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[INTRODUCTION]

[0:00:00.3] JM: Rajat Monga is a direct of engineering at Google where he works on 

TensorFlow. TensorFlow is a framework for a numerical computation developed at Google. The 
majority of TensorFlow users are building machine learning applications such as image 

recognition, recommendation systems and natural language processing, but TensorFlow is 
actually applicable to a broader range of scientific computation than just machine learning. 

TensorFlow has APIs for decision trees, support vector machines and linear algebra libraries. 
The current focus of the TensorFlow team is usability. There are thousands of engineers building 

data-intensive applications with TensorFlow, but Rajat and the rest of the TensorFlow team 
would like to see millions more. 

In today’s show, Rajat and I discussed how TensorFlow is becoming more usable and more 

accessible and we also discussed some of the developments in TensorFlow around edge 
computing, TensorFlow hub, which allows people to share modules of their TensorFlow 

applications, and we also talked about TensorFlow.js, which allows TensorFlow to run in the 
browser. We’ll have an upcoming show about TensorFlow.js where we’ll do a deeper dive in the 

near future. 

If you want to hear the previous episode that we recorded with Rajat as well as some other 
episodes about TensorFlow, Keras and other related topics to machine learning, we have all of 

our episodes in the Software Engineering Daily apps for iOS or android. We’ve got tons of 
episodes on blockchains, distributed systems, business, lots of other topics. You can also find 

all these episodes at softwaredaily.com. If you want to become a paid subscriber to Software 
Engineering Daily, you can hear all of our content without advertisements and you can 

subscribe at softwaredaily.com. Also, all of the code for our apps and our websites, it’s all open 
source. If you’re looking for an open source community to be a part of, you can come check it 

out at github.com/softwareeningeeringdaily. We’d love to have you as part of our community. 

Thanks for listening, and let’s get on with this episode. 
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[SPONSOR MESSAGE]

[0:02:16.1] JM: This episode of Software Engineering Daily is sponsored by Datadog. With 

automated monitoring, distributed tracing and logging, Datadog provides deep end-to-end 
visibility into the health and performance of modern applications. Build rich dashboards, set 

alerts to identify anomalies and collaborate with your team to troubleshoot and fix issues fast. 
Try it yourself by starting a free 14-day trial today. 

Listeners of this podcast will also receive a free Datadog t-shirt at 

softwareengineeringdaily.com/datadog. That’s softwareengineeringdaily.com/datadog.

[INTERVIEW]

[0:03:02.6] JM: Rajat Monga, you are the director of engineering at TensorFlow. Welcome back 
to Software Engineering Daily.

[0:03:07.7] RM: Thanks, Jeff. 

 
[0:03:08.5] JM: The last time you came on the show, we talked about some of the basics of 

TensorFlow and your work on the framework. Today I’d like to talk more about the progress of 
machine learning and how you are seeing that through the lens of your role on the TensorFlow 

team at Google. Let’s just talk about machine learning developments to start with. What are the 
machine learning developments in the last year that have surprised you? 

[0:03:36.9] RM: I don’t know if they’re surprising. They’re all making great progress in the 

direction we started in, the pace of progress is fast of course. A number of exciting areas that 
have been some of the progress in robotics where you can now learn from other humans, you 

can learn from simulations rather than needing lots and lots of data. Progress in areas where 
you can learn with less data has been very, very interesting. The progress on the generative 

models with the — Especially the generative adversarial networks and the variations of that has 
been really great and we’re seeing some amazing things that they’ve been able to create as 

well. 
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Then we are starting to see very exciting — Again, from a research perspective, exciting ways 

where people are trying to mix this with other things that people do. For example, in the music 
domain, the Magenta Project has made a lot of progress in combining some of these creative 

techniques from machine learning with artists and see how the two can work together and come 
up with very interesting pieces of music.  

 
[0:04:46.1] JM: You gave a number of interesting developments. Magenta is particularly 

appealing to me as a musician. I’ve talked to the Magenta Team and I find that project 
particularly appealing because I see it as a — That’s a place where it leverages the human 

computer interaction side of things. They seem to really be exploring how can a machine learn 
quickly from human and learn to collaborate with the human more effectively. 

But on the TensorFlow side which is where you’re focused, the objective of the TensorFlow team 

over the last year has been to make the framework more usable. Why has the goal of usability 
been a top of mind for the last year? 

[0:05:31.2] RM: I think where we started out was enabling new kinds of research, and that 

continues to be important. We definitely want to make sure machine learning continues to 
progress. But then beyond that, one of our big goals has been really to bring all these exciting 

developments, exciting advancements to many more people across the world. To do that, we 
really need to make software. We need to make tools that are really, really easy to use, right? 

So with TensorFlow, the goals have been you don’t necessarily need to understand all the math. 

You don’t necessarily need to understand even back propagation because a lot of that is taken 
care for you. Then just in terms of the library, the API, going from the lowest level where you 

have full control, we’re trying to go higher and higher where you get to do things and then slowly 
you can — As you learn more, you can do more interesting things or more different things. But 

just to get started, it should very, very easy. 
 

[0:06:31.6] JM: What are some of the more specific usability efforts that you focused on?

[0:06:37.5] RM: So I think a couple I’m really excited about. So one is what we call eager 
execution, and what that does is what TensorFlow — What it started with was this idea of you 
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build a graph and then you execute it and the graph represented the machine learning model. 

