
SED 572 Transcript

EPISODE 572

[INTRODUCTION]

[0:00:00.3] JM: Keybase is a platform for managing public key infrastructure. Keybase’s

products simplify the complicated process of associating your identity with a public key.
Keybase is the subject of the first half of today's show. Michael Maxim an engineer from

Keybase gives an overview for how the technology works and what kinds of applications
Keybase unlocks.

The second half of today's show is about Clarifai. Clarifai is an AI platform that provides image

recognition APIs as a service. Habib Talavatifard explains how Clarifie’s infrastructure processes
requests and the opportunities for improving the efficiency of that infrastructure. Last month, we

had three Software Engineering Daily meetups in New York, Boston and Los Angeles. At each
of these meetups, listeners from the SE Daily community got to meet each other and talk about

software, what they're building and what they're excited about.

I was happy to be in attendance at each of these and I'm posting the talks given by our
presenters. The audio quality is not perfect on these, but it's not terrible and there's also no ads.

Thank you to data dog for being a gracious sponsor for providing this space for our meetup and
also for sponsoring the podcast. You can sign up for data dog and get a free t-shirt by going to

softwareengineeringdaily.com/datadog.

We'd love to have you as part of our community. We will have more meetups eventually and you
can be notified of these meetups by signing up for our newsletter. You can also come to

softwaredaily.com and get involved with the discussion of episodes and software projects, and
you can check out our open source projects, the mobile apps and our website. You can find all

of that at software.daily.com.

With that let's get to these weekend episodes about our meet-up presenters.

[INTERVIEW]

© 2018 Software Engineering Daily �1

SED 572 Transcript

[0:02:05.9] JM: Thanks for coming to the meetup. I'm really excited to have Mike Maxim and

Habib Talavatifard to speak from Keybase and Clarifai respectively. Before we get started, we're
going to hear from Datadog who's the sponsor, the host who has generously provided the food

and beverage for everybody. Yeah, Ilan, take it away.

[0:02:27.8] IR: Thanks everybody for joining us here at Datadog today. Just a quick show of
hands, how many folks are using Datadog at work right now? If you work at Datadog, you don't

count, because –I mean, you do count. Yeah, so Datadog is a monitoring platform for all your
infrastructure and applications, everything from logs to metric logs, to metrics, to tracing. We'd

love to help you monitor your infrastructure.

We also love to have you join our team. We're here in New York, as well as in Boston, in Paris
and are pretty remote-friendly and we're hiring for everything from SREs, to software devs, to

everything else you may be able to imagine. Our website is full of jobs. If you're here during the
breaks and you want to learn a little bit more about opportunities here at Datadog, love to chat

with you.

Jeremy Dan, raise your hands. Other Datadog people raise your hands. You can find any one of
us and chat with us about opportunities here, everything from again, from hacking on back in

analytics systems and with Redshift and Looker and Spark and Kafka and everything else in
between, to SRE and stability and everything, and other topics as well.

Another thing I wanted to mention is if you look on your seats, most of you seem to have sat on

them. There are little scratch off cards. They are actually worth something, so you might want to
grab one. Datadog’s running our user conference at the end of the – over the summer, July 11th

and 12th is an event called Dash, and each of you have a little scratcher ticket on your seats
with an opportunity to win a free pass, or discount and passes to Dash. Be a great opportunity

to get hands-on workshops on everything from containerization and observability, to seminars
from your peers on how they're scaling their systems and their infrastructure, like some of the

topics we're going to hear about today.

Without further ado, I'll hand – I don’t know if I’m handing to Jeff or I’m handing off to Mike, but
back to you all. Thanks.

© 2018 Software Engineering Daily �2

SED 572 Transcript

[0:04:09.9] JM: Thank you, Ilan. I think there are some people here who don't really know what
Software Engineering Daily is, which is totally fine. Just to fill you in, if you haven't heard of

Software Engineering Daily, it's a podcast about software engineering. It's five days a week and
the format is fairly technical software engineering content. If you are a listener to the show then

hopefully I've had a chance to say hi and shake your hand and meet you. If not, I'd love to meet
up, talk a little bit, or grab 30 minutes after the presentations hopefully, a chat for a little bit. As

always you can send me an e-mail, or Slack message or whatever.

Yeah, we'll get the ball rolling. The schedule is on the meetup page if you don't know what the
schedule is. We'll start with Mike Maxim who is – just to give him a quick introduction. He's been

the CTO and the CEO of OkCupid before he joined Keybase, which was started by the founders
of OkCupid and Keybase is a pretty incredible company. I think we're going to be hearing a lot

more about Keybase in the future, so I would pay attention closely.

[0:05:15.4] MM: Thank you, Jeff and thanks for Datadog for having us, having a Keybase here
to give you guys some more information about it. Before I get started, just a quick show of

hands, how many people have heard of Keybase, or have used Keybase? All right, some
people. How many people know what public key cryptography is? More people. All right, great,

good.

We won't be starting from scratch here. Keybase, crypto for everyone. Keybase was started in
2015 and the stated mission is to bring public key crypto tools to everyone. The space has

traditionally been very complicated, very hard to use and has never really caught on other than
SSL or TLS with larger groups of people. The tools have been traditionally hard to use and hard

to really coordinate and get people into.

The goal of Keybase is just to change all that, provide an infrastructure to make public key
crypto accessible to people and to provide apps on top of that that allow you to integrate crypto

into your day-to-day workflow on your computer, either through chat, file system, or with Git for
programmers, that thing.

© 2018 Software Engineering Daily �3

SED 572 Transcript

Tis talk, we're going to talk a little bit about crypto. I know people have indicated know this, but

we'll just do a quick refresher and talk about how Keybase fits into that scene, talk about how
Keybase can run on devices and then these apps that I was just mentioning that take advantage

of all this infrastructure that Keybase provides. These slides are public at that address.

Cool, so why is crypto important? This little slide here shows all the services people use. People
use a lot of these cloud services these days, anything from Dropbox, Twitter, Facebook, Slack,

Google Drive, all kind of stuff. You're communicating through the cloud and you store your files
there.

Traditionally all the stuff is out in the open. Once it hits people servers, Slack almost certainly

can read all of your e-mail, or all of your stuff, Dropbox can as well. It's fine for a lot of people,
but it'd be nice if there is a way to have these cloud services, but not have to make that sacrifice

and personal privacy, or to be attacked.

The traditional crypto setup that these little crypto exercises, we have the actors as being Alice
and Bob; these are two very famous Alice and Bob people. Then Malory is traditionally your

adversary in these things. The goal of crypto is to be able to do all these fun things that you can
do without having to give up your privacy, or be attacked by a third party.

What does Keybase do? Keybase is a set of tools, like I said that solves this Malory problem

here. Our goal is to create a set of usable tools that allow you to do all these things that you're
used to doing; chat, share files, collaborate and host your content in a secure way. Here on the

bottom is, well I don't know if you can really see this that well, but these are the four main things
that we have in the Keybase app.

The key aspects of true encrypted communication is you want to be able to – Alice wants to be

able to communicate with Bob under the following circumstance. You have an adversary called
Malory listening in. Malory can possibly tamper with whatever is there, Malory can impersonate

other people in this chat, controls the servers, so all this stuff is possible. Alice wants to be able
to communicate with people under these circumstances here. How do we how do we make that

happen?

