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[INTRODUCTION]

[0:00:00.3] JM: A modern farm has hundreds of sensors to monitor the soil health and robotic 

machinery to reap the vegetables. A modern shipping yard has hundreds of computers that are 
working to orchestrate and analyze the freight that is coming in from overseas, and a modern 

factory has temperature gauges and smart security cameras to ensure workplace safety. All of 
these devices should be considered edge devices. Over the last decade, these edge devices 

have mostly been used to gather data and serve it to an on- premise server or to the cloud. The 
edge devices have mostly been dumb computers. 

Today, as the required volumes of data and compute continue to scale, we look for ways to 

better utilize our resources including those resources that are sitting at the edge, and we can 
start to deploy more application logic to these edge devices. We can start to build a more 

sophisticated relationship between our powerful cloud servers and the less powerful edge 
devices. 

The soil sensors at the farm are recording long series of chemical levels, this time series data. 

The pressure sensors in a centrifuge at a factory are recording months and years of data. The 
cameras are recording terabytes of video from self-driving cars, or also at the factories or the 

farms, I’m sure there're cameras there, and these huge datasets are correlated with labeled 
events. Like if you're on a farm, you have crop yields and you can start to correlate those crop 

yields with certain soil sensor data and start to build a model of what kinds of soil conditions 
yield the best crops. 

With these large volumes of data and the labeled outcomes that were seeking, we can construct 

models for responding to future events. We can start to build learning systems that adjust the 
conditions of our edge environments to better suit the goals that we have in mind such as the 

crop yield example, and deeper learning can be used to improve these models. The models can 
be trained in the cloud and deployed to devices at the edge, and we are in the very early days of 

building this relationship between the edge and the cloud that will make sense for the next — 
Who knows? 5 years? 10 years? We’re in the very early stages. 
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Aran Khanna is an AI engineer with Amazon Web Services, and he joins the show to discuss 
workloads at the cloud and at the edge and how work can be distributed between the two places 

and the tool that can be used to build edge deep learning systems more easily. 

To find all of our shows about machine learning and edge computing as well as links to learn 
more about the topics described in the show in this episode and other episodes, you can 

download the Software Engineering Daily app for iOS or android. These apps have all 650+ of 
our episodes in a searchable format. We have recommendations and categories and related 

links and discussions around the episodes. It's all free and also open-source. 

If you're interested in getting involved in our open-source community, we have lots of people 
working on the project and we do our best to be friendly and inviting to new people coming in 

looking for their first open-source project, or if they are familiar with open-source and they are 
looking to get even more experience, we’ve got all kinds of projects around recommendations 

and the iPhone app, the android app, our web front-end, which is softwaredaily.com. 

We’re trying to build a lot of different things, and if you're interested in web development or 
mobile development, you might like to check it out. You can find all the projects that github.com/

softwareengineeringdaily. You can join our Slack or send me an email about how to get 
involved. We’re really building a nice community, and it's great to see. So I hope you enjoy this 

episode. I hope you check out the apps at the open-source project, and thanks to Aran for being 
a guest on this episode. 

[SPONSOR MESSAGE]

[0:04:33.5] JM: The octopus, a sea creature known for its intelligence and flexibility. Octopus 

Deploy, a friendly deployment automation tool for deploying applications like .NET apps, Java 
apps and more. Ask any developer and they’ll tell you that it’s never fun pushing code at 5 p.m. 

on a Friday and then crossing your fingers hoping for the best. We’ve all been there. We’ve all 
done that, and that’s where Octopus Deploy comes into the picture. 
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Octopus Deploy is a friendly deployment automation tool taking over where your build or CI 

server ends. Use Octopus to promote releases on-prem or to the cloud. Octopus integrates with 
your existing build pipeline, TFS and VSTS, Bamboo, Team City and Jenkins. It integrates with 

AWS, Azure and on-prem environments. You can reliably and repeatedly deploy your .NET and 
Java apps and more. If you can package it, Octopus can deploy it. 

It’s quick and easy to install and you can just go to octopus.com to trial Octopus free for 45 

days. That’s octopus.com, O-C-T-O-P-U-S.com.

[INTERVIEW]

[0:06:03.8] JM: Aran Khanna is an AI engineer at Amazon Web Services. Aran, welcome to 
Software Engineering Daily.

[0:06:09.8] AK: Thank you so much for having me, Jeff. 

[0:06:11.3] JM: Today we’re talking about deep learning at the edge, and many people probably 

don't really know much about this space, so let's start with an explanation of edge devices and 
some explanation of deep learning and then we’ll get into more technical concepts. What is an 

edge device?