The reason we did that was that really allows us to optimize it using a lot of the compiler 
techniques and really scale it out across large scale distributed systems and so on. Now, that’s 

great, but what that does is when a developer starts out, they have to think about that graph and 
think about it that way. 

With this new idea of eager execution, the idea is you don’t have to build a graph, you’re just 

programming. If you’re familiar with Python, you’re just writing Python cord and that internally 
just executes TensorFlow cord and is optimized for CPUs, GPUs, TPUs, whatever, and then — 

So it takes away one of the things that you have to think about earlier and just makes it a lot 
easier and more natural in Python itself. 

Now going from there to scaling, you still have all the good stuff that you used to have at 

TensorFlow, so you can still use pretty much the same cord and create a graph from that 
instead, or scale it out to a really large cluster if that’s what makes sense. But it really allows you 

to cut that friction down and starting out. So that’s one. 

Another interesting piece has been just the high level APIs we started to invest in building these 
ideas of layers and models and so on. What we realized — and we have François Scholly here 

as well who’s the author of [inaudible 0:08:15.1], and that was an exciting way for our 
developers to access these models to access deep learning as they’re getting started. We really 

worked to integrate that right into TensorFlow and make it really easy to get started with that as 
well.

I think for typical Python developers, those are two big things. I would say there’s a different 

class of developers almost, some people who are like different languages, JavaScript being 
one, especially on the web, and that’s another area that I’m happy to talk about. There’s tons 

that’s happened there as well, if you brought TensorFlow to the web browser as well.
 

[0:08:50.8] JM: Yeah, we could just jump in to TensorFlow.js. That was a recent announcement, 
and this allows for training and deployment of machine learning models in JavaScript, but what 

are the domains in which people want to use JavaScript for machine learning? 
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[0:09:07.6] RM: I think we are just starting out. So there are a number of things that we can 

think of, right? Often, we push — We’ve seen overtime that people want to do machine learning 
outside of the data center as well. Over the last couple of years, we have seen people push 

these things on phones and so on. 

Over the last year, some folks, some developers on our team said, “Okay. What if we could do 
more in the browser? What if we could accelerate it?” There were some libraries before that 

would do the basic math, but what these guys did was not just take those ideas that we did in 
the data center, but also accelerate them in the browser using the GPU or whatever you have 

on your machine. So it can go pretty fast. 

Now, with that, what we’ve seen is areas where — The first one that comes to mind is you want 
to get started. You want to teach people something. You have demos to show. You can include 

ML and all of those. So we have some very exciting things that people have built. People have 
built games in the browser using different kind of gestures, etc. Also, once it’s in the browser, it 

has access to your camera if you wanted to. It has access to your audio stream if you wanted 
to, and you can do pretty interesting things in combining all those together. 

 
[0:10:26.2] JM: Is that important because you can have learning take place on the client side 

device and not necessarily have to shuttle the data back to the server?

[0:10:37.8] RM: That’s definitely a part of it, I think. The other part I would say is the fact that 
you don’t have to install anything. You just go to this website and it works. It’s a no-install. 

Completely, you go someplace and it’s just working. I think all of that, again, reduces the friction 
for a developer and beyond that, the users as well to get started, which is a huge value.

 
[0:10:59.8] JM: When you say TensorFlow runs in the browser, does that — Well, or 

TensorFlow.js, it runs in the browser. Does that meant that these — What had to be built in order 
to implement that? because I know TensorFlow runs in many different languages, but I’m 

wondering what that actually means. Does that mean that you can write the code for models in 
many different languages or that you have defined interfaces for compiled models to interface 

with those languages? What exactly do you have to define to say that you’ve ported TensorFlow 
to a different language? 
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[0:11:38.3] RM: Right. I think there are a number of things that happened with different 
languages and browser is somewhat special in some ways. Often, what we do for different 

languages and to people who have used Scala, Java, even Julia and many other languages 
really who do that. What we often do is TensorFlow has an API that offers access to all the 

operations that it provides, offers access to just execution of these operations or building graphs 
and all of that stuff. 

Now, often, for these languages what that means is they create rappers around these functions 

and these operations and make them available in that language so people can then build on top 
of that, people can again build their own models there, or more often just models that have been 

trained, say, using Python, the more common one today, and then take those models and really 
execute them from a different language. Now, all of these typically uses the same TensorFlow 

runtime and the backend that we have, which can scale and do all of that stuff. 

In the browser, the interesting thing is you don’t have access to all these other backend, 
because that’s in C++, the browser doesn’t allow you to do it for good reasons, for security. So 

in the case of the browser, we actually took the same APIs that TensorFlow has in many other 
languages and really wrote a custom backend or a custom optimized operations for these that 

can run in the browser and that are potentially accelerated using techniques like WebGL, which 
give JavaScript code in the browser. 

So on the JavaScript side and the browser, you can build your models with JavaScript or, again, 

you can take models that were trained in TensorFlow device, convert them using a tool and then 
run in the browser using all these APIs.

 
[0:13:35.4] JM: So when I build and train a model in Python using TensorFlow, the end result is 

a model that runs — It requires C++ to run. Is that what you said?