© 2018 Software Engineering Daily �4

SED 572 Transcript

The traditional approach here is through public key cryptography, just a brief refresher on how

this is, just for people to know more about this is the Diffie-Hellman formulation of public key
crypto. The idea here is that you want to both Alice and Bob publish in some way public key

associated with both of them, and that public key comes along with a private key that is known
only to Alice and Bob. This is called a key pair, so both Alice and Bob have a public/private key

key pair, they publish the public key somewhere.

When they want to talk, they get together and they can do some fancy calculation with both of
these public keys and come up with a shared secret that they can then use to communicate with

using a normal crypto algorithm. For a lot of these formulations, you can use elliptic curve Diffie-
Hellman. If people know what that is, that's what Keybase uses, but there's others like RSA that

you may have heard of.

Furthermore, if you really want to get fancy, you can actually not have one public key for
yourself, but many.

[0:09:23.4] PARTICIPANT: Is the shared secret really a big problem with public keys? Because

public keys –

[0:09:29.1] MM: Public keys are used to compute a shared secret. It's a combination of the
public and private keys of both parties. Alice and Bob can do some calculation. In the elliptic

curve calculation, you know a point on a curve and then you can multiply it by the public part of
the curve and then both of them can do that. It reveals no information in the other party,

because in order to do that, they have to solve some very hard problem. In this case, the
discrete log problem to back out the private key.

Once you get that calculation, the shared secret could just be H Mac of whatever you compute

from your private key and the public key part of your –

[0:10:03.8] PARTICIPANT: Still some just the public key.

[0:10:05.3] MM: No, it’s a combination of your private and public key. That's good.

© 2018 Software Engineering Daily �5

SED 572 Transcript

[0:10:08.5] JM: We'll do some time for questions at the end. No problem.

[0:10:11.9] MM: Moving forward, so here's this little diagram of how this would work. This guy

over here says, “Dear Alice, I want to talk to you.” They do this key exchange here using their
public and private keys to come up with a shared secret. Once the shared secret is established,

then that takes over. Now the reason you do this is because these symmetric key algorithms
typically are much faster, it's much easier to communicate with somebody in that way, than they

have to do some RSA type thing over and over again.

Okay,, so that's the basics there. This has been around for a long time. This isn't anything that
Keybase has done that's new. There's a lot of public key crypto software, other things like PGP,

or GPG tools, there's been plugins for your mail program. One feature of a lot of these things
that they're very difficult to use. I don’t know if people may have received an e-mail in the past

that had some PGP header on it that you're supposed to run through your GPG tools and verify
the signature of the person who sent it to you.

I don't know. I mean, this thing is probably completely out of you, so I don’t remember the last

time I even received one of these things in e-mail. A big part of that is because it's very difficult
to use. I mean, nobody really knows what it is, you'd have to integrate it with your mail program

in some way. It always breaks, hard to find people's public keys. It's gotten a little bit better
recently. There's a lot more, especially for chat, there's tools like Signal, Whatsapp and others

that make this a little bit easier, but they're still not great on the on the dissemination of what
your public key is.

That takes us by the next point here, which is there's a big – getting the public key, we’ll refer to

it as the identity problem here. How does Bob get Alice's public key? Where do you go? For the
web, something like TLS, there's these certificate authorities that sign people's certificates and

say this is legit. If you're just out in the world, what do you do?

Well, there's these things called key servers for PGP. Here's an example if you search for Gavin
Andresen, for people to know he was used to be a Bitcoin Core developer. You go into MIT’s

PGP server, which is one of the canonical ones, you search for Gavin Andresen and you get this
list of keys. Some of them are labeled revoked. Nobody knows what this is. It's very difficult to

© 2018 Software Engineering Daily �6

SED 572 Transcript

actually use this to send Gavin a message, you can be you can be happy that is actually

encrypted just for him.

There's other flawed solutions to distribute the keys, you put on a key server, you can post on
your website. Problem with that is how they know it's actually your website. You can put it on all

your e-mails, that's a little bit hard, doesn't scale to all your friends. You put it on Twitter, problem
there is that now you have to trust Twitter. Twitter can lie about what the actual key is, or you

can do something called web of trust. PGP has this notion you could go to a key signing party. I
don't know if anybody's ever been one of these things, but the idea is that you show up with a

laptop and your public/private key pair and you just sign each other's keys.

The point of that, so that if somebody finds your PGP key on the wild we're like, oh Mike's
private key, this this key was signed by all of Mike's friends, so it's got to be Mike. Problem with

that is nobody goes to these parties. Yeah, Facebook also has a cool feature, where you can go
and post your PGP key to Facebook and people can find it that way. Another problem with this is

that Facebook and of course lie to you. Facebook's a pretty trusted entity, probably not going to
lie. If you really want to do this right, you have to – of course, maybe not these days, but I don't

know.

Again, any centralized server that's just giving you a PGP key to be viewed with suspicion. Now
how does Keybase solve this problem? The Keybase solution is basically to take the sum total

of all of your social networking identities and sum them up as you. Your Twitter account, your
Github account, your whatever, your Facebook account, all of these accounts online for

Keybase are basically your identity.

Not only are these services bringing your identity together, this is how we're actually going to
distribute your key at all. We're going to do it in a way that any pro let the Keybase client can go

and look at these services, go look at how you proved that you own these social media
accounts and automatically verify it, so that if anybody tries to change it, or if those servers take

it down that well, you can know and so forth.

The Keybase service is a centralized server, but the trust for the validity of the identities in the
system is decentralized after the clients. In other words, all the information coming from the

© 2018 Software Engineering Daily �7

SED 572 Transcript

server should just be viewed as a hint. Whereas, the Keybase clients are going to – then once

they received that hint, will actually go out and verify all parts of your identity.

What does a Keybase proof actually look like? As soon as my slide gets up, I will show it to you.
Basically what it's going to come down to is your Keybase client going to say, “I want to prove

Twitter.” What you're going to do is you're going to tell the Keybase client what your account
name is and the Keybase client is going to give you a bunch of text that says, “Post this in and

put a tweet up on Twitter, and I'm going to go look for it.”

This tweet has the forum, “I am blah, blah, blah, blah in Keybase and here's a little string here of
stuff that verifies that it's me.” That string of stuff is a digital signature. A signature that can only

be created by the owner of the public-private key pair associated with my Keybase account.
That’s we proving his Twitter account. We can do more than Twitter. We can do a variety of

other sites, but first you can look at what this actually looks like for a user. I guess, this is
unseeable here, but this is a cig chain link for this user.

Basically, every user on Keybase is represented by a block of these proofs and each one

verifies the other. This one is for Twitter. I'll talk about that in more detail on a on a future slide,
but here's a proof on Github, here's a user also claiming a Github account, and then you can

also claim websites, you can claim DNS, you can claim Facebook, all stuff. The purpose of this
is as you post these proofs, all these proofs are then checkable by people's Keybase software

to verify that you are who you say you are online.

Here comes a little slide that shows how Alice and Bob will communicate this. Here's Alice
talking a Bob saying, “Bob, I want to send you some super secret conditioning formula for Bob.”

Bob is able to verify that it's the true Alice by – on her client will say like, All right, Alice has
proved her Twitter account and her Github account. I know Alice by those two identities. I'm

going to go out to these services, I'm going to verify it’s Alice. As soon as I do, I'm going to
accept this as a legit communication from her.”

