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[INTRODUCTION]

 
[0:00:00.6] JM: When you go to a website where a video is playing in your video lags, how 

does the website know that you are having a bad experience? Problems with video are often not 
complete failures. May be part of the video loads and plays just fine and then the rest of the 

video is buffering. You've probably experienced sitting in front of a video waiting for it to load as 
the loading wheel mysteriously spins. Since problems with video are often not complete failures, 

troubleshooting a problem with a user's video playback is not as straightforward as just logging 
whenever a crash occurs. You need to continuously monitor the video playback on every client 

device and aggregate it in a centralized system for analysis. 

The centralized logging system will allow you to separate problems with a specific user from 
problems with the video service itself. A single user could have bad Wi-Fi or have 50 tabs open 

with different videos, and that would be their fault. To identify problems that are caused by the 
video player or the company that is serving the video rather than a user, you need to capture the 

playback from every video and every user. 

Scott Kidder works at Mux, where he builds a streaming analytics system for video monitoring. 
In this episode, Scott explains how events make it from a video player on to the backend 

analytics system running on Kinesis and Apache Flink. Events from the browser are constantly 
added to Kinesis, which is much like Apache Kafka. Apache Flink reads those events off of 

Kinesis and MapReduces them to discover anomalies. 

For example, if 100 users watch a 20 minute cat video and the video stops playing at minute 12 
for all 100 users, there's probably some data corruption in that video and you would only be able 

to discover that by assessing all users, because if you looked at only one user and you noticed 
a problem at minute 12 for that user, well, it's equally likely that the user could have bad Wi-Fi or 

have some problem. That's why you need analytics on everybody. 

Scott and I discussed the streaming infrastructure that he works on at Mux as well as other 
streaming systems like Spark, Apache Beam and Kafka. This episode is one of a short series 
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we’re doing about streaming data infrastructure. I wanted to do some shows in preparation for 

the Strata Data Conference in March in San Jose, and I'll be attending there. Thanks to a 
complementary ticket from O'Reilly. O'Reilly has been kind enough to give me free tickets to 

these conferences since Software Engineering Daily, and I did not have the money to attend 
any conferences. So I am always thankful to O'Reilly in their support of Software Engineering 

Daily. 

If you want to attend Strata, you can use the promo code PCSED to get 20% off. Also, if you 
want to find all of her old episodes about data streaming, big data, Hadoop, you can check out 

the Software Engineering Daily app on iOS or android, which has all 650 of our episodes and 
it’s in a searchable format. We’ve got comments, related links. It's all open-source, which you 

can find by going to github.com/softwareengineeringdaily. I hope you check it out and download 
the app or join our open- source community. We try to be very welcoming to anybody that wants 

to come in and contribute code. 

With that, let's get to this episode of Software Engineering Daily. 

[SPONSOR MESSAGE]

[0:03:44.4] JM: Apps today are built on a wide range of backends, from traditional databases 
like PostgreS, to MongoDB and Elasticsearch, to file systems, like S3. When it comes to 

analytics, the diversity and scale of these formats makes delivering data science and BI 
workloads very challenging. Building data pipelines seems like a never ending job as each new 

analytical tool requires designing from scratch. 

There’s a new open-source project called Dremio that is designed to simplify analytics on all 
these sources. It’s also designed to handle some of the hard work, like scaling performance of 

analytical jobs. Dremio is the team behind Apache Arrow, a new standard for in-memory 
columnar data analytics. Arrow has been adopted across dozens of projects, like Pandas, to 

improve the performance of analytical workloads on CPUs and GPUs. It’s free and open-source. 
It’s designed for everyone, from your laptop, to clusters of over 1,000 nodes. 
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Check out Dremio today at dremio.com/sedaily. Dremio solved hard engineering problems to 

build their platform, and you can hear about how it works under the hood by checking out our 
interviews with Dremio CTO, Jacques Nadeau as well, as the CEO, Tomer Shiran. And at 

dremio.com/sedaily, you can find all the necessary resources to get started with Dremio for free. 

I’m really excited about Dremio. The shows we did about it were really technical and really 
interesting. If you like those episodes or you like Dremio itself, be sure to tweet @dremiohq and 

let them know you heard about it from Software Engineering Daily.
Thanks again to Dremio, and check it out at dremio.com/sedaily to learn more. 

[INTERVIEW]

[0:05:45.3] JM: Scott Kidder is an engineer at Mux. Scott, welcome to Software Engineering 

Daily.

[0:05:49.7] SK: Awesome. Thank you, Jeff. Glad to be here. 

[0:05:51.8] JM: Yeah, we've done a few shows about topics related to what we’re going to 
discuss today. You are an engineer at Mux, and I've talked to the founders of Mux about what 

they're building. It's basically technologies around delivering online video or monitoring online 
video, and I've also done a show about Flink, and today we’re going to talk about the 

intersection of the two, but let's start with the idea of delivering online video. What is hard about 
that? Why is it hard for YouTube or Funny or Die, or nbc.com, all these companies that they 

broker in video? What's hard about what they do?

[0:06:33.9] SK: Great. Yeah, so what makes delivering video difficult is there are so many 
different client-side technologies and network technologies and server-side technologies that 

are involved in the encoding, management and delivery, and ultimately the playback of video. 
There are just a lot of points in the process where things can go wrong. It’s not as simple as 

plugging in an HDMI cable into your television and having it playback seamlessly. It's is a 
complicated process. 
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So what we’re doing at Mux is providing tools to give video publishers insight into that process 

and ultimately provide a better experience for their customers. 