[0:13:51.1] RM: Right. Behind the scenes — When you write your code in Python, behind the 
scenes most of TensorFlow code is written in C++. It’s all compiled, so you don’t care. But that is 

a library or a binary that’s running there and that isn’t something that can be shipped to the 
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browser, but for most other languages, that’s what it’s used, because it really allows us to 

optimize that down to whatever we need to.
 

[0:14:16.0] JM: You had to write some kind of interpreter to translate that C++ code, the model 
that would run in C++ to some minified JavaScript version that could run in the browser?

[0:14:32.1] RM: It’s actually a number of things there. One, in the browser, we defined a nice 

interface that the developers can code against. Then from taking the model and deploying it, the 
model itself is not in C++. The execution engine is in C++. One way I like to explain that is you 

could think of the model as your Java byte code. You write a Java program. In this case, you 
write often in Python, but it could be in Java too. Then when you sort of train the model or you 

execute it, eventually we get this graph, which is sort of our byte code or an intermediate 
representation, and that’s represented in proto buffers typically along with some information and 

the weights in the data, etc. It’s this intermediate representation that’s really converted into an 
optimal format for the browser, and then the code in the browser actually interprets that.  

[0:15:29.4] JM: All right. Okay, it’s in a protocol buffer after you train the model. So in the 

browser, you need to define a way to interface with that proto buff. Is that what you said?

[0:15:41.7] RM: That’s correct. Think of that proto buffer as really defining a simple program 
that represents your model and the browser has code that, interprets that basically and 

executes that model.
 

[0:15:54.8] JM: This reminds me of, I think, when I was reading about some of the other 
announcement, the recent TensorFlow announcements, there was TensorFlow Lite, which is 

another model for running TensorFlow in less resource, or a resource-constrained 
environments. I think in those environments, you actually want to define not a protocol buffer, 

but — Was it a flat buffer? Is that right?

[0:16:20.5] RM: That’s right. That’s another format that’s used that’s optimized for those 
environments that uses less memory. It’s easier to get started. It’s faster to get started and so 

on.
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[SPONSOR MESSAGE]

[0:16:39.6] JM: The octopus, a sea creature known for its intelligence and flexibility. Octopus 

Deploy, a friendly deployment automation tool for deploying applications like .NET apps, Java 
apps and more. Ask any developer and they’ll tell you that it’s never fun pushing code at 5 p.m. 

on a Friday and then crossing your fingers hoping for the best. We’ve all been there. We’ve all 
done that, and that’s where Octopus Deploy comes into the picture. 

Octopus Deploy is a friendly deployment automation tool taking over where your build or CI 

server ends. Use Octopus to promote releases on prem or to the cloud. Octopus integrates with 
your existing build pipeline, TFS and VSTS, Bamboo, Team City and Jenkins. It integrates with 

AWS, Azure and on-prem environments. You can reliably and repeatedly deploy your .NET and 
Java apps and more. If you can package it, Octopus can deploy it. 

It’s quick and easy to install and you can just go to octopus.com to trial Octopus free for 45 

days. That’s octopus.com, O-C-T-O-P-U-S.com.

[INTERVIEW CONTINUED]

[0:18:10.1] JM: What are the tradeoffs you make — If you train a model and you throw it into a 
proto buff versus a flat buffer, what are the tradeoffs you’re making? 

[0:18:20.4] RM: So from the model developer’s perspective, it really doesn’t matter. They both 

represent the exact same thing. You can have the same kind of model running in the browser or 
on the device. The difference is more from — These are formats that were built for different 

reasons, and the reason the protocol buffers are interesting and why we started from them, they 
offer a lot of flexibility. We use protocol buffers for lots of different things and storing things 

where they might change overtime, so versioning, etc. They’re really, really good at that. 

Flat buffers still offer some of those advantages. They still have some of that flexibility, but they 
tradeoff some of the other flexibility for providing, making it really lightweight, because if you 

want to deploy to, say, a small phone or even a tiny device, you really want to optimize for that 
last bit of space. When you get started, say, when you load the model the first time, the way a 
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flat buffer is encoded, it’s just much faster to get started, so the overheads are lower there. 

You’re trading off a bit of flexibility for a bit more performance there. 
 

[0:19:30.5] JM: I see. So it’s not about execution as much as perhaps the format itself. So 
protocol buffers are used for microservices and all kinds of other things throughout Google and 

they’re widely used outside of Google as well, but you may not use flat buffers for defining 
interfaces for your microservices. You want to use flat buffers more specifically for these kinds of 

domains, like resource constrained, machine learning execution environments. 

[0:20:04.6] RM: Exactly. In fact, I believe they were built initially for game developers, for 
gaming kind of environments. 

 
[0:20:11.0] JM: Speaking of devices and IoT machine learning deployments, are there devices 

on the market that maybe they’re just type of devices where we would love to deploy machine 
learning models to them, but because of legacy technology, I’m thinking of industrial 

environments, maybe oil rigs or agricultural situations, are there computers running in these 
environments where we can’t yet deploy machine learning models to them just because of the 

way that they compute infrastructure was built?

[0:20:46.2] RM: I would say not really. Today, where we are, I think we can deploy machine 
learning to pretty much every place you have a computer. Now, of course, depending on your 

environment how you take advantage of it and how it’s connected to what you have there is 
different. If you in a legacy environment, if you don’t have access to all the sensors that you’re 

collecting data from on that computer, you’ll not really gain much value out of it. 