In addition to these social proofs and the association with your either PGP keys, or these other

device keys, which I'm going to get to in a second, you can also do something like PGP’s web of
trust here on Keybase, so you can follow other users as well and it gives you the same benefits

© 2018 Software Engineering Daily �8

SED 572 Transcript

that you get in the PGP world, except it's a little bit better, because when you follow somebody

you have to verify their proofs, so you vouch that this person – if I follow somebody and I see
that they have Github proof X and Twitter proof Y, if I then follow them I've vouched for the

validity of those proofs, myself as well.

A follower is more than just an entry in the database. I go in and I actually sign a statement with
one of my keys and I say, “I'm coming in here.” I'm going to say, “This person is who they say

they are and here's a signed statement from me to that effect,” and I can broadcast this out to
the world. These are the two things we have here. We have the social proofs and these web of

trust to follow system on the site that lend power to the identity that you have on Keybase that
allows you to get to these public keys that people have published.

Okay, so I've been mentioning the Keybase client a lot. The Keybase client is a standalone

application that you download and run in your computer. It doesn't run in a web browser, the risk
there with anything running in the web browser is that it could possibly can be changed, you

never know what you're going to download from JavaScript. JavaScript could change on the
server. Whereas, if you just download this client, it only updates when you want it to. It's all open

source so you can go and verify everything in there, yourself if you want, or you can rely on a
trusted party to know that this is legit software.

Like I mentioned, it doesn't update underneath you if you don't want it to, so that's great. It also

allows it, so that we can store your public private key pair associated with this application on
your device. That takes me to the next slide here. In the beginning, Keybase was very much like

a PGP, almost like a PGP key server. The idea was is you would – you would upload your PGP
public key to Keybase, prove a bunch of identities and it would be very easy for you to then find

people's PGP keys and potentially send them some – either an encrypted e-mail, or some other
out-of-band thing.

What we realized is that people use many devices these days. You have a phone, you got a

computer, you got a laptop, there's a lot of different places to where you're going to need keys.
PGP keys are notoriously difficult to move around. I mean, the PGP story really is that you

should have one master key, which you stick in a explosion-proof safe or something like that.

© 2018 Software Engineering Daily �9

SED 572 Transcript

You never touch it, and then you delegate a bunch of sub keys to actually do – to actually be the

ones you use out in the world.

With Keybase, what we decided to do was instead of having to worry about all that, we felt it
was too difficult for users to work with is to instead have keys associated with a single device

When you install a Keybase software, you automatically get a NACL public-private key pair
installed on your device. That that public-private key pair is signed into your account.

Now in addition to having a PGP public-private key associated with a Keybase account, you can

also have these NACL keys, which are these ECDH keys also associated with your online
identity. That means when you're running your Keybase software, if you go in, you can sign

things, you can encrypt things and they're all signed encrypted using the key that was
generated from the software that was installed on your machine.

This is pretty great, because this means this private key never leaves the device. You don't have

to worry about as a user transferring anything from computer to computer. As long as you have
provisioned the device using some existing key beforehand, that device is ready to go and can

access all the stuff that you care about in your Keybase world. All these public keys, they're
associated with your devices, are all shared publicly. Anybody can encrypt a message to you

with any of them, which is very convenient.

It makes things like our chat program, or our file system application work very well. It allows you
to provision a new phone for instance and immediately see all your chats. That's not necessarily

true in a lot of crypto applications, just because of how this system works, but with how these
devices will sign themselves into your identity. They can also be revoked if you lose it. I keep

using this term cig chain a lot. Let me just let me just flesh it out a little bit here, just so we can,
be sure we know what we're talking about.

A sigchain is basically like a blockchain of your identity. You can have blockchain the way it

works as a basically says here's a bunch of data in a row and I want to make sure that you are
absolutely certain that this ordering is correct, nobody’s subtracting any blocks out of here,

nobody inserted anything that they should. The way they do this is they're able to sign parts of

© 2018 Software Engineering Daily �10

SED 572 Transcript

the previous blocks and say this one is legit, because I can see all the previous ones before it

and they all have the proper signatures going back in time.

That's basically how these sigchains work as well. Every time you change your identity on
Keybase, it is signed into the chain, which represents your identity. If you prove Twitter for

instance, that's going to be a link in your sigchain. If you then add a devise, if you add a phone
that's the next link and that link will refer to the other one, so that a client can verify that they're

all lined up properly.

When the Keybase client loads a user, it will load this entire sigchain and play it back to make
sure that the server gave it accurate information. This goes back to what we we’re talking about

earlier where the server is really just giving hints as to what's happening and the clients are
actually going out and verifying that the identities are getting – are correct using these remote

proofs, as well as the validity of the sigchain itself.

I have another example here from my brother Jeff, his own sigchain. I use this because it's a
particularly good one, it's an interesting one to look at. You can't really see the text here, but the

legend is viewable. Basically any of these pink box is a device, green was a PGP key, orange is
paper key and that gray is if you were booked.

What this shows here is that each link in this graph is showing either a proof from the thing

above it. This pink box here is a device, it's signed in his Github proof and his Twitter proof and
then it also provisioned the PGP key, which then provision another device which then provision

another device below that. When the Keybase client is checking the validity of the PGP key of
all the way at the bottom, it's actually running through a sigchain making sure every link that

signs in all of these various things is legit, they exist on the social networks all the way down the
bottom and then they can know that whatever message came from this PGP key definitely came

from Jeff Maxim here.

Another feature of Keybase is the generation of something called a per user key. This is
important for when we're dealing with chat in the file system and every user on Keybase gets a

so called per user key that's a device independent. This is a NACL key, this is not a PGP key.

© 2018 Software Engineering Daily �11

SED 572 Transcript

This is the more modern system. This thing is also written into your sigchain. It's useful if you

want to be able to encrypt something for all of the user’s devices.

If you want to send – if you want to send me a secret that I can read from any of my devices,
you could use one of these per user keys that's generated on my device, so anytime I provision

a new device it immediately gets this per user key, because the provisioner can basically give it
to me. Per user keys are most useful for teams, which I'll get to in a second.

The last thing I mentioned about the sigchains is I keep talking about how the server for

Keybase is an untrusted entity. The last piece of the puzzle was making all that work out is to
take these sigchain data and publish it in a way that even users, not users of Keybase can go

out and verify that things that the server has not done anything weird like try to roll back, or try
to remove people's signatures, or add new signatures or anything like that without a user

actually doing it.

The way we do that is you can summarize all of the user sigchains on Keybase by simply
hashing every single possible link that you have. Problem what that is it takes forever. If you'd

have to go through millions of links and hash them all together, so the data structure called a
Merkel tree, which is also using Bitcoin if you're familiar with that, where you can summarize

very quickly a hash, a single number of the entire system fairly quickly.

What we do is we take that number and we actually will do a special Bitcoin transaction with
that, what we call the Merkel route and effectively publish it into the Bitcoin blockchain. Anybody

that has a full node running the Bitcoin blockchain there'll be transactions in there that represent
any change to all the signatures on Keybase, which is neat.

Another fun part of Keybase and this is one of the things that really separates it from a lot of

apps like Signal and things like that is the ability to form teams. These teams are more than just
an entry in a sequel database, or something like that says these are the people on my team.

Teams also have sigchains that represent all the additions and subtractions of people into the
team and they're all verifiable by the Keybase clients.

© 2018 Software Engineering Daily �12

SED 572 Transcript

The purpose is for these teams to have either your company use it, or you can have your

friends, if you have some group of friends you want to have talked on here you could do that as
well, or your entire company could be on there. All of our applications like chat and the file

system work with teams, so the picture on the right there is a picture of our chat, which runs on
the mobile app, as well as a desktop.