[0:07:16.4] JM: As somebody's delivering video, like if I'm cbs.com and I'm delivering a video to 
a user, what analytics can be generated in that process of the streaming that are going to help 

resolve potential issues? What is the monitor touring output stream look like and where is it 
being generated? Is it on the client side? Is it on the server side? What are the analytics that 

we’re concerned with here?

[0:07:42.6] SK: Great question. So we've got analytics that we get from — In the case of some 
CDNs, we actually get information about time to first byte. So that's the amount of time that it 

takes for the actual video content to start streaming to the end-user device. We also have 
information about the round-trip time, which is the total amount of time that it takes for a video 

segment or manifest or some other video asset to ultimately be delivered to the client and. Then 
we have client-side metrics that include all kinds of different metrics. It kind of represent the 

quality of experience for the end-user, things like buffering, quality shifts up and down as it's 
adapting to changes in the bit rate that's the sustainable for that client connection. 

So we actually get those metrics transmitted from the client devices themselves to the Mux 

service, and over the life of the video playback session, will accumulate all of those metrics, and 
once the video view is finished, we’ll kind of flatten them out and provide a complete picture 

about what that particular user experienced while they were watching a video. 

[0:08:49.5] JM: What are the requirements for building an end-to-end video analytics monitoring 
system?

[0:08:57.6] SK: Right. At the client-side, the first thing that you need is a client SDK, a library 

that allows you to integrate with the video player. So we support HTML 5 and Video.js web 
players. So we can actually tap into events that the player is seeing as it's downloading video 

assets and playing them. So that’s the client SDK side. We also have native SDKs that allow us 
to capture video events for playback in native apps. 
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So the SDKs periodically send beacons that indicate information about what is happening 

during that video playback session, and so those beacons are just sent over a plain HTTP to 
collectors that we have, which quickly throw the beacons on to a Kinesis stream. So, in that 

cases, it’s like a distributed event log that is sharded. So all of the events associated with the 
particular playback session go to the exact same shard, and then we have processors that then 

read from a specific shard and they kind of aggregate all of the beacons associated with many 
different video sessions. So then once those video views finish or they encounter some sort of 

error, we then — Like I mentioned earlier, they kind of flattened it out and compute these things, 
like the overall buffer, the amount of time spent buffering during playback, identifying any errors 

that happened during playback, and we’re then able to compute a picture that represents what 
that particular video view look like. 

[0:10:29.2] JM: If I understand correctly, let's say you've got 10 users that are watching a video 

about a cat, and those 10 users all are watching that video in the browser, and the browser is 
the player — The browser player is logging events to your Mux endpoint, and the Mux endpoint 

is ingesting all of those events. It’s sharding charting them by the individual user, but it's also got 
— What was the word you used? The tags or the markings — What was the word you used to 

associate the different videos — To make sure that you’re sharding by the individual user, but 
you want to be able to correlate that they are all watching, all those different user are watching 

the video. 

[0:11:18.4] SK: Yeah. So we’ve got a shard where it’s sharded by the video view ID. So a single 
user could have and can and will probably have multiple views, but all their views go to the 

exact same shard. So it’s all sharted deterministically. Then we’ve got processors that are 
pulling beacons off of a shard. 

[0:11:37.5] JM: Beacon. 

[0:11:38.3] SK: Yeah. So that the beacons represent just a snapshot in time indicating what's 

happening in the player at that given moment. So then we accumulate all the beacons over the 
life of that video view and then we collapse is all once the view is finished. 
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[0:11:55.9] JM: Right. So with this sharding schema, you basically have a way to differentiate if 

a user — If an error is happening within a video, then you can determine if it is correlated 
among a user, like within a user’s identity, and if all the videos that that user watches has this 

particular problem, maybe it's a problem on the user side. But if you can figure out that 10 
different users watching the same video have that problem, then it's probably a problem with the 

video. 

[0:12:31.9] SK: Right. So when we started Mux, we were able to make those sort of 
conclusions using an off-line batch process that at hourly intervals would do these sorts of roll 

ups that are able to compute those types of observations, but we need the ability to provide 
error rate alerts that were more timely than just an hour. So that’s kind of what led us into 

Apache Flink. 

What we did with Apache Flink was as soon as a video view is over, is finished or there's been 
some sort of error during playback, our processors then send information about that video view 

to a second Kinesis stream that is read by an Apache Flink app. So Apache Flink was — We’re 
looking at different stream processing systems, and Apache Flink just really fit the bill for what 

we need to do, which was have very low latency, also high-availability, the ability to read from 
not just Kinesis, but also Kafka, other stream sources, and it's worked really well for us in 

building this anomaly detection error rate alerting application. 

[0:13:48.1] JM: Okay. I want to get to Flink eventually, but I want to start a little bit earlier in the 
pipeline, because this term streaming, when I first started doing some shows about streaming, I 

really had a whole lot of trouble understanding the difference between streaming and batch, and 
I think that the best way to actually disambiguate it is just to really dive into the pipeline and 

explain how it works. 

