. It’s free and open source. It’s designed for everyone
from your laptop, to clusters of over 1,000 nodes.

Check out Dremio today at dremio.com/sedaily. Dremio solved hard engineering problems to

build their platform, and you can hear about how it works under the hood by checking out our
interviews with Dremio’s CTO Jacques Nadeau, as well as the CEO Tomer Shiran. At

dremio.com/sedaily you can find all the necessary resources to get started with Dremio for free.

I’m really excited about Dremio. The shows we did about it were really technical and really
interesting. If you like those episodes, or you like Dremio itself, be sure to tweet @dremiohq and

let them know you heard about it from Software Engineering Daily.

Thanks again to Dremio and check it out at dremio.com/sedaily to learn more.

[END]

© 2018 Software Engineering Daily �24