But that said, if you have a computer — And you don’t need a lot of computing power for some 
of these deployments, you can really deploy things now. In fact, one goal that we have, we want 

to make sure that TensorFlow Lite was — This was a big reason to build TensorFlow Lite, that 
we want to make sure anytime, anyplace, wherever you are, if you have a computing device, 

you should be able to run machine learning on it, because if not now, you will want to do that in 
the future.  
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[0:21:45.9] JM: Are there other tradeoffs that the developer needs to keep in mind when 

optimizing for resource constrained environments, whether we’re talking about mobile devices 
or sensors in an agricultural field?

[0:21:59.5] RM: Definitely. So from these devices perspective, if we’re used to our workstations, 

or laptops, or even tablets, those have a lot of memory space and the kinds of things that they 
can do. As you start to go down to these smaller sizes and form factors, it’s as if you are like 20 

years ago where desktops were, and you’re constrained. The amount of memory you have is 
much less, the amount of storage space you have is much less. So you have to be careful about 

what you do with it. You say on a workstation you’d be fine starting with, say, just writing a 
simple loop that just works, and maybe on your workstation, that takes a second or even less to 

execute. 

Now, you run the same thing on this tiny device and it might take 10 times that because of the 
compute power, because the LAN capacity and so on. So you have to think about that as you 

write the code for these kind of environments.
 

[0:23:06.0] JM: TensorFlow started with an emphasis on deep learning and neural nets and 
now there’s a wider array of libraries available. So within TensorFlow, you can interface with 

decision trees, and support vector machines and linear algebra libraries, and when I think about 
those features, it starts to look more like a flexible mathematical tool that’s not necessarily 

constrained to machine learning operations. Do you see TensorFlow being a tool that could 
have the functionality of other scientific computing tools? I’m thinking MapLab, for example. 

[0:23:45.8] RM: Absolutely. I think that at its core, when we designed TensorFlow, we wanted to 

layer things in. The core itself is really a numerical computation library exactly as you said. You 
can build lots of different things on top. Of course, the first thing we started with was deep 

learning in neural networks, but as you’ve seen, a lot of these different things have been built, 
some by us, some by other teams at Google, and many by folks outside Google as well, 

because they see this core computing library that offers a number of things. It offers a support 
for distributing across many nodes. So like in the scientific use cases, you want to use a super 

computer, you can do that with TensorFlow. If you want to accelerate your cord on accelerators, 
like GPUs or TPUs, you can do that with TensorFlow. You are not limited to the CPUs itself. 
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So it offers a lot of the advantages, the good things that you want for a math library, from a 
numerical computation library. Then on top we’ve layered really nice APIs and so on that you 

can directly interact with or build other kinds of things on top, and that’s what you see with all 
these different libraries and probability or linear algebra and so on.

[0:24:58.5] JM: It really expands my — What I think about TensorFlow, the potential of it, 

because initially I saw TensorFlow and I think, “Oh! This is a machine learning library that’s like 
Torch or something like that,” but thinking more about the name, TensorFlow, all that really 

means is a multidimensional matrix of numbers that is positioned through a dataflow graph. If 
you just think about numbers flowing through a dataflow graph, well, what that symbolizes from 

a computer scientists, from a programmer’s perspective, is a much broader array of tools. I 
haven’t thought deeply about where that could potentially go. Do you have an idea for any kinds 

of applications that somebody could build with this kind of framework that maybe we can’t even 
— Somebody wouldn’t really be able to build today or people are not building with TensorFlow. 

What is your grandest ambition for the kinds of applications that people might be building with 
TensorFlow in the future?

[0:26:10.1] RM: Some of the AIs that we are already to see some interest is you talked about 

scientific applications at large scales. A lot of these are on scale super computers. Now, we are 
seeing some of those are simulations. So let’s say weather patterns you’re simulating what it 

might be in a day or two. Now, often what people want to do, and it’s interesting where they 
want to mix some of these simulations with the machine learning side so they won’t apply deep 

learning models to some of these predictions as well. 

Where we started seeing people doing is already applying deep learning and scaling it and 
running TensorFlow on these huge super computers to do these machine learning things. I think 

what we’ll see more of is combining that with the simulations as well, and so you have one 
environment, one computer platform where you can do all these kinds of things. I think at the 

large scale, I think that’s really, really exciting to me. 

On the other side, you were just talking about devices, there are lots you want to do on the 
really remote at the edge, because more and more, you talked about these industrial places 
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where you have these tiny devices and so on, I think all of them are collecting data, all of them 

have sensors today. The reason to have them is you can make smart decisions about what’s 
happening. 

Now, it’s not really feasible to ship all that data back to some cloud and process it. Often, it’d be 

very valuable to run these things on those devices, and prediction is one part of it, but now that 
you have a platform that allows you to do a bunch of things, maybe use the existing [inaudible 

0:27:48.9] we have, maybe you build your own things custom for what you have and really do all 
of those in one single platform. I think that’s going to be really exciting. 