So you've got these just events that are being thrown on to Kinesis, and Kinesis is a distributed, 
scalable, queuing service pub/sub service, much like Apache Kafka, but it's hosted by AWS, and 

I think for all intents and purposes we can think of it as very similar to Kafka. So that's familiar to 
people who have [inaudible 0:14:36.5] about Kafka. Would you say that’s accurate? 

[0:14:37.9] SK: Yeah, that’s perfect. Yeah. 
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[0:14:40.3] JM: Yeah. So you get all these events and they’re thrown on to the Kinesis queue. 
Do you call the Kinesis queue a stream as well or do you just call it a queue? 

[0:14:50.6] SK: It’s a stream. 

[0:14:51.8] JM: Okay. Just a stream of events, basically. 

[0:14:54.4] SK: Because in the case of  queue, an item that has been added to the queue is 

ultimately removed from the queue and once it’s removed from the queue, it is gone forever, 
most likely. But in the case of a stream, you can actually have multiple consumers on that 

stream that are at different locations in the stream. That's one of the most powerful aspects of 
Kinesis and Kafka is their ability to have multiple consumers that are reading at different points 

in the stream and are able to process a stream in different ways and not be — They’re not 
subject to the same limitations that you have with a traditional queue. 

[0:15:34.0] JM: Indeed. So we can think of the Kinesis stream as the stream, and then Flink is 

the reader or the processor of the events on those streams. Would you say that's accurate?

[0:15:47.1] SK: Exactly. Yeah. 

[0:15:49.7] JM: This Flink streaming technology, this is one of a bunch of different stream 
processing/batch processing technologies that can be used basically for processing raw events 

for doing correlations among raw events, for doing aggregations among raw events. Basically, 
the earliest days of this kind of technology was to Hadoop, which did it in batch. 

[0:16:16.8] SK: Right. Just a traditional ETL extract transform load process where you throw 

data on to a disk and then you process it in batch off-line with potentially a lot of latency, but you 
get deterministic results. 

[0:16:31.8] JM: How would you characterize the movement from the earliest days of Hadoop, 

Hadoop MapReduce, to whatever we have now with this cornucopia of different streaming 
frameworks?
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[0:16:44.6] SK: Right. So it all comes down to just needing data as quickly as possible, needing 
to interpret and draw conclusions from data as soon as it's generated. In the example that I 

mentioned earlier with the one hour delay and in processing video [inaudible 0:17:00.3] events, 
it was just too long, and I think of a lot of companies are facing similar requirements where data 

is being generated and it needs to be processed as quickly as possible, and streaming 
platforms like Apache Flink really enable that. 

[0:17:16.2] JM: Why is it so much easier to do it in batches than in streams?

[0:17:21.4] SK: Well, that's a great question. I think that batch processing is a concept that has 

been around for a very long time and a lot of people are comfortable with it. Obviously, you get 
deterministic results in making those calculations as opposed to Lambda architectures where 

you end up having kind of like a speed layer. I've seen it called the speed layer, and then a bash 
layer, where the speed layer is meant to serve like a frontend application and provide probably 

like, often times, imprecise results. Then a batch layer, which then kind of comes around later 
and then cleans up the results. Lambda architectures is like that. Have been popular in the past 

built with Hadoop and Apache Spark, but I think that the idea of like building two applications 
essentially, building a speed layer and a batch layer is undesirable, and Apache technologies, 

like Apache Flink, make it possible to have the accuracy that you get from the batch layer while 
also being able to have the speed that you get from the speed layer in like a Lambda 

architecture and only develop a single application. It’s really the best of both worlds. 

[SPONSOR MESSAGE]

[0:18:43.2] JM: A thank you to our sponsor, Datadog, a cloud monitoring platform bringing full 
visibility to dynamic infrastructure and applications. Create beautiful dashboards, set powerful 

machine learning based alerts and collaborate with your team to resolve performance issues. 
You can start a free trial today and get a free t-shirt from Datadog by going to 

softwareengineeringdaily.com/datadog. 

Datadog integrates seamlessly with more than 200 technologies, including Google Cloud 
Platform, AWS, Docker, PagerDuty and slack. With fast installation and setup, plus APIs and 
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open-source libraries for custom instrumentation, Datadog makes it easy for teams to monitor 

every layer of their stack in one place, but don't take our word for it. You can start a free trial 
today and Datadog will send you a free t-shirt. Visit softwareengineeringdaily.com/data dog to 

get started. 

Thank you to Datadog. 

[INTERVIEW CONTINUED]

[0:19:51.1] JM: If you asked somebody from Apache Spark or Storm, the technologies that are 
not Flink, why their technologies have evolved in such a way or were created in such a way, 

where if you wanted to do some sort of streaming system, you would probably want to do a 
Lambda architecture where you have stream processing that may be imprecise and you have 

batch processing to reconcile that imprecise stream processing. What would they tell you about 
like why they made the trade-offs that forced them to sort of have this Lambda architecture? 

Like help me understand — Let's frame what the trade-offs are that those systems are making 
versus Flink. 

[0:20:37.8] SK: Sure. Apache Spark is a very mature project and that was actually a 

consideration that we had to take into account when we were choosing whether to use Apache 
Flink or something else. It's a bit of a gamble taking a risk with a less mature project, like 

Apache Flink. There are a lot of engineers who are familiar with Apache Spark. It's very widely 
known. So I think that Apache Spark has that going for it. 