Moves to be a little bit like Slack, so people with a combination of Slack and iMessage, I

suppose, that's the team situation. The way the teams work is using these per user keys. It's
basically there's one secret for the entire team, that secret is disseminated to people using all

the per user keys from the people in the team. The Keybase server can't just add people to the
team, a client has to do it and on so on and so forth.

You also have sub teams, something Keybase.board within a team, which can have members of

the team, but cryptographically is separated, has different team secrets than the host team. This
shared team key is automatically to set – roll basically whenever anybody revokes a device. If

somebody revokes the device, you want to make sure that that person can no longer access
any future communication within that team, and so everybody rolls up to the new version, it's

sent out to everybody again using this per user key.

I started off this talk and talk a little bit about how there's useful apps that are built upon all this
infrastructure. Now we have a system, does a pretty good job of identifying people on the

internet that you know, giving you access to a variety different public keys, either their PGP key
or these device keys that we generate from the Keybase software.

What can we build on that? Well I touched a little bit on, we have some – the chat application

and the file system are two of the main ones for us. Key requirement though is that these things
are real apps. Part of the reason PGP fail is just – it didn't have a great app experience that

people could really get involved with and use.

Our apps try to be just as good as their unencrypted counterparts, like chat should be just as
good as Slack, or at least close to it, so that the people that are using it don't forget about the

fact that they're actually using a secure app and only focus on the fact that they're just using the
bad version Slack.

© 2018 Software Engineering Daily �13

SED 572 Transcript

That's a big deal for us. Keybase chat is really one of our – probably one of our best
deployments of an application built on top of the Keybase infrastructure, totally unencrypted,

you can identify people simply by their social media and it has its own fully integrated with
teams and runs on every single platform of note, all the desktop platforms; Linux, Mac and

Windows, plus Android and iOS as well.

Unlike Signal or a lot of these other apps, there's no need to get in some out of band secret
transfer. You have to take a picture of a QR code, or get together in exchange a number or

something that pops up on your screen everything is handled through the Keybase ID systems
like the identity system we just talked about.

Here's just another shot of the chat screen here. All these messages are signed and everything

else. One cool feature of Keybase chat and teams in particular is you can have an open team,
so these open teams anybody can join. If you're running an open source community or

something like that and you want to run it on Keybase chat, you can do so. You can create a
team and set it to be like anybody that wants to get in this team, gets in this team, and then

you're in.

I mean, I ask what's the purpose of that with an encrypted app, but at least when you get people
in there everything is signed so you can know who's talking. If you're running this thing and

you're speaking in there, everyone could know it's truly you. Furthermore, once they're in there
you can exchange DMS and things that with people and that's fully encrypted as well.

We have one team on there for a new cryptocurrency called Chia, which is like a

environmentally friendly version of Bitcoin. They have a team on here of 1,800 people, so that's
been our most successful team yet. You can also join the Keybase friends team, which has

about 1,300 people and talk about Keybase up in there if you want to.

The other main application, I'm almost done here is the file system. This works a lot like
Dropbox, the infinite mode of Dropbox. The traditional way Dropbox works is you just have a

folder on your computer and the Dropbox thing will go and find what change and upload to the
server, but all those files exist on your disk.

© 2018 Software Engineering Daily �14

SED 572 Transcript

With KBFS, they don't. You're effectively just communicating with an API, and furthermore
everything that you're doing is encrypted as well. Again, this works in pretty much the same

way; everything in here is encrypted and signed and works on all the platforms, except for the
phones, but the phones are coming soon, and you get plenty of free storage.

The way KBFS is laid out is you use your Keybase handles to get in there. My private folder

here if I'm on a Mac or Linux, I can just go to /keybase/private/mikem and all my files will be
there. Now they're only encrypted for me and all of my devices that are associated with my

Keybase account. Not my PGP key, but if I have some set of device keys, all of them can get in
there and see those files.

I can also share files. I can go into Keybase private and then somebody come on MikeM. If I

want to share with Jeff Maxim again, I can stick a file in there and now everything in there is
encrypted for all of my devices, as well as for all of his devices immediately. You can also do

something cool with Keybase where you can share with a social media handle, so I can share
with MikeM, some name at Twitter. What that'll do is something cool or it'll create a new folder,

it'll have files in it and as soon as somebody proves that Twitter account, they get those files.
We call this a sharing before signup thing.

If I know somebody on Twitter, I can go and put a file in this path right here, MikeM, Zem at

Twitter and then contact them somehow and say, “I got some files waiting for you on Keybase.
All you got to do is prove that you own this Twitter account,” and then they get them. You could

do the same thing with chat. It's an interesting feature. You can deal with all things. You could do
that with a PGP fingerprint, you could do somebody at PGP fingerprint, you could do something

like that with a DNS entry, it's very flexible.

The last thing I'll talk about here is there's the final application of Keybase, which is encrypted
git. We provided this service on top of KBFS that allows you to push a git repo and set Keybase

as a remote. You can set like, you use this fancy URL here at Keybase:// and then the location
in –KBFS we’re actually going to push this thing and it will go before the files land on Keybase

servers all be encrypted with whatever device is doing the push to that repo and Keybase can't
read them.

© 2018 Software Engineering Daily �15

SED 572 Transcript

You could do that with teams and personal, so if you have a team you can create a team repo
and if you're a dev ops team or something like that, you need to share secrets, you can push

them in there and nobody can see them except for the devices that are signed into whatever
team has access to that git repo. It's cool. It works pretty well in terms of with conflict resolution

and all stuff integrates with popular git tools and things like that.

It's a neat feature. Like I said, it's very useful if you want to share secrets on your team, like I
said like AWS access keys. I'm not going to recommend this right away for that, but you can

think of secrets that you can put in there that would be nice, that's encrypted git. That's it. That's
it for the talk.

[0:32:37.9] JM: Great, so now we got a little time for questions. Does anybody have any

questions to start with? Question is does that Keybase git thing work on mobile?

[0:32:46.5] MM: You can view the repos on mobile, but you can't do anything, like you can't
check them out, or you can't push to them, or anything like that, but you can you just see the list

and you can see this list basically of which repos you have access to, that's it.

[0:33:00.0] PARTICIPANT: How do you make money?

[0:33:02.3] MM: The short answer is we don't currently have any revenue in the company right
now. The goal of of Keybase has been to get as many people involved with it as we can. I think

that the chat application in particular has a nice network effects going on with it. The more
people you can get chatting, especially in a lot of these open teams, the more they can get their

friends in there, as long as the app works well, we're pretty confident we can get more and more
people in there and start using it, Keybase gets more and more popular. That's really what we're

hoping will happen.

I think there's been a lot of discussion about how Keybase could make money. There's been talk
about teams of a certain size, or corporate teams could have to pay similar how somebody

Github Enterprise works or something like that, or Dropbox. That's one option. You could charge
for the KBFS base, that sort of thing.

© 2018 Software Engineering Daily �16

SED 572 Transcript

I mean, Keybase has been fortunate that we've had plenty of support from people looking to
fund the company. I mean, Keybase had a pretty good round when it first got started, and then

we recently entered into a nice agreement with the stellar development foundation. This was
just made public a couple weeks ago, where they are now helping to support Keybase as well.

For the foreseeable future, Keybase will continue to exist, your files are safe in Keybase.