[0:27:57.3] JM: Not just the model of doing computation at the edge, but there’s also the 

middleware device potential where if you have cars driving around that have computers in them 
or you have drones flying around that have computers in them or you have people’s 

smartphones where maybe they have spare compute cycles and if you had people walking 
around with their smartphones that had spare compute cycles and you’ve got — I don’t know, a 

machine learning streetlight that is needing to do some kind of computation, it can maybe 
offload some of that computation on to nearby cellphones. The model for TensorFlow of being 

able to distribute computation among different nodes seems like it’s well positioned to have that 
kind of computation distribution potential.  

[0:28:50.0] RM: That’s right. Those are some really interesting ideas. Yes, having a platform 

that lets you do things like that and combining this computation and distribution potential to 
access different kind of computation will definitely enable new interesting ideas and 

combinations of those. 
 

[0:29:06.2] JM: Yeah. It’s one of those things where you can see that future evolving, and I can 
just imagine, it must be very hard to design, because obviously you don’t want to prematurely 

optimize for that kind of future, but at the same time you do want to leave design space open for 
that kind of future. Is that something you even think about or do you think it’s something where 

you’ve designed software for long enough that it becomes intuitive, the kinds of abstractions that 
you want to build where you don’t paint yourself into a corner or unable to take advantage of 

that kind of future. 
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[0:29:41.7] RM: Yeah. I think it’s a bit of both. Yes, the experience that we or many folks on the 

team have had designing systems like this definitely helps. We have a lot of really smart 
engineers who’ve done — Build amazing systems here before. That definitely helps in designing 

basic APIs that are more likely to succeed. That said, we don’t always get things right. 

One of the important things that is in the world of today with changing things and so on and 
especially with something like TensorFlow is to keep in mind, keep an eye out for what do 

people want to do with this and learn from that. You don’t want to just get stuck that, “Okay. This 
is our design. This is where we were and we’re not going to change it.” A good example that I 

see there is how we switch from just starting with pure graphs to now executing code directly as 
well. I think adding that new thing was hard. We had to rethink certain things, but now that we’ve 

done it and over the last year I think it’s really improved the platform a lot and it’s more 
accessible to many more users. You don’t want to get stuck with, “Okay. Here’s just where it is.” 

Yes, you may have really great designs. Often, we do, but not always. We’re still learning, and I 
think we’ll continue to improve. 

 
[0:31:04.9] JM: Another recent development was TensorFlow Hub, and this allows for reusable 

parts of machine learning models. This sounds very appealing. What is an example of a 
reusable module?

[0:31:19.6] RM: I can think of a couple of examples. So on the tech side, often you have this 

idea of embeddings, which are basically representations, vector representations of things like 
words or sentences, and these are interesting because you might train these ones on, say, 

some text data that you have and often you don’t have to have label data. This is just regular 
text that you’ve been trained on. 

What they might do often for word embeddings is the way these embeddings work is those 

embeddings are really — Think of those as points that represent those words in a really high 
dimensional space where words that mean similar things are closer to one another and words 

that mean different things are farther away. 

These are very useful for lots of different text kind of models for natural language processing 
models. It turns out you can train them once on a reasonably good carpus and use them for lots 
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of different things. That’s one thing that’s I think very, very useful and that’s something we offer 

there. 

Another one that we’ve seen is, often, if you’re doing, say, some kind of image classification or 
something, on a very custom task, you have your own dataset. You might have a really small 

dataset, say, 100, 200 images across a few different classes. Now, clearly, you can train a really 
large model just on that small dataset. However, it turns out that we and many others have 

trained these really good models on super large datas. It’s like the image net database, which is 
about a million images that’s available externally. 

We’ve trained models on that dataset and it takes a lot of computing power, like the example 

that I was talking about recently in terms of low hub. Our best in class model took about, I think, 
something like 60,000 GPU hours to get that kind of accuracy. Clearly, not everybody can train 

that model. But what you can do is take that model and really take the features from that model 
and use that for your task. 

We make the core model available and that’s accessible to you with the weights from 

TensorFlow Hub. So while training your custom model on your task, you can just take that and 
just execute that to get the features and it helps you a lot with your task. You don’t really have to 

go through that huge computational burden, and it’s really exciting that you can get started 
pretty quickly. 

 
[0:33:46.8] JM: When someone posts a model on TensorFlow Hub, do they also have to post 

the dataset that trained the module that — For example, if I train a word to vec model, if 
somebody else wants to use that word to vec model, then they could be concerned about the 

bias associated with how that model was trained if they don’t have access to the dataset. Do 
they users who post modules also have to post the datasets associated with them?

[0:34:20.4] RM: That’s not required. Some of these datasets that we use or others use are 

public datasets that are available and you might find information about those. However, we don’t 
want it a requirement that you need to have a dataset. That said, for the specific issue that you 

mention where you might have biases, etc., we also have a number of tools to help you 
understand biases, to analyze the models themselves. For example, there was a specific tool 
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called TensorFlow model analysis that we just released as part of our overall TensorFlow 

extended suite of things to provide you the bigger machine learning pipeline itself. 

There are a number of other tools as well that we have that help you just understand those 
models for different kinds of biases and we definitely hope to help, continue to work on that as 

well. 
 

[SPONSOR MESSAGE]

[0:35:20.6] JM: Users have come to expect real-time. They crave alerts that their payment is 
received. They crave little cars zooming around on the map. They crave locking their doors at 

home when they're not at home. There's no need to reinvent the wheel when it comes to making 
your app real-time. PubNub makes it simple, enabling you to build immersive and interactive 

experiences on the web, on mobile phones, embedded in the hardware and any other device 
connected to the internet. 