Traditionally, was started out as purely a batch processing system, and they've added support 

for streaming, which for a while was referred to as micro-batching, where it essentially acts like 
a stream processing platform, but under the hood is really just processing data in micro-

batches, which in a way can be — That can be said of just about any stream processing 
platform, but the difference with Apache Flink is that it's a stream processing platform first. So 

it’s kind of the inverse, right? It’s stream processing platform that can operate as a batch 
processing platform, whereas Spark is the other way around. It was batch first and then they 

implemented stream processing on top of that batch processing system. 
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[0:21:54.2] JM: When I first started doing shows around these topics, I think I made a mistake 

and that I was thinking that these were interchangeable frameworks. Sort of like you look at the 
different frontend frameworks, like React JS or ViewJS or AngularJS. You really only pick one of 

these. They’re kind of the same siblings. They have very similar ways of looking at the world 
and you're probably not going to combine them. But I think it's a different story with the 

streaming framework. It’s like my understanding of Spark is that basically what Spark did 
differently was instead of having this Hadoop mentality — Hadoop mentality is you run this big 

Hadoop job and after it's done with that job it has to right to disk. 

The idea was Spark is like you load your data into a working set in-memory and you can do an 
operation on it, which is sort of a batch operation, but then it sits in-memory after that operation 

is done and then you might want to do another big operation on it and it it's going to continue to 
do these operations over a working set in-memory. So you could consider these big, bulky batch 

operations, but because it's all in-memory, it's faster. Would you say it's an accurate description 
of Spark?

[0:23:11.9] SK: Yeah. It's a traditional ETL type of job where it's just operating on the data that's 

in-memory, and that’s true of Flink as well. Reads from a stream source, does a MapReduce 
style operation on it, and has the potential to keep those results in-memory or send them to an 

external system or have those feed into another job. I think that's true of Spark as well. 

[0:23:39.4] JM: So Flink can do a big MapReduce over a bunch of events that are sitting in 
Kinesis, but it can also do something where it’s got some working set in-memory and it just 

ingests one-off events to continue building some sort of in-memory record. Is that right?

[0:24:00.3] SK: That's right. Yeah, and I'll give you an example from the error rate alerting app 
that we built at Mux. So we send information about video views that had errors or didn't have 

errors to this Apache Flink app, which then does a map operation on a couple of different 
breakdowns. So it'll do a map operation on video title. So My Cat Video might be like a particular 

video title, and we want to see what the error rate is for that particular cat video. 

So we’ll accumulate a fixed number of video views, like a hundred video views for that title and 
then we’ll calculate the error rate that we observed for those 100 views for the known error 
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types for that particular customer property. So suppose we find out that from those 100 views, 

we had a 5% error rate. Well, what makes us a little challenging is different customers have 
different normal error rates. So a 5% error rate might be really good for one customer, it might 

be really terrible for another. So we’ve been able to avoid defining static error rate thresholds by 
accumulating at a second step, accumulating observed error rates for each customer property. 

Then we can do a calculation to find out what their statistically normal error rate is and then 
compare this most recently observed error rate against that kind of definition of what normal 

was. Then use that determination to decide whether to open an error rate alert or close an error 
rate alert.

So what's really cool is it we’re able to bring on new customers, observe what their normal error 

rates are, which can and do change over time without any manual configuration required on our 
part or on the part of our customer. That's all possible with Apache Flink, because it 

accumulates all this data that it keeps in-memory as part of the job state. 

[0:26:04.8] JM: By the way, that's pretty awesome moat you’re building there, because if you're 
doing all these analytics on all these different videos, you probably have an idea of how video 

performance works. Like a pretty differentiated dataset of how video performance works 
agnostic of a specific customer. 

[0:26:21.7] SK: Yeah. We’re applying that kind of approach to our next product, which is a video 

delivery product. 

[0:26:29.5] JM: Which I’ve seen, by the way, which is amazing, and the potential of that is just 
huge.

[0:26:35.3] SK: We’re not just looking at error rates for a particular customer an finding out what 

normal is for them. We have plans to look at error rates for different types — Or not just error 
rates, but also quality of experience metrics for types of videos, different geographies, different 

CDNs and really optimize the encoding and delivery of video for all those different factors, and 
Flink plays a very important role in that. 
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[0:27:03.7] JM: Yeah. Okay. So I'm enamored with the business, but I guess — So back to the 

anomaly detection. So let's say company — Let's say CBS uploads this new breaking news cat 
video and a bunch of people start watching it instantly, and I guess they start watching it and 

then as soon as they start watching it, you're starting to get a shard of a new type of video and 
you're instantly starting to aggregate those views into a new Flink system, a new Flink memory 

partition or something. Maybe you could just tell me what happens when CBS uploads a new 
video and you're starting to monitor that video because you want to be able to alert them if 

something is wrong with it. 

[0:27:51.5] SK: Right. So with our existing data product, what happens is they’ve got to a web 
player or a native player that is instrumented to send us information about video views that 

happen on their site or in their app. Playback starts, we start getting beacons with a video ID or 
a view ID rather that is globally unique. We’ll start accumulating all those video view beacons, 

an error occurs or the video view finishes. We’d send all the details to a Kinesis stream that is 
monitored by Apache Flink, and Apache Flink then does a map — It performs a map function on 

that video view to map it to a particular video title and also to a customer property. So we can 
actually detect kind of site-wide issues for a customer like across all of CBS not just for that 

particular cat video title, but also across an entire customer site. 