They're not just going to disappear and that sort of thing, because Keybase goes out of
business or anything like that. I think right, like I said to summarize, we're thinking more about

growth, getting people using the platform and then we'll worry about – there’ll be ways we can
figure it out.

[0:34:32.2] JM: I'm going to ask you a question that's tangential to what Shawn just asked. With

Bitcoin private key management today, you've got two polar options; one is you manage your
private key yourself, and if you lose it then you lose all your Bitcoins associated with that. The

other polar end is you have Coinbase manage your private key. Could Keybase be something
that is in between those two options along that gradient?

[0:35:01.9] MM: That's great question. Yes. I think over the course of the coming months, we're

going to start to see that. I mean, I think that's something that were going to be working on not
with Bitcoin, but with likely with Stellar. Stellar for people who don't know is a payment network

that has a cryptocurrency associated with it called Lumens. It’s a lot like Ripple if people have
heard of that. That's what we're hoping for.

I think one of the nice things that Keybase can bring, one of nice advantages that Keybase can

bring there is that if we do it right, we'll be able to – your Stellar wallet will follow you around
from all your devices, so you'll be able to for instance be able to send payments from your

phone, or from your laptop, and the key, the dissemination of that of whatever your Stellar
private key is will happen with – Keybase will do it, so you don't have to worry about transferring

it yourself, similar to just how you don't have to worry about transferring any of the other keys
associated with your with your Keybase account.

© 2018 Software Engineering Daily �17

SED 572 Transcript

Yes we're hoping that – we're hoping that Keybase will really make it possible that you can have

convenient cryptocurrency payments without having to have your private key on a third party
like Coinbase and without having to carry a hardware wallet around wherever you go.

[0:36:10.0] PARTICIPANT: Testing. My question is what does the playing field for this type of

product look like as far as other competitors that are doing a similar thing, or could in the future
try to attempt to do a similar thing and what other types of things could they do to compete and

vice versa?

[0:36:28.5] MM: Yeah, I mean, I don't know if there's any real direct competitor to this particular
idea. Certainly there's competitors in the various apps that we're actually working with here,

particularly chat. I mean, there's a lot of encrypted chat applications, many of which are more
unpopular than Keybase, like signal for instance.

I think a lot of what we're competing against is the existing applications in this space as well,

things like Dropbox and Slack and those sorts of things. We want to be able to convince people
that using our application has real value, that these crypto tools, I mean, this is becoming more

easier by the day as more and more privacy related problems come out in the world, people are
more and more looking for this solution.

I think in terms of other ideas to the identity problem, there's been a variety of ideas tossed

around about blockchain solutions to the problem. Can you build something on top of Ethereum
for instance that some smart contract that somehow encodes people's identities in a similar way

the Keybase does? I think a lot of those ideas run into to usability problems, like any
decentralized application always comes up against performance problems, comes up against

just bugs that are very difficult to find, very difficult to fix, because you have to disseminate your
software to everybody that's running this thing.

It takes Bitcoin sometimes gears to get changes to their core software out to the wild fully

deployed, just because they need everybody on it. I think for us, a lot of it is just carving out
what we think is a new space here, where we have these crypto applications that are good, that

that are easy to use, that are hopefully somewhat easy to understand and that people want to
use and go from there.

© 2018 Software Engineering Daily �18

SED 572 Transcript

Then hopefully that they provide a compelling value at over things like Signal and more
specialized apps, just because of all the things they provide and this identity model, which we

think is pretty novel. Does that answer your question?

[0:38:23.8] PARTICIPANT: Yeah, it was awesome, Thank you.

[0:38:25.9] PARTICIPANT: How does account recovery work?

[0:38:27.7] JM: How does account recovery work?

[0:38:29.6] MM: That's a great question. It's actually we spend probably about 40% of our time
working on making that easy. Basically, the way it works is there's an option on the site where

you can so call reset your account. You're only supposed to do that if you lose access to all the
devices that are associated with your account. For some reason you lost your phone, your

computer and whatever else and you're out, then then you need to reset. Now big bummer of
having to reset is that you lose all the information that's associated with your account.

If you had data and KBFS, or if you had chats, they're gone as soon as you reset. You're

effectively like a new person. Typically way we do the reset is you can if you still control the e-
mail account associated, we will send you a new password and you can reset start over again.

Or if you've completely lost it then you come to us so we go through some customer support
thing to make sure you are who you say you are deal.

The stakes are definitely higher for losing these devices as opposed to something on Dropbox,

but they can probably get you your data back, or Slack where you can probably get back in to
your team. With Keybase, it's very important for us that you not get back into your team,

because if you've lost all your devices, you’re really no longer you as far as we're concerned.

[0:39:40.7] PARTICIPANT: Do you have any thoughts on tattooed-based paper key recovery?

[0:39:46.2] MM: Yeah, well not any specific thoughts. I mean, that’s a good point. I didn't really
mention paper keys too much, but there is like, you can create a paper key, which is effectively

© 2018 Software Engineering Daily �19

SED 572 Transcript

just a giant pass, giant path like a bit 20 pass for your site thing that you can used to recover

your account. If you lose that too though, you’re again out of luck.

[0:40:04.8] PARTICIPANT: That's why I figured like a QR code in a not visible place.

[0:40:07.7] MM: Yeah, if you show up to the office, maybe that would work.

[0:40:13.2] PARTICIPANT: I guess, this is related to some of the wallet stuff you guys were
talking –

[0:40:17.1] JM: Speak a little closer.

[0:40:18.1] PARTICIPANT: Sorry the wallet stuff you were talking about before. This is crazy,

but I'm wondering you were talking about sharing maybe git or sharing – having KBFS to share
with specific people, or as part of a team. I'm wondering if there are any plans to have

specifically sharing of secrets. You mentioned AWS access keys in the git context and how that
violates your impulse, like you wouldn't want to put that stuff in git.

[0:40:45.0] MM: If you want to make any specific security, right?

[0:40:46.6] PARTICIPANT: Right, right. Yeah, we don't want to touch that, but I'm wondering if I

have an API token that I needed to share with my team or some personal account information
that I was sharing with family, are there any plans to have that – I mean, you could do it with git

or KBFS, but it seems something – I guess, a Keybase version of Vault or LastPass or One
Password or something, I guess is what I'm asking is anything like that plant or just use those

products?

[0:41:13.7] MM: My best answer to that, it would be you should just use KBFS, I guess, or chat.
I think one thing you can do is you can have – if you feel comfortable, you could put this in chat,

or depending on how long you want to get at, if you're talking about something that should last
for a long time, I would say KBFS is probably going to be your best option. The good thing about

KBFS is like I said, it's available on all your devices. Currently it doesn't really work on mobile
right now. In fact, doesn't work at all. You can view what folders you're in, but very shortly I

© 2018 Software Engineering Daily �20

SED 572 Transcript

mean, we have this thing – I mean, our prototypes we're running it right now where you can get

all your KBFS files on your phone as well.

All this stuff should follow you around. I think more specific like UI is things like LastPass, or –
people always ask us, it's like, “Why doesn't Keybase have a password manager?” For

instance, it seems like a natural fit. One of the reasons is because a lot of the challenge with
those kinds of apps are actually UI challenge. Why is One Password so popular compared to

the others, is because it's got a great UI. It works really well if people know how to use it.