[0:06:30.6] AK: A super high level, and an edge device is essentially any device that sits kind of 
outside of the data center. So anything from really low powered microcontroller unit, MCU 

devices, all the way up to maybe desktop computers or even whole boxes that sit on-promises 
but aren't necessarily connected to a larger data center or a data warehousing system. 

[0:06:52.4] JM: Okay. A phone might be an edge device?

[0:06:55.2] AK: Correct. The phone, an IoT devise, things like even self-driving cars now are 

considered edge devices. So really, anything that sits outside of the data center is an edge 
device. 
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[0:07:09.0] JM: We've been building applications with smartphones and cloud computing for 

many years at this point. What are the characteristics of the workloads that we put on phones, 
and what do we put in the cloud? How do we divide our work? Because I think this is the most 

analogous pattern. If we’re talking about edge devices interacting with a big cloud, is the 
smartphone interacting with the big cloud. So in that interaction between the smartphone and 

the cloud, what are the characteristics of workloads that we put on phones and what do we put 
in the cloud?

[0:07:41.3] AK: Yeah. That’s an interesting question, because I think a lot of that has been 

shifting recently. I remember when I got my first iPhone, kind of the original iPhone that came 
out, and the processing power on that, while impressive for the time, was really not that great. 

So most of the workload for kind of early apps was going to be done in the cloud, a lot of the 
state, a lot of processing was done in the cloud. 

But in the kind of recent 5 to 10 years, we’ve seen this enormous explosion in the performance 

of the chips that we’re putting into our phones. So a lot of the processing actually is now starting 
to happen on the device. So to characterizing some of the workloads, I think the biggest 

workload really on device right now or up until the kind of this deep learning on device has been 
gaming. So gaming on devise is a real-time use case. Large amounts of compute cycles are 

needed to render things like 3D games on your device, and that is something that through 
smartphone manufacturers and chips supporting graphics workloads, like gaming, they've kind 

of enabled us to actually push workloads like deep learning now down onto the device. 

[0:08:52.9] JM: Let's go there. So when we start to have these machine learning workloads, 
these deep learning workloads, what changes? How does that change the relationship between 

the edge device, like a phone, and the giant compute capability of the cloud?

[0:09:11.8] AK: Yeah. So when we have these deep learning models, it is important to note that 
there isn’t just kind of one class of deep learning models. They come in all shapes and sizes. 

They have a whole bunch of different tasks that they can essentially perform, and the key thing 
to note is that they all kind of boil down to a large number of multiply accumulate operations for 

inference, for actually predicting with these models. While originally the training kind of has to be 
in the cloud because of the scale of data and the number of compute cycles, you need to 
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actually train the models. You need to pass through a large data set for sometimes hundreds of 

iterations to actually get the model trained. But for prediction, for inference, while you still need a 
lot of compute power, especially for the large models, you can do 10 million+ multiply 

accumulates for a single kind of pass-through of a modern vision model. That kind of scale of 
computation is now actually possible on devices like your smartphone if you have modern 

smartphone in your real-time. 

So the workloads now we’re seeing are shifting a little bit from just in the data center where the 
training and inference is happening to the training happening in the data center where all your 

data's warehouse and all that compute power can be brought to bear on it for actually training 
up the model, and the inference happening now at the edge. 

[0:10:38.7] JM: So the inference happens at the edge, meaning we are deploying models to our 

phones or our other edge devices, and that's because these devices are the places where the 
information is being consumed. Like you can have a camera that's trying to detect known bad 

actors, for example, and you want the model deployed to the camera, so the camera can quickly 
identify if a person is a bad actor or not. 

Now, in that interaction, o like let's I’ve got a camera on-premise that is deep learning enabled, 

does that identification of like, let's say, a person walks by the camera. So that identification 
takes place entirely on the camera and then maybe does that data also get pushed up to the 

cloud for further processing?

[0:11:36.7] AK: Again, it depends on the parameters that you need to construct your system 
within. To zoom out a little, the four real reasons that people will move deep learning workloads 

from the cloud down on to the device, and one is privacy and security. So if your data can't 
leave the premises where it’s captured. Two is latency. So, essentially, if you need to have a 

real-time response, so in the case of a robotics workload or a self-driving car, for example. 
Three is reliabilities. So your network up to the cloud might not always be reliable. So you need 

to robust to that and, still, you need to run these deep learning workloads, so you have to run 
them at the edge. The last one is cost. So if that channel is actually costly to use to send the 

data up to the cloud, you would to put your workload down at the edge.
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Essentially, if you're in one of these regimes, if these are the parameters that constrain the 

system that you're building, you might want to think about putting your deep learning workload 
on the edge. So in the case of this image classification workload, so with the smart camera 

detecting bad actors, the idea would be if you want to warehouse your data in the cloud and 
have reliable connectivity, yes, you can do the real-time inference on the device, make those 

snap decisions locally, but then warehouse it up into the cloud either in real-time or in a batch 
kind of system. So you can even stream it to something like a Snowball Edge, which is 

essentially a big rack of encrypted discs that will sit on-premises that you can then ship once 
they’re full up to AWS for ingestion. There are a lot of systems you can kind of build and it really 

depends the parameters that are constraining you. 