So we’ll add that video view to a map operation, which accumulates a fixed number of video 
views. So we use counting windows. So accumulate video views until we reach a certain target 

number, like a thousand video views or a hundreds video views, at which point we’ll then do a 
reduce operation, which then performs all — It calculates all the error rates for the different error 

types that we know to exist for that customer. Then we compare those error rates against what 
is statistically normal for that customer and then we decide whether to alert. 

So all of these is just happening continuously, just that map operation of accumulating all these 

video views, and then collapsing it with the reduce, and then comparing it against normal. That’s 
just happening all the time, and Flink just does a phenomenal job of making that really simple. 

They’ve got beautiful APIs that made — Developing the system really, really intuitive and easy. 

[0:29:46.5] JM: Although your example would bring up something — I did a couple of interviews 
with people from the Google Dataflow Project, and one of the things that they say is that this 
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whole idea of batch versus streaming is kind of a red herring or a misnomer or whatever, and 

when I think about your example, you've got all these views that are getting mapped and then 
you have this periodic reduce function. It seems like the reduce is kind of a batch, that's like a 

little batch job. 

[0:30:14.9] SK: It is, yeah. So there is some latency that's introduced there, just happened to 
accumulate video views and then do the reduce operation. So you do have to strike a balance 

and picking, in our case, the size of the window, the number of video views to accumulate 
before you do the reduce operation, because that does affect the — Like in our case, that 

affects the speed of reporting. Too large of a window and it could take a long time to actually fill. 

Yeah, dataflow team is doing a lot of interesting work, developing APIs that are in compatible 
with the Beam spec, which Flink aspires to, and to a large degree is compatible with. So that 

was also a big selling point on Flink was its compatibility with the Beam API and it being also 
inspired by the [inaudible 0:31:09.3] design paper they came out of Google and influenced 

Google Dataflow. 

[0:31:14.4] JM: Okay. Beam is one of the most confusing things I have ever tried to report on. 
They were explaining it to me and I just did not understand it. It’s like something like — So it's 

like an API they introduced where you can make your — Oh my god! Can you just explain 
Apache Beam? Just give an explanation. See if we can — 

[0:31:38.9] SK: Just a quick disclaimer. I've never actually used Apache Flink via the other 

Beam API, but its goal is to have a set of APIs that are portable across stream processing 
platforms, like Apache Flink, Google Dataflow. So the idea is, in theory, you should be able to 

write an application against that uses the Beam APIs and then actually have it run on Apache 
Flink or Dataflow with little to no modification. So it's very powerful in that way. 

[0:32:13.9] JM: This is, I guess, useful because we’re talking — I mean, we just talked about 

how you can basically describe these same operations to Spark, or to Flink, or to Hadoop, or to 
Storm, or to Dataflow. You could describe these operations to each of these different systems. 

You're probably going to get different latencies. You're probably going to get different — Like 
how much it costs to run. So there's probably a high degree of variability among the different 
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systems that you could run them on, but they should be able to run them all. These are all 

basically [inaudible 0:32:52.5] complete distributed processing systems. 

[0:32:54.0] SK: Yeah, exactly, and that's really — One of the really cool potential things, I'd love 
to see somebody provide the ability to submit a Beam application to — Or an application that 

uses the Beam APIs to a runner, a set of runners, maybe one that’s using Spark, one that’s 
using Flink, one is Dataflow, and provide information about the cost, the operational cost, the 

performance, portability across cloud providers and really just be able to make a decision that 
way. Instead of it being a Flink versus Spark versus Dataflow type battle. Just be very pragmatic 

about it and simply choose the tool that's best for that job. 

[SPONSOR MESSAGE]

[0:33:46.4] JM: Amazon Redshift powers the analytics of your business, and intermix.io powers 
the analytics of your Redshift. Your dashboards are loading slowly, your queries are getting 

stuck, your business intelligence tools are choking on data. The problem could be with how you 
are managing your Redshift cluster. Intermix.io gives you the tools that you need to analyze 

your Amazon Redshift performance and improve the toolchain of everyone downstream from 
your data warehouse. 

The team at Intermix has seen so many red shift clusters that they are confident that they can 

solve whatever performance issues you are having. Go to intermix.io/sedaily to get a-30 day 
free trial of Intermix. Intermix.io gives you performance analytics for Amazon Redshift. Intermix 

collects all your Redshift logs and makes it easy to figure out what's wrong so that you can take 
action all in a nice intuitive dashboard. 

The alternative is doing that yourself, running a bunch of scripts to get your diagnostic data and 

then figuring out how to visualize and manage it. What a nightmare and a waste of time. 
Intermix is used by Postmates, Typeform, Udemy and other data teams who need insights into 

their Redshift cluster. 
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Go to intermix.io/sedaily to try out your free 30-day trial of Intermix and get your Redshift cluster 

under better analytics. Thanks to Intermix for being a new sponsor of Software Engineering 
Daily.

[INTERVIEW CONTINUED]

[0:35:32.2] JM: Okay. Now I get it. This feels gratifying, because now I get it, and it seems like 

nobody is saying who won the database war. Was it PostgreS? Was it Cassandra? Was it 
HDFS? Was it CockroachDB? Was it InfluxDB? That would be of radicular argument. 