For us, if we wanted to do something like that, we'd have to become experts on how to really
make a good UI like that. Keybase it's built with third-party integrations in mind. We're hoping

that if Keybase gets to the point where it gets very popular, that people will start building tools
maybe like that on top of it. If you had a particular use case that just wasn't really fully covered

by KBFS, or git, or wasn't covered in a way that you really liked a password manager or a note
system, it sounds maybe that might be what you want, that somebody could maybe build one.

I think that that would be the dream of Keybase. That's how I think we would know that we really

caught on if somebody actually did do something like that and whatever they built became
popular.

[0:42:55.1] JM: All right. Michael Maxim, thank you.

[0:42:57.9] MM: Thank you.

[0:42:59.2] JM: Okay, so we're going to take a break until 8 p.m. and you can get some more

pizza, get drink, go to the bathroom, all those requisite things and then we'll be back at 8 p.m.

[0:43:11.6] IR: Scratchers we put out on your seats, they do have those free passes to Dash.

[0:43:16.5] JM: All right, so this is Habib Talavatifard from Clarifai. I have had the CEO of
Clarifai on the show for and it was an incredible show. Clarifai is basically a machine learning,

computer vision API, I think if that's a good explanation for it. One of the things that we

© 2018 Software Engineering Daily �21

SED 572 Transcript

discussed on this episode, the episode we did was an overview of Clarifai, so it was an

overview of this machine learning computer vision company.

One of the things that he discussed was the process of training and deploying machine learning
models. The deployment cycle and the retraining of machine learning models is pretty

underdeveloped area of software engineering, I think. I was really happy to have Habib be
willing to come to the meetup and I'm pretty sure that's what he's going to be discussing.

[0:44:09.8] HT: Hello. Thank you very much for have me here for this meetup meeting and

thanks Datadog for hosting the event. I'm Habib Talavatifard. I'm a technical lead at Clarifai. I
am in charge of a product called visual search and also another product called custom training,

but today I'm going to try to actually talk a little bit about everything, including infrastructure so
let's see how well that goes.

I guess, that's the agenda for today. I'm going to talk a little bit about what our company does

and then I'm going to talk about the stack for the duration. About Clarifai, our history is that we
started at 2013 after our CEO, actually I mean, she was a PhD student at the time, one image

that you know contest, which is actually a pretty important contest in image classification.

Then he founded the company at that time based on the research that he was doing at the time.
Since then, we actually have grown a lot. We have build a lot of things. For now, we have a

variety of products that we have. We have machine learning as a service, as an API, we also
have machine learning solutions and we do a variety of services that I’m going to probably touch

on two of them in the next slides.

I guess, that's the list of our investors. I guess one disclaimer here. I'm going to talk about GPUs
a little bit and GPUs are actually machining learning are tied to Nvidia. Nvidia happen to be one

of our investors, but that's all coincidental, I’m not speaking for Nvidia or anything. What we do;
part A, models.

We actually build these previewed models based on convolutional neural networks that you

could actually use from our API to actually classify within different domains. We have a general
one, we have code, no moderation and SFW all kinds of stuff. Most of them are based on this

© 2018 Software Engineering Daily �22

SED 572 Transcript

idea of no convolution, or of this course, or deep learning. I guess you probably have heard that

there is a lot of recent advancement in that area, and we're trying to actually bank on that.

If you go to our website, you might actually find something called modern gallery, which is a
bunch of models that are available. We have all kinds of stuff there. For example, one is

celebrity, the other one is demographic, all kinds of stuff. General model, getting embeddings
and all that.

I'm going to talk about one of them just to give you an idea how well these things actually work

in certain cases. We have an NSFW model that actually is pretty good. Why I claim that it's
pretty good, because that's I guess the performance curve of this model. If you guys are familiar

with this graphs, that's exactly how you want your model to be. Not having much true negatives,
well you have very good true positive, which means that you have extremely good precision and

recall.

This is an example of the models that we actually provide. A lot of customers actually use this
for moderation purposes. For example they want to detect that if they have some user posted

NSFW content on their website, they can actually detect using this mode. I want to show you
some examples of how well this thing actually works.

Look at this one, I have lags. This thing is predicted as if forward, the probability is actually

pretty convincing. Also you can see the other one, the general model that we have and it's
actually predicting a bunch of tags, and you can see is actually pretty good. It’s bathroom, bath

tub, bath shower, wash, all kinds of stuff.

This variety of tags, or [inaudible 0:48:03.2] that actually produces is very useful. You can
actually use it for other applications, including search. Here is a bunch of our examples. This

one also was predicted as 0.97 safer work, which is what you want. Another one, 0.99. 0.99
safer work, 0.99 safer work. Yeah.

Yeah, so this is an example of the model that that we build and be making available to our

customers, or actually two examples, because you see the general model as well. Let's actually

© 2018 Software Engineering Daily �23

SED 572 Transcript

move on to the second thing. Actually one thing that I personally am pretty much involved, I'm

actually in charge of this particular product, which is search.

Store runs your data. A lot of people actually, what we realize is after they use our models to
actually tag their data, they also almost all the time do some search on top of it. We figured that

maybe we should do the search to help these guys. We then tell them and do it, do it. We can
do all kinds of searches, search by tag. If it look something like this, basically you can search by

okay, I added all my data, I want all the dogs, there you go.

You can't do something like a reverse image search. Basically you search by an image and we
find the images that are similar to it, and we even can combine different searches, so I can say

dog and that image and then it finds these things for you. The dogs that are wearing red shoes,
so words descending okay.

This is the second product that I wanted to give you an example of this stuff that we do, but let's

move on to the second part of the talk, which is basically our stack. Although I have to mention
that actually we do a lot more than this. We do all kinds of models, all kinds of stuff, just wanted

to give you a taste. Our stack, I guess I'm going to dive into it. I'm going to show you a diagram.

That's what we do. We have an API and this is actually the API that we have on our production
setup. Most machine learning companies actually have usually have a production setup and a

experimentation setup, which I'm going to talk about more. This is basically our production setup
for the API. I'm actually simplified this to the almost non-existent, so I'm just keeping the most

bigger pieces. Yeah, what’s up?

[0:50:45.0] PARTICIPANT: The start right, so you would be searching within your database. If I
were to use your API, can I upload my data and serve –

[0:50:57.7] HT: Yeah, Yeah, so the API supports indexing. Basically that is your data. Actually

what I showed you is you actually –

[0:51:05.7] PARTICIPANT: I include them in –

© 2018 Software Engineering Daily �24

SED 572 Transcript

[0:51:07.0] HT: Yeah, it goes to our servers, it gets indexed, it becomes available for search,

like any other search services. That's something that I have to – so basically, you can actually
get that on our servers, which are located on AWS right now, but one thing I want to mention is

actually one of the challenges for us right now is trying to actually decouple our self from the
cloud platform.

We want to actually not be tied to any a specific cloud platform, because a lot of customers, one

specifically for those platform, or don’t want any specific platform.

[0:51:43.1] PARTICIPANT: On the degree, like these are special code to list the data.

[0:51:46.9] HT: Yeah, and then you – it enables you to actually support on prem solutions as
well, which is another set of solutions, which is also pretty important. Basically, I want to talk a

little bit about this guy. In the production setup, you have API layer that basically is behind a load
balancer, all the usual stuff, encryption all that, you can index your assets and they are going to

be actually want to a bunch of machine learning models.

Once they are run through those machine learning models, the result is going to be written to
the database. Machine learning models can produce tags similar to the stuff that I just showed

you, but they also can produce something called embedding, which is a representation of
whatever concept that you are trying to do according to that model. Those things, you can

actually store and search against. That's what we are doing.