With powerful APIs and a robust global infrastructure, you can stream geo-location data, you 

can send chat messages, you can turn on sprinklers, or you can rock your baby's crib when 
they start crying. PubNnub literally powers IoT cribs. 

70 SDKs for web, mobile, IoT, and more means that you can start streaming data in real-time 

without a ton of compatibility headaches, and no need to build your own SDKs from scratch. 
Lastly, PubNub includes a ton of other real-time features beyond real-time messaging, like 

presence for online or offline detection, and Access manager to thwart trolls and hackers. 

Go to pubnub.com/sedaily to get started. They offer a generous sandbox tier that’s free forever 
until your app takes off, that is. Pubnub.com/sedaily. That's pubnub.com/sedaily. Thank you, 

PubNub for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:37:03.5] JM: I want to zoom out to some of the other associated discussion that you 
mentioned at the beginning of the conversation and some things that were touched on at the 
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TensorFlow Dev Summit. AutoML is a project that Google is working on to allow people to train 

custom machine learning models without thinking much about how that training is actually 
proceeding. Has the — I don’t know how much — Do you spend any time on AutoML or are you 

mostly focused on TensorFlow?

[0:37:36.3] RM: So my focus is primarily TensorFlow. I know a lot of that work. I mean, a lot of 
those folks sit here as well. I know a lot of those researchers. Yeah, my focus is definitely more 

on TensorFlow. 
 

[0:37:48.1] JM: Okay. Have there been any learnings from the AutoML team that have impacted 
how you’re designing TensorFlow?

[0:37:56.2] RM: A few things I would say. One, this is another area where, to me, AutoML works 

is it’s trading off more human expertise, more computation. So having TensorFlow really be 
optimized for these kind of things is really, really important. I mentioned 60,000 GPU hours that 

was used for training one of the AutoML models, and when you’re getting at that scale, if the tool 
is not optimized, if it doesn’t perform, it doesn’t take advantage of the machines and the devices 

as much as it can, then you’re really wasting a lot of resources. That’s definitely been one. 

Another is more — It’s been interesting to see how AutoML can optimize for different kinds of 
environments, one of the things that they were working on was optimizing models for 

deployment on devices. Even though they are being trained and they’re being optimized to get 
really high accuracy, they’re also being optimized for deploying on devices so they into account 

the kind of computation you can do there or how it’s going to take and there’s a budget maybe 
that you have and you want to balance for that. So those were clearly interesting and sort of 

leveraged all the pieces that we have in TensorFlow as well.
 

[0:39:14.0] JM: I’ve heard a lot of emphasis recently on transfer learning. What is transfer 
learning and why is it so important? 

[0:39:22.0] RM: So this is sort of the example that I was talking about for images. Let’s say you 

have an example where you just have a couple of hundred images, say, across 4, 5 classes. 
Now, if you want to train a really good model for those, it’s going to be hard for just these few 
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images. You’re not going to get a very accurate model, if you start from scratch, if you have no 

idea even if you use the best description of the model that people have had from research.

What people often do for cases like this is exactly what you would get from model hub, 
TensorFlow Hub, which is where you have the entire model pre-trained on a different dataset, 

and often it’s image net which has a million images or more, and then you’ve trained it on that it 
turns out because images often of natural kind of things are similar in natural. Most of that 

model you can really use for a different kind of application. Even for, say, you had a dataset for 
identifying five kinds of birds, you can reuse most of that model. You take that as a module, you 

plug that in and just train a small classified on path. This is called transfer learning basically 
where you’re taking the ideas and learning form one dataset and transferring it to another 

dataset, which may not necessarily be large enough for this. 

[0:40:41.0] JM: Is there any necessary work to make transfer learning a first class citizen in 

TensorFlow? Do you try to make transfer learning easier to implement?

[0:40:53.0] RM: Yes. We allow you to easily control what you’re training, what you’re not, easily 
port models or take parts of modules like these modules with the TensorFlow Hub where you 

can say, “Okay. I have already this pre-trained model from this other task. I want to take this. I 
want to just change the stop here, change the classified.” All that is really easy. We have 

tutorials to do that as well. We have examples and so on. 
 

[0:41:17.9] JM: Another development that you mentioned earlier was GANS, the generative 
adversarial networks. What are the use cases where GANS are useful?

[0:41:27.7] RM: So GANS are interesting for a number of areas. Often, the basic idea is there’s 

one network that’s trying to create something, that’s trying to generate something, and there’s 
another network that’s trying to separate that or discriminate that from whether that’s real or not, 

from real data or not, right? This forces the first one to keep getting better and the second one 
to keep pushing it harder and harder and so on, and that’s what allows it to learn. That’s the 

very basic there. 
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These can be useful generating different kind of things. Often where we are starting to see them 

is for generating images where people are generating — There was this interesting work from 
folks at NVIDIA, I believe, where they train it on lots of celebrity pictures and then let this model 

generate different kinds of pictures. If you look at those pictures, they look very clear. They look 
like real people, but they are really just figments of imagination of this model, and they’re 

starting to look pretty realistic. This is a fun example. 

I’ve seen real companies use that for designing new clothes, for coming up with new kinds of 
patents for clothes, for new kinds of styles. So we’re starting to see some real applications of 

that in the industry as well.
 