[0:35:50.2] SK: Right, exactly. Yeah. They’ve all got their own strengths and weaknesses, and 

it’s really about finding the best tool for the job. 

[0:35:57.9] JM: Right. So Flink’s differentiation, or at least one of its differentiations — I think I 
saw you say this or it was written in a documentation somewhere or something. Flink has the 

ability to handle unbounded event streams with exactly once event processing. Am I 
remembering correctly?

[0:36:17.9] SK: Yeah, that's. Yeah. 

[0:36:19.6] JM: Okay. Why is that hard to implement?

[0:36:23.1] SK: It's hard to implement because not all systems have the check pointing 

capabilities that Flink has. Actually they say exactly once processing, but what they mean is at 
least exactly once or something to the effect, because what happens is you end up having Flink 

applications that have the callouts to other systems, and maybe they write a record to a 
database, so they put a message on another Kinesis stream. Those side effects can't really be 

undone. So in that way it's like you could end up having a Flink application that has a side effect 
that is repeated multiple times. But when you've got a Flink application that’s running, it actually 

— And it reads a message from a stream. It keeps track of its position in that stream and it 
keeps track of all the operators that are part of the application, the Flink application graph, what 

their particular state is. So then when the Flink application is checkpointed or save pointed to 
durable storage like — So Flink applications typically use HDFS to persist their internal state. 
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You might configure Flink application to checkpoint it every five minutes or 10 minutes or 

something like that. And so what it does is it sends information about it. It writes information 
about it’s state to durable storage, and it also updates information in Zookeeper about where it 

is in the stream and the location of the most recent checkpoint data the written on HDFS. 

So then if the Flink application stops, or it needs to be restarted, or if you have to upgrade, etc. 
What happens is the Flink job manager and test manager is they actually load their state from 

that previous save point or checkpoint that's on HDFS, and they’ll resume. There might be some 
period of time from when the last save point was taken, which could lead to reprocessing of 

messages and side effects, like I mentioned earlier, writing a record to a database again or 
putting an additional message on a queue, but that application continues to process without 

interruption. 

[0:38:41.3] JM: Tell me what I misunderstand about the system. No, no — That was actually 
really good. A Flink processing pipeline is this basically a directed acyclic graph of different 

computational steps. You’ve going to have these different computational steps in your data 
pipeline and at each computational step you do some processing and the data is then ready for 

the next step, and at different intervals, you're going to want to checkpoint  the data that has 
been processed in a given step two disk in case something crashes and you're halfway through 

a full pipeline being finished. Do I have it right so far?

[0:39:26.2] SK: Yeah. That's right. 

[0:39:27.0] JM: Okay. so when this check pointing occurs in one of the nodes in the dag, it's 
going to be checkpointed to HDFS. Does that block things? Like if you have to checkpoint at 

one of these nodes in the gag, does that block processing or is it some kind asynchronous 
thing?

[0:39:45.6] SK: It's asynchronous. It's really quite beautifuf the way that Flink has implemented 

it. You can think of that as standing — Imagine yourself standing at a stream and drop a marker 
into the stream. You drop something that floats and it flows down the stream and different points 

along the way, different operators that are part of this graph, they see the marker and then they 
checkpoint their state. 

© 2018 Software Engineering Daily �16



SED 521 Transcript

So meanwhile, upstream, from where that marker was placed, it can actually continue 
processing. They can still continue reading, but meanwhile the marker flows down the stream of 

the application and then once it reaches the end nodes, all the syncs, t hen that checkpoint or 
save point operation is considered complete. But it doesn't block operators that are upstream of 

where the marker currently is from continuing to operate. 

[0:40:42.5] JM: That is beautiful. That's pretty cool. So is it problematic to do all that 
checkpointing or does it get garbage collected or something?

[0:40:50.9] SK:  It's not really problematic. It introduces a small — 

[0:40:54.3] JM: It’s just disk, I guess. Disk is cheap. 

[0:40:56.3] SK: Well, it’s disc, but it’s network I/O. So depending on the size of the data that 

you’re keeping in-memory, the checkpoint operations can actually start to impact the 
performance of your app. 

So, recently, Flink added support for partial checkpoints. So just doing the deltas from the last 

time it did a checkpoint, and that's lead to a huge improvement and performance, because if 
you're dealing with an app that — A Flink that has on the order of gigabytes or terabytes worth 

of data that’s stored in- memory, check pointing that or save pointing that every five minutes 
means potentially transferring all of that data to HDFS, and that's very expensive both in terms 

of storage and network I/O, etc. Just being able to checkpoint the deltas is very valuable. 

[0:41:53.4] JM: Really good descriptions there. Part of the streaming architectures that tends to 
happen is you often have a processing system that pulls data off of the Kinesis or Kafka, like 

mainstream system, do some processing and then write back to the Kinesis on a different data 
channel or a different shard or partition or — I don’t remember what the terminology is, but you 

write it back to the Kinesis queue or the Kafka queue and then it makes it available to other 
systems to either pull off for more processing or whatever. 
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Can you help me understand like when do people want to do all of their processing in a single 

Flink job versus writing it back to Kinesis and making it available to other people or writing it 
back to Kafka and making it available for other people? This seems like a burgeoning area that's 

like pretty important? How do you manage the different channels in your data stream? Does that 
question make sense? 