[0:13:14.3] JM: I've done enough shows about machine learning and deep learning to know 
that this is one of these topics that is hard to do over a podcast, but at least like if we’re talking 

about the highly technical aspects of deep learning. I'm trying to get myself comfortable with just 
talking in the — I'm trying to find the right balance of talking — Because this show is typically 

about technical topics, but deep learning gets very technical and very mathematical and it’s also 
somewhat domain-specific. So I’m trying to find the right balance of describing things in terms 

that the generalist engineer would want to know whether or not they are planning to have their 
career be saturated with deep learning. With that preface, how would you describe a deep 

learning model?

[0:14:04.3] AK: Yes. So kind of the highest level, and I'm assuming that folks would be familiar 
with things like linear regression. I think of deep learning in a large way of essentially abstraction 

over models like linear regression. It’s saying, “What happens if we can take one regression 
model and string it together with a log linear model and sting it together with X model or Y 

model,” and kind of what you get out of the other end of that sort of logical progression is 
something that looks a lot like a deep learning model where you have these individual, what we 

call layers, which are essentially just functions that you can train, that you can learn, much like 
you learn to linear regressor over data all strung together. So you stack these layers up in a 

deep learning framework like Keras of MXNet TensorFlow or PyTorch, and that defines what we 
call a compute graph, and that compute graph is something that's actually differentiable, which 

means you can take the derivative, and why that's important is because that's fundamentally 
how we train these system. 
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If you kind of remember your basic calculus, if you take a derivative of a function, it spits out, 
especially a multivariable function, it spits out essentially a vector, which points in the slope of 

greatest dissent of that function. So which way is it going downhill the fastest at the point where 
you took the derivative? 

Fundamentally, what we’re doing is we’re stringing together all of these simple functions, simple 

layers, and then throwing a lot of data at it and saying, “Hey, how will I set the parameters?” 
Essentially, let’s look at a linear aggressor, it’s Y equals MX plus B. How do I set that M, that 

slope, such that with this data, it fits the date of the best? But instead of doing it for a single 
linear regressor, we do it across all of these layers strung together, and that has some really 

nice properties, because it allows us to reason about data that's not just simple preprocessed 
feature points. It allows us to throw kind of anything, including maps of pixels or random sounds 

at the model, and because of how deep it is, because it learns a hierarchical structure when we 
do this kind of naturally, it allows us to actually determine some of the features without having to 

hand select them. It'll actually learn that,” Oh, this kind of set of pixels looks like a curve, and if I 
put three of these curves together, it looks like an ear,” for example. 

[0:16:40.9] JM: If we boiled down deep learning to the simplest explanation, and we just 

described it as a regression, and you're trying to draw a line between — Let's say, you've got a 
bunch of points on a two dimensional Cartesian plane and you’re trying to draw a line between 

the most number of points, draw a function that hits the most number of points, and you see this 
function, it gets easier to hit more and more points, the more and more dots you have on that 

graph, and that is why we want more training data, because the more training data you have, 
the more points you get on this graph and the easier it gets to draw a function that goes through 

those different points. I know that's a reductive explanation, but do you think that's a useful way 
of thinking about deep learning for a — 

[0:17:35.2] AK: Yeah, I think that's super useful and very spot on. So much like with regression, 

the more data points you have, the more accurate your line kind of threw them that you draw 
can be. So kind of going without analogy, data becomes really the fuel of deep learning 

because, again, unlike a simple Y equals MX plus B line that you’re trying to draw through the 
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data points, this is much, much higher dimensional. You’re often putting in an image which is a 

map of, let’s say 24 by 24 pixels. It’s a gigantic vector in super-high dimensional space. 

As the dimension of the space goes up, the amount of data you need to actually draw kind of an 
accurate high dimensional, let's say, line or hyper plane in this case through the space, that 

goes up. So data really becomes the fuel that's needed to train these deep learning models. 

[SPONSOR MESSAGE]

[0:18:34.8] JM: DigitalOcean is a reliable, easy-to-use cloud provider. I've used DigitalOcean for 
years whenever I want to get an application off the ground quickly, and I’ve always loved the 

focus on user experience, the great documentation and the simple user-interface. More and 
more people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for 

their application workloads. 