Also, there is a read pass, which is doing the search query and basically that already consults
the database, but it actually is not the simple lookup. What you actually you do usually in these

cases is you actually try to do the search as mark me, by clustering your data and doing a two-
stage process. Basically when you do the search, you first actually match and find the relevant

cluster of the data, you fetch candidates from there and then you do a second search on the
candidates.

It's a multi-research process and you probably don't want to just brute force it, because it

doesn't work at all if you do that. It won't scale. That's the gist of it. Now for the database part,

© 2018 Software Engineering Daily �25

SED 572 Transcript

since this is an infrastructure talk, we actually use Citus MX, which has historical reasons, plus

also is something technology that's useful in our case.

The original version of this system was written using RDS, basically PostgreS, single node,
whatever. At some point, we wanted to a scale it and I personally didn't want to write everything

on a different technology. I decided just scale it using something that looks like PostgreS. Citus
is actually a shard of PostgreS essentially. It has a lot of nice properties, for example it has a

ring architecture, which means that everyone can be master, which means that when you do a
query, you're going to actually hit any of the nodes as the coordinator, or master of your query.

That means that your read and write throughput is actually multiplied by the number of nodes

that you have in your machine, compared to RDS, which is extremely useful if you are trying to
build a high throughput system. Also, it actually helps us to serve the search queries pretty fast,

because actually paralyzes the result like any sharded system, so we can actually search
multiple shards in parallel. That's why we use it.

It also has nice transactional properties, which in this system is actually useful, because this

also, in addition to search, those other stuff and we want to have certain transactional
properties. For example, Citus MX recently implemented distributed transactions, which I guess

if you guys have heard is pretty difficult to implement. Maybe only a span area and
cockroachDB who actually successfully implemented that and Citus MX has, which is very good

for us.

Yeah, I guess the noteworthy stuff, I mentioned a bunch of them. I guess we use Go and most
of the non-scientific computing part, for the scientific reading part you just use Python like any

other ML shop. We use GPUs at inference time in this stack, we also use GPUs at the training
time, which is not shown here, but that's a different story. Basically Citus helped us actually to

scale our rights, so that's another thing.

The most important thing, which is the last part of the talk is actually you are using Kubernetes
to actually manage all the containerized application services in the previous slide. Everything,

you can see that there is a section application services and there is a section data services.

© 2018 Software Engineering Daily �26

SED 572 Transcript

Everything on the application services is authorized and manage microwaves, API layer,

another stack indexing.

Data services are outside of the Kubernetes and they are either on AWS, can be a cache, can
be Citus, which we use — manage Citus. Basically being a startup, we don't want to actually

manage our own databases. They are outside Kubernetes. Inside Kubernetes, the MLS stack
uses GPUs and we want to actually talk about that and it's a good one.

Oh, before that, actually one of the things that this stack has is actually monitoring. We

extensively use Datadog and I think I've heard that, that actually we were one of the first users
of Datadog for Kubernetes, so apparently we started at a time that they were all running bugs

and it was before my time, but apparently those days were very interesting. You're using it and
we're pretty happy with it. This is an example of a dashboard that we have.

Okay, now the last part of the talk, which is the GPUs, which is most more infrastructure. Show

of hands, how many of you guys actually have used GPUs in production? Okay, so good. I
guess, I can talk a little bit more about the details. Basically when you are using GPUs for

machine learning and production, usually you have two kinds of use cases. One is actually
some batch training, or some batch processing, which is usually for training. Then there is a

real-time online use cases that usually happens at inference time, basically when you are trying
to use the models that you just trained.

We actually use GPUs for both use cases, but I'm going to focus on the second one. Very

recently, we actually managed to use Kubernetes for handling the first use case, which means
that we actually – our experimental set up also runs on Kubernetes if we want to. We can

actually scale our infrastructure for training to hundreds of nodes and then scale it down on
notice if you want to actually do a quick experiment very extensively.

That's all I'm trying to talk. I'm just talking about using the mesh GPUs, add inference time in

that stack that I just showed you. Which is basically what I said, then Clarifai workloads are
either for training, or on that force, or prediction and inference. Basically, we run Kubernetes on

AWS, which is what we do.

© 2018 Software Engineering Daily �27

SED 572 Transcript

Now everything is nice, but I want to actually talk a little bit about how we actually end up using

the Kubernetes. We are going back maybe to 2015 November something. At that time, our
company we're running on virtual machines. Deployment meant that actually you have to build

these virtual machines, build the new set, move the traffic to this new set of virtual machines
and destroy the old one.

If you did a small code change, it would mean that you need to spend several hours just actually

just working on this thing and banging your head on the keyboard. That was the old system. It
was very difficult to work with. Then our infrastructure team actually came in and they decided to

use Kubernetes. By the way, disclaimer so I'm – like I said, I'm not a member of the
infrastructure team, so I'm actually basically presenting their work. This is not Microsoft.

They said we want Kubernetes, we want containers, we want discovery, we don't want BMs. I

remember, this is November 2015. I guess in theory, theory and practice are the same and
practice are not. In practice, they run into problems, Kubernetes at the time had a lot of useful

features, but it actually lacked – It’s not. No GPU support, no SS support, no SSL support the
ELB, no ECR support.

Easy to get your whole AWS account rattled. That one is actually interesting, so basically the

way Kuberntes works, they actually try to – ask AWS or what nodes are open, what's going on
and what your metadata and all that. At the time, you just could easily get yourself in all trouble

because of series of bugs on your entire account, because you made too many of these
requests.

Then, I don't know, you were developing something on your test cluster, suddenly your entire

AWS becomes struggle. It was actually extremely painful also to debug as well, because what's
going on. Our company at the time, we ended up actually submitting changes to open source

and Kubernetes at the time to address all of these issues.

We added the support for GPUs some form of experimental version of it. We added as a
support for ELB, ECR support and all support with AWS to make sure that that thing doesn't

happen totally, and make sure that that metadata is actually cached on the Kubernetes side, so

© 2018 Software Engineering Daily �28

SED 572 Transcript

basically nothing bad happens. I'm going to actually more go – I'm going to skip the last three

and I'm going to talk about the debate about the GPU part of it.
The GPU part of it, November 2015 how do you get GPU support? You find expert engineers. I

guess, you guys probably know board, which is a product that equivalent to Kubernetes that
actually Google uses internally. It has support for GPUs for years. You find these guys as GPUs

over in Kubernetes and then you profit.

There were issues, realities, stuff like that. We had long discussions about how to do it
essentially at some point, but the problem is in these projects if you actually add something

willy-nilly, you might actually bridge future releases and something bad happens and it's hard to
predict that how things evolve. We really want to actually get it right and just not randomly add

the stuff.

Essentially at some point, they come up with a very hair down basic version. It will become
available at July 2016. It was nice, but we have limitations, actually lots of them. You could have

any parts that you want, as long as it’s by Nvidia. Actually, the way you actually make this thing
work, this flag that they just put here experimental, Nvidia GPU, you have to actually add this to

your kubelet run command. Basically that's how you get it.

It only supported one device per node. You couldn't tell that what GPU you are using. Is it an
ancient one, or is it something new, or how much off the RAM of this thing it was using? No

resource usage reporting, nothing. No data log for that matter. We still did it. Also even more
revision. This this one is actually pretty awful.