[0:42:58.0] SK: Yeah, it does. I'm actually going to just relate it to a Flink app that we wrote for a 

video product that ties in really well with problem that you just described. So we get access logs 
for our video product from our CDN providers. So every time a video chunk is requested or a 

video manifest s requested, our CDN provider provides us with a log record that indicates you 
the URL of that particular piece of media that was requested, performance metrics about it, etc. 

What we’re doing is we’re taking that log record and putting it on the Kafka topic and then we've 

got a Flink application that reads from that Kafka topic and then it queries a database to kind of 
enhance that log record, find out information about the video resolution, it's audio and video bit 

rates, customer information, etc. and it kind of like decorates it, enhances it, enhances that log 
record and then puts it on a second Kafka topic that will eventually use for billing, because we 

have like kind of a metered like usage-based billing system for video. So we’ll find out how 
many — The duration of video that was requested or the duration of video that we served for a 

particular customer over the last month, etc. 

But we also use those same log records to feed it into our monitoring system. Actually, after we 
decorated that log record, we then do a MapReduce operation on it to calculate round-trip time 

and all these other performance metrics that we’re interested in, freshly monitoring the real-time 
quality of experience for users of our video service. So though those metrics are written into an 

InfluxDB database that we've got Grafana Dashboards for. Then we've got Grafana dashboards 
that we show in our engineering area that show the current health of the system. 

So this is an example of a Flink application that is serving multiple purposes right. So it's 

enhancing log records and feeding them into a second Kafka topic to be used for billing, but 
then it’s also helping us with monitoring the health of the service. 

[0:45:11.8] JM: Wow. Well, Kinesis is really your master database. 
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[0:45:15.5] SK: Yeah. We use Kinesis for stream processing in AWS, which is where our data 
product lives, but our video products, we’re trying to have that run in multiple cloud providers. 

So Google Cloud, AWS. So Kafka really fit the bill there, because it’s easy to deploy in any 
cloud provider, whereas Kinesis, it’s an AWS only product. So we’re using Kafka and Kinesis 

with Flink and have had really no problems with either. The Flink team provides for Kinesis and 
for Kafka has just been phenomenal. 

[0:45:54.8] JM: Support, is it like data artisan support, or is it just like through message boards 

and stuff?

[0:46:00.1] SK: Through message boards. The Flink user’s email list is great. They're very 
responsive on the Jira bug tracker as well. At Mux, we've come committed several features and 

bug fixes back to the Flink product and they’ve been very receptive and just really great. Great 
partners in that way. 

[0:46:20.9] JM: Are you deploying Kafka on Kubernetes? 

[0:46:24.6] SK: Yeah. So we've got Kafka, HDFS, Flink all running on Kubernetes. 

[0:46:30.9] JM: I don’t know if you’ve set up Kafka before, but like was it easier because of 

Kubernetes or have you talked to people about like — Does Kafka become significantly easier 
to deploy and manage with Kubernetes?

[0:46:42.1] SK: I think deploying on Kubernetes was our goal from the outset. The vast majority 

of our services, code that we write as well as just third-party code is deployed using containers 
that run on Kubernetes. So kind of having like a homogenous production environment is really 

desirable, and we've not had any performance issues or deployment issues with Kafka yet. 
Knock on wood. 

[0:47:11.0] JM: Isn't that remarkable? Isn’t it remarkable how much infrastructure you can stand 

up these days and how complicated it can be and it actually like works?
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[0:47:20.2] SK: Absolutely. Yeah. Don't look too hard. It’s all working. All these things are able to 

talk to each other and it's not an issue. Yeah, it is pretty amazing. 

[0:47:35.1] JM: So it seems like people have a pretty good handle over how to work with 
different microservices. An increasing use case — Well, it seems like these data streams, like 

being able to keep track of your data streams. Like you just discussed these data streams that 
you're reusing in different places. Do you have some centralized schema or list of the different 

data streams that are available maybe with some documentation or descriptions around the 
data streams? Because these things — You could almost look at these like micro-services 

where, “Yeah, you've got —” Like if you want to pull this particular type of data stream, you have 
to know where it is. You have to know like how to access it, right?

[0:48:19.8] SK: Exactly. Yeah. We do keep — We use Kubernetes manifest to configure Kafka 

with all of the different topics that are available on a particular set of Kafka brokers. So that's 
documented and those manifests are checked in to source control, and so it's pretty easy to see 

and know which broker or which topics you'd expect to find on a set of Kafka brokers. But then 
there's also the problem of knowing how to send and consume data from those topics. 

So for that, we use proto-buffing coding for all of the messages that we send and consume from 

Kafka and Kinesis. Protobuf is very efficient and easy to work with. Yes, so that's — We've got 
the Protobuf specs that are checked in to source control as well. So it's all pretty clear as far as 

which topics or streams you can you can publish and consume from and then also how you — 
What the format of the messages are.