[0:42:50.3] JM: Yeah, I don’t know if you’ve seen, but there are these generated fashion models 
on Instagram where they’re not real people, but they have thousands and thousands of 

followers and people have created these fake human beings and then they just put some 
influencer marketing behind it. Like they’ll make a fake person and then show the person 

wearing Nike clothing and sell that to Nike, and they’ve got 60,000 Instagram followers, and it’s 
just like not a real person, but people are purchasing advertising against this non-real human 

being. It’s kind of a — I don’t know. One of these things where it’s like, “Wow!” It really feels like 
you’re living in the future when you have 60,000 Instagram followers to an artificial human being 

on a social network.

[0:43:39.5] RM: Yeah. Those can get tricky as well.
 

[0:43:43.0] JM: Definitely. How has the TensorFlow model debugging experience advance? 
Because you have people who train models and then they want to improve those models and 

maybe they have some issue with the model that keeps coming up, like the model keeps 
tagging. Whenever it sees a book tags, that book is a computer, because it’s also rectangular 

shaped. You don’t exactly know why it’s tagging the books as computers. How does the 
debugging process advanced?

[0:44:14.1] RM: There are a number of things that we’ve done in this direction, and like we talk 

about those one by one. One is the debugging from the — Just as you’re building a model, you 
want to understand maybe the model is not working and so on and you want to understand that 
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better. That’s an area we think the whole idea of eager execution, where you’re basically writing 

just Python code. What that enables you to do is to debug with Python tools. 

Any tool, any library you have in Python or just your basic Python debugger, you can do 
whatever you want with it. You can set breakpoints. You can print out stuff. You can visualize 

stuff using standard Python libraries and so on. That’s sort of one direction. 
 

Two, for a similar thing, sometimes you do want the graphs because they can be optimized 
much better. They can be deployed across the distributed cluster and so on really, really well. 

Let’s say you have that. For that, we have something called a TensorFlow debugger, which now 
we recently announced this visual integration with TensorBoard as well so you can actually — 

It’s like your debugging environment that you might get an idea and it looks really cool and it’s 
great to debug. Those are from early programming debugging style things. 

Some of the other things you mentioned were around, okay, understanding a model or 

understanding a specific mistake, let’s say, that the module made. I think from a research 
perspective, there’s been a lot of progress interpreting these models. So for a specific example, 

if it makes a decision or a classification, there are these tools that can help you really try and 
understand what parts of the inputs did they come from. 

For example, for an image, and you mentioned a book, it’s classified as something else. You 

can see what part of that original image made the classified, made that model think that that 
was the case. Then you can use some of this information. You can also look at different parts of 

your model itself and you can use all that information to learn and think about ideas to improve 
that as well. 

 
[0:46:18.9] JM: I was at the TensorFlow Dev Summit in 2017. I was unable to make it this year. 

At the 2017 event, there were presentations of applications for detecting skin cancer and 
diabetic retinopathy with machine learning models, but these applications were only being used 

in laboratory environments, and I saw these and I got excited because I was thinking, “Oh! Over 
the next year, we’re going to be using our smartphone to scan something on our skin and detect 

if it’s a freckle or if it’s high risk and if we need to go into the doctor’s office,” but it’s been a year 
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and I haven’t gotten a smartphone application that does that. My sense is that that’s because 

there is a barrier to getting these tools approved. 

What are the barriers to getting these kinds of low hanging fruit medical applications of machine 
learning, these self-served consumer applications. Why aren’t we seeing more of these yet?

[0:47:24.1] RM: I think from a medicine perspective, there are a number of things, right? There 

are the basic health kind of tools and whether it’s your Fitbit app or your Google Health app and 
so on. The things that runs on your phone and tracks your progress, whether you’re running 

enough or not and things like that. Those can definitely have machine learning today and do the 
basics for you today. 

But beyond that, if you really want to build an application that really complements your doctor or 

helps your doctor make decisions, you need to be much more rigorous and thorough about that. 
There is a good reason why medicine today — If you want to introduce a new medicine or a 

new technique, it needs to go through a process to get approved and the reasons are you don’t 
want to get something out there which will make wrong decisions or which will lead doctors to 

make wrong decisions. You really want to be very, very careful in that. 

So that process takes a while. There are a number of applications like the one you mentioned 
for skin cancer and others that are starting to make their way through that process, and 

overtime I think we’ll just start, we’ll see more of these getting deployed across the board, not 
just in the US but outside the US as well.

 
[0:48:40.1] JM: Something I saw from Jeff Dean’s talk at the TensorFlow Dev Summit this year 

that was unbelievable to me was that the same images that were used to predict diabetic 
retinopathy, just these images of people’s eyes, they could also be used to predict age and 

gender. You have this labeled dataset of eyes, just images of close up eyes and you think, 
“Okay. Great. We’ve got a labeled dataset of eyes.” How useful can that be? Certainly, you can 

detect diabetic retinopathy with it, but the fact that you can predict age and gender is 
remarkable, and I think there’s also — I think there’s been work around predicting risk of heart 

disease just from looking at eyes. Are there other instances you’ve seen where these datasets 
have produced — I guess there’s probably high fidelity, unstructured data that has a lot of detail 
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that is hard to interpret to humans. That’s probably the class of dataset we’re talking about, but 

have you seen any other unexpected predictions that have blown you away?