This thing actually for it to work, it needs actually certain kernel driver libraries on the node itself.

You cannot package your libraries into your container and ship it. It won't work. You actually
have to make sure the correct libraries are actually put in the node, which is really painful. If we

don't, it will crash with the most awful error or like unhelpful error that you have seen and you
cannot figure out what what's going.

You have to deal with that, so it means that you have to – when you were actually managing

your nodes, you have to make sure that you have the correct libraries, which usually people
don't do in Kubernetes work, but yeah, we were doing it. Yeah, they did it and it was useful for

© 2018 Software Engineering Daily �29

SED 572 Transcript

us. Why? Because that three hours that I talked about, that would take us to actually deploy a

code, after this was paired down to five minutes.

We could actually scale up and down by just clicking the dashboard, which is was great for us.
In the other stack, those ML machines, ML models that I showed you, you could just scale up

and down those things on-demand at moment notice. Recently we actually added auto-scaling,
so you can actually auto-scale automatically based on traffic and stuff like that, which is pretty

nice.

Now we added all these things around 2016, but these days things are much easier. You don't
have to deal with a lot of these issues. For example, recent developments, there is this concept

of device or hardware plugins that Kubernetes introduced, which essentially abstract away the
problem of actually where the system libraries are, or any other problem related to the device for

you.

For example, what kind of Nvidia card you have, how many of those things have, the stuff like
that. Instead of actually somehow hard coding this somewhere, you actually just ask this device

plug-in that how many of those guys, how many GPU you have, how many of whatever you
have.

You get to know the libraries passes and everything, which is nice, because it means that

whatever system that you design will be portable across different clusters. Multi-GPU support
added, which means that you can actually use more than one GPU in each part, which is great

and actually be needed, because a lot of our models don't fit in one GPU. Also there is this
demon set that actually helps install – there'll be the installation of these drivers, so we don't

have to do all those manual awful things that we used to do.

Actually, we use these all these things in our experimental setup that I mentioned, that we can
scale to hundreds of machine nodes if you wanted to, and we use these guys. Still, I just

mentioned was works for us, why do it.

Yeah, and I guess there's also, the battle is not won. There's a lot more to be done. For
example, we need better scheduling, some advanced scheduling that basically knows an

© 2018 Software Engineering Daily �30

SED 572 Transcript

average of what car do you have, what's the limitation, stuff like that and schedule based on

that. For example, something like affinity is very important in this work. If you have a node
before GPU cards talking for example from cart 0 – the communication between cart 0 and 1

might be actually faster because of affinity issues, versus 0 and 3. You really want to actually
get 0 and 1 when you ask for 2. You don't want to get 0 and 3. That's an issue that has been

around in Kubernetes.

I think it's not limited to GPUs, CPUs also, but we want this smart scheduling, which is
something that useful for us. Another thing that we really want to see in Kubernetes is actually

device sharing, or overcommitting, which by the way we actually do right now. There is a hack,
or trick that you can do that you can actually get this, but I think with the newer version of

Kubernetes, our hike will break and we want actual official sharing and stuff like that.

The hack is actually quite interesting. Remember that I showed you that flag that you can say
one Nvidia GPU is equal one, actually nothing stops you from saying I want a 100 GPUs on a

machine that has only one GPU. What it does is basically creates a hundred objects and it
maps it to one GPU, so now if one application comes in and says I want 20, it's going to give

you 20% of that 100.

It's basically some form of sharing, which is pretty useful, because a lot of models actually don't
use the entire GPU. You can actually run a bunch of the smaller things next to them, so you end

up actually using a lot less GPU in your in your machine, in your cluster with this thing. The
problem is there is no enforcement. If some process that you're running decides to suddenly do

something nasty, nothing stops them from actually hogging all the memory on the GPU and
causing huge problems for everything else that is actually being run there.

You can only really run, do these things in an environment that you actually trust other

processes, which is actually the case for us, because we can actually predict how much
memory each one of our models actually need, because they usually allocate at the very

beginning and that's it. Then they're just flat still. Yeah.

That's a story of the adding GPUs. These days, people actually, I guess very recently Kube flow
is added. It's a lot easier, but I guess we were the very first company that actually started using

© 2018 Software Engineering Daily �31

SED 572 Transcript

this and we look forward to actually even, use it even more, and it's an internal part of our

business.

[1:09:08.2] JM: All right. Habib Talavatifard. Questions?

[1:09:13.9] PARTICIPANT: How do you manage Kubernetes in AWS? Do you do it ourselves or
do you use –

[1:09:18.5] HT: We use ECR. That's why we added the support for this ECR basically.

[1:09:23.8] PARTICIPANT: What did you say? E?

[1:09:25.1] HT: Yeah, that's the container or something. That we go. Registry. Yeah.

[1:09:30.3] PARTICIPANT: No, I mean, Kubernetes itself. For example the Kubernetes worker,

do you guys install and provision the Kubernetes workers yourselves?

[1:09:39.2] HT: Yeah, yeah, yeah. We actually provision the machines ourselves manually.

[1:09:44.6] PARTICIPANT: Cool.

[1:09:45.4] PARTICIPANT: Do you provision bare metal servers for the GPUs to run efficiently,
or how does – do you provision VMs?

[1:09:53.1] HT: You can do both actually. There are cases that you want to do VMs. For

example if you have an experimental setup. You can actually give the entire experimental setup
to the Kubernetes and then no one can touch anything, but some researchers or AML machine-

learning engineers will be not very happy that they don't have direct access to the GPUs. One
thing you could do is you could actually run two VMs and give half of the GPUs and resources

and everything to one of the VMs, and give another half to everyone and then run Kubernetes
on the second VM, while if the first VM is actually kind of while this, everyone can go for it, stuff

like that.

© 2018 Software Engineering Daily �32

SED 572 Transcript

[1:10:35.8] PARTICIPANT: One more unrelated question. How do you do the feedback loop of

once you classify image, how do whether it's right or wrong? How do you get that feedback loop
and sort of –

[1:10:46.0] HT: Yeah. Our API actually has a full evaluation suit, which you can actually run on

the models that you customize yourself. One thing that is supports that I didn't mention or plus,
or you could actually be able to cost your own custom mods and you can evaluate those. That's

one part of this evaluating those.

The models that are pre-built and you cannot customize, like the general model NSFW, we
actually pretty much do a lot of experimentations and evaluations before we shoot them. All the

normal stuff that everyone does, having test sets, looking at the different metrics that you want
to actually have in a multi-label classification.

Actually I showed one of you the chart of true positive, versus true negatives. You look at all

those metrics and only then those things are actually good enough across the board, we
actually ship those previous models. Interestingly actually the code that we use to evaluate

those previewed models is the same as the code that is actually in the API who's exposed to the
users. They get work on the same principles on everything.

[1:11:58.8] PARTICIPANT: What's your container format?

[1:12:00.4] HT: We use Docker basically. It's probably amazing.

[1:12:03.1] JM: Any other questions? All right. I think we’re good. Thanks Habib.

[1:12:06.9] HT: Thank you.

[1:12:10.5] JM: Now we'll hang out for another 15, 20 minutes and chat or take off whatever

you like. Yeah, I want to thank the speakers Mike and Habib and thank Datadog of course for
hosting this awesome meetup, and all of you for showing up, because this was an awesome

community, really great conversations. Thank you all.

© 2018 Software Engineering Daily �33

SED 572 Transcript

[END]

© 2018 Software Engineering Daily �34