[0:49:20.0] JM:  I've done some shows with people who will talk about the systems like Looker, 

for example, and they'll say that one of the problems that Looker was solving — There's a whole 
class of these kinds of tools, like Tableau, for example, where it's trying to solve this problem 

where you've got analysts in accompany, data analysts, and it's really hard to get the data 
analysts access to the data if they are not super tech savvy, if they don't know how to do a 

MapReduce job or like a hive job or whatever. I think Looker type tools did a pretty good job of 
solving these in a batch fashion. I'm wondering if this is entering like a whole new tier of 

complexity for the analyst. Like how does the analysts — It's very easy-to-understand like, 
“Okay. If an analyst gets a daily updated CSV or an updated MySQL database or whatever with 
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a data that they can analyze, that seems very easy to reason about for the analyst, but maybe 

less so if they've got the streams that are constantly updating that you need to subscribe to 
them.” Is there a usable infrastructure for the less technical user to access that kind of data? 

[0:50:29.2] SK: That's a great question. There is a lot of interest from business units like as far 

as being able to access this data directly. I know that Netflix is using Flink very heavily to 
basically provide like a self-service type interface to a lot of usage data from the Netflix players 

so that engineers aren’t necessarily kind of serving requests from business groups trying to run 
one-off queries, trying to make it more of a self-service type system. But that does require a lot 

of documentation about how to interact with the streams and, yeah, that is absolutely a tough 
problem. 

[0:51:10.7] JM: Okay. Well, I know we’re up against time. We did go into your event ingestion 

and processing architecture in some detail. Just to summarize it for people, you’ve got these 
user events that get loaded into Kinesis, they get processed by, for example — Well, they 

processed by Flink, and then after they get processed, maybe they continue through a long 
Flink job. Maybe they get written back to kinesis. Eventually they get put in the PostgreS or 

InfluxDB or they get put back into Kinesis maybe for further processing or just for access for the 
billing team or whatever. T there's a whole lot more about the whole event ingestion 

architecture, the MapReducing and so on in these talks that you’ve given, and I’ll put those in 
the show notes. 

But since we’re up against time, I just want to ask like a little bit of a high-level question. So 

you've been working in video infrastructure for a long time. You were with Matt and John at their 
previous company, which was basically another video infrastructure company. Do you have any 

big takeaways from what the canonical engineering problems in video are?

[0:52:22.3] SK: Yeah, John was one of the founders of Zencoder, which was one of the first 
cloud-based video encoding services. Matt has a lot of video experience well. Has worked on 

Video.js and has a deep understanding of what it takes to — What some of the problems are 
with actually playing video and why it remains a difficult problem. 
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One of the biggest problems is just the diverse landscape for the types of devices that we watch 

video on, the networks that are involved in delivering video. Some are fast, some are slow. It's a 
complex landscape out there and it's really tough for producers of video to understand all of 

these problems. They know that they have a high quality input video and they wanted to look as 
good as possible on end-user devices. Picking bit rates and picking resolutions is not for the 

faint of heart, and traditional online video platforms, it's a decision that producers would have to 
make once and then in many cases they’re stuck with those decisions for years to come unless 

they want to re-encode their video. 

What we’re trying to solve at Mux is really feature-proofing your video. So you’d give us your 
highest quality video and we’ll deliver it optimally now and well into the future. And so that's 

really what sets us apart. 

[0:53:40.9] JM: Well, I can't wait until YouTube is not the only game in town for sharing video, 
because they think that's like the big elevator pitch of how Mux could be really big, is like 

making video really easy to share without having to use the kludgy YouTube playe. 

[0:53:59.8] SK: Yeah, and no disrespect to YouTube. 

[0:54:02.4] JM: Nothing  against YouTube. 

[0:54:02.9] SK: They do a phenomenal job, but there are a lot of the video publishers and just 
media publishers that would like to be responsible for serving their own content in a way that’s 

not necessarily tied to YouTube or branded with YouTube, but they should necessarily have to 
sacrifice quality in terms of video or the experience for their users. 

[0:54:26.6] JM: Wistia was a pretty early to this game, but it seems like — I think Wistia may be 

is, I guess, less modular than the Mux, the mux approach, what you guys are going for. 

[0:54:38.1] SK: Yeah. Wistia is their traditional online video platform. They've actually been one 
of our Mux data customers. They’ve had great success with integrating with Mux data as well. 
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[0:54:50.4] JM: All right. Well, Scott, really great talking to you. Very technical conversation. I 

think we did a good job of getting from the high-level to the fairly low level. It was great talking to 
you. 

[0:55:01.3] SK: Thanks. Likewise. 

[END OF INTERVIEW]

[0:55:05.6] JM: If you are building a product for software engineers or you are hiring software 

engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an email, 
jeff@softwareengineeringdaily.com if you're interested. 

With 23,000 people listening Monday through Friday and the content being fairly selective for a 

technical listener, Software Engineering Daily is a great way to reach top engineers. I know that 
the listeners of Software Engineering Daily are great engineers because I talked to them all the 

time. I hear from CTOs, CEOs, directors of engineering who listen to the show regularly. I also 
hear about many newer hungry software engineers who are looking to level up quickly and 

prove themselves, and to find out more about sponsoring the show, you can send me an email 
or tell your marketing director to send me an email, jeff@softwareengineering.com. 

If you're listening to the show, thank you so much for supporting it through your audienceship. 

That is quite enough, but if you're interested in taking your support of the show to the next level, 
then look at sponsoring the show through your company. So send me an email at 

jeff@softwarengineeringdaily.com. Thank you.
 

[END]
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