[0:49:54.7] RM: This one definitely beats everything else I’ve seen. I think — You mentioned 
unstructured dataset, and that’s definitely true. In this case, most people have no idea you could 

do that. As you saw in Jeff’s talk, the folks who are doing this were also extremely surprised. 
This was more just a test and just a process that we were trying to go through to help somebody 

learn about how this whole thing works. 

For other areas, I can see more of this happening as you find these models are incredibly good 
at finding fairly complex patterns of things. So as we provide different kinds of data, I expect to 

see more of these. That said, no, I haven’t seen anything as amazing as this.
 

[0:50:39.3] JM: I wonder what the other datasets that will be worth exploring for this kind of 
thing. I can imagine pictures of planets, and maybe if you have some idea of the chemical 

composition of the atmosphere in those planets, maybe you can figure out more about the 
physics associated with those chemicals that are in those atmospheres, or something like that. 

I’m trying to think of something that’s analogous to these close up images of eyeballs. Nothing’s 
coming to mind, but — I don’t know. Maybe you can let me know if you think of anything. 

[0:51:12.8] RM: Yeah. One of the things that the reason we could actually show that it seems to 

be related and you could predict is that the dataset had the values from the people as well. The 
dataset had the gender value and so on. You could take that out for making predictions or for 

learning and so on. You could learn from that and make the prediction. 

For a lot of the things like the example you said, the hard thing would be you need a dataset 
which has those values first where we have strong confidence because of how that thinks and 

so on. That said, yeah, it will be interesting. I honestly can’t think of any crazy things like this. 
Yeah, I’m sure we’ll see some. 

 
[0:51:51.3] JM: Well, this is what makes me really excited and optimistic about the Google 

project baseline. This is something I’d really like to do a show about. I don’t know if there’s 
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anybody out there that is in the Google baseline project, but I think this is like where 10,000 

people are getting tracked for like 10 years at close fidelity, pretty exciting. 
 

What are some other simple but powerful applications that we’re going to eventually have by 
just combining machine learning and the smartphone?

[0:52:19.9] RM: The most simple things that we see, of course, are you have the phone with 

you. It has things like camera and audio and you use them for interesting things. I’ll give an 
example of something that’s deployed today. So if you buy a Pixel 2, then the camera on that 

device when you take a picture of a person and so on in portrait mode, it basically separates the 
foreground from the background for you and it basically show — It has this effect, it’s called a 

bokeh effect which basically fuzzes the background essentially and makes the person pop out 
really well. This was all done using machine learning on the phone, using existing stuff on the 

device. 

I think the interesting thing on phones and other devices, what’s the information that goes into 
there? What’s the information that this device is getting? In the case of phone, it has all kinds of 

sensors. The most commons one we think off are the audio, the speaker, the vision sensor, the 
camera, and I think the combination of those is going to be very interesting in terms of what you 

do with that on the device itself. 
 

[0:53:31.6] JM: All right. Last year the focus was on usability for the TensorFlow team. What’s 
the focus this year?

[0:53:38.1] RM: I think it doesn’t let up. I would say a couple of things. I think performance is 

where we started is a big thing. Performance and usability continued to be important for us. I 
think last year we had said we see TensorFlow as fast. It’s flexible. We want to be able to do 

amazing things and production ready, so you can deploy these things into real-world 
applications as well. 

So I think from the perspective of where we are, I think it’s important for us to make sure that 

people can really use this in real-world things. So we highlighted a number of things that were 
made with TensorFlow and people are doing some interesting things. We would love to see 
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more of that. We would like to see more integrations with all kinds of real-world applications that 

people use. 

I think we’ll do lots of different things to really bring this to more people, and making it easy is 
just one. Another example is the JavaScript thing, which I think enables a new developer 

community of a different developer community necessarily potentially from a Python community 
which is excited about this and can do lots of interesting things. 

 
[0:54:50.5] JM: yeah, and we’re going to do a show in the near future about TensorFlow.js. 

We’ll be doing a much deeper dive there. Rajat, I want to thank you for coming on the show. It’s 
been great talking to you once again. 

[0:54:59.4] RM: Thanks, Jeff. It’s always a pleasure being here.

[END OF INTERVIEW]

 
[0:55:05.0] JM: GoCD is a continuous delivery tool created by ThoughtWorks. It's open source 

and free to use, and GoCD has all the features you need for continuous delivery. Model your 
deployment pipelines without installing any plug-ins. Use the value stream map to visualize your 

end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add continuous 
delivery to your project. 

With GoCD running on Kubernetes, you define your build workflow and let GoCD provision and 

scale your infrastructure on-the-fly. GoCD agents use Kubernetes to scale as needed. Check 
out gocd.org/sedaily and learn about how you can get started. GoCD was built with the 

learnings of the ThoughtWorks engineering team who have talked about building the product in 
previous episodes of Software Engineering Daily, and it's great to see the continued progress on 

GoCD with the new Kubernetes integrations. You can check it out for yourself at gocd.org/
sedaily. 

Thank you so much to ThoughtWorks for being a longtime sponsor of Software Engineering 

Daily. We are proud to have ThoughtWorks and GoCD as sponsors of the show. 
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[END]
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