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet 
that can mix and match different configurations of CPU and RAM to get the perfect amount of 

resources for your application. There are also CPU-optimized droplets, perfect for highly active 
front-end servers or CICD workloads, and running on the cloud can get expensive, which is why 

DigitalOcean makes it easy to choose the right size instance, and the prices on standard 
instances have gone down too. You can check out all their new deals by going to do.co/sedaily, 

and as a bonus to our listeners, you will get $100 in credit to use over 60 days. That's a lot of 
money to experiment with. You can make $100 go pretty far on DigitalOcean. You can use the 

credit for hosting or infrastructure and that includes load balancers, object storage. DigitalOcean 
Spaces is a great new product that provides object storage and, of course, computation. 

Get your free $100 credit at do.co/sedaily, and thanks to DigitalOcean for being a sponsor. The 

cofounder of DigitalOcean, Moisey Uretsky, was one of the first people I interviewed and his 
interview is really inspirational for me, so I've always thought of DigitalOcean is a pretty 

inspirational company. So, thank you, DigitalOcean. 

[INTERVIEW CONTINUED]
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[0:20:42.3] JM: If I understand correctly, the typical way to do this is, let's say, you want to build 

a deep learning model to deploy to a camera. Okay, you've got all the data in the cloud already, 
so you do the training of the initial model in the cloud where you have all that data stored 

already and you get a good model that’s trained, and that model is essentially a compacted 
series of lessons that were learned from all that data, compacted series of functions, and then 

you've got that model and that takes up a lot less space than all of that data that you have in the 
cloud, and you can just send that model down to the devices that need to do classification, for 

example. Correct me if from wrong, but I think that's how you do it. 

But then you have additional examples that are going to be seen by those devices that are 
sitting at the edge. So what do we do about that? Do we process the data at the edge and then 

continually update the models at the edge or do we have some system where we ship the — I 
think you mentioned this edge snowball. You could just collect all these data in a different device 

and then physically ship it to a data center and then maybe you can have this process where 
you update the model back again on the data center, and then you have this continuous 

deployment. Well, I guess it would be like a batch deployment of the models back to the edge. 

Give me a sense of the learning and deployment system that people are typically using. 

[0:22:20.3] AK: Sure. I think there — Again, it depends on the parameters of the system you 
want to build, but if you want one of these continual learning systems, you can definitely create 

one. The caveat being that you need to make sure that the data coming in, the new data coming 
in actually gets labeled. So again, one of the important things, especially in the vision scenario 

is that it's all supervised learning. 

You actually have the points that are labeled that are actually what we call a ground truth 
sample. So those have to be there. So if you're continually classifying data and then ingesting it 

up into the cloud, at some point there you need to generate a label. You can you either do that 
automatically if that's the kind of system that can get feedback immediately from the decisions it 

makes at the edge, or you might have to use a service like Mechanical Turk or kind of another 
human-based labeling service to actually generate those labels of the new data coming in. 
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So that said, we have seen a lot of these systems in the wild, where people are going up into 

the cloud, training the model on an initial set of data, deploying it down to the edge, running their 
classifications, collecting the data, taking the data back up into the cloud and taking the same 

model they trained and throwing that new data at that model in a process we call fine tuning or 
it’s often also referred to as transfer learning, where you can actually take a pre-trained model 

and take a whole set of new data that we assume is kind of an augmentation to your original 
data set and without having to go through the whole original data set again, you can actually o 

just take this new data and use it to train the model much more cheaply. Then it becomes kind 
of augmented in the way that it now knows about this new data that it’s taken in and it can learn 

to make classifications over that as well. 

[0:24:06.8] JM: Okay. So I guess the point that I had missed earlier was that you need your 
data to be labeled at some point, because, let's say, you've got your model that was trained 

originally in the cloud, you deploy it to your camera, your camera is detecting, let's just say, it's 
detecting red cars, and you have a bunch of cars that drive by the camera and those cars get 

classified as red car or not red car, and they get classified on the fly and maybe the camera can 
take some action based on whether it's a red — Maybe it takes a picture of all the red cars, 

takes an action, or all the things it thinks are red cars, but you can't use that data to train the 
model, because it's not actually been labeled yet. So you actually have to take that data. You 

can't just you use that data to update the model somehow. You actually have to find some way 
to label it. Is that right?

[0:25:02.5] AK: Right, or verify the labels that the model’s placed on it. That is kind of a 

necessary part of the loop. You want to make sure that each data point you're feeding in is 
actually a pure kind of ground truth data point. 

[0:25:14.2] JM: As I understand, this is actually a tremendous problem and it's not really been 

— There's no, like label. I mean, maybe there's some kind of labeling as a service company, but 
I think this is actually just a tremendous problem and you have people at these — Even at giant 

companies, they have a really complex system where they have to get Mechanical Turks, they 
have to get them to vote on these — It would send each picture that was a red — That the 

model thought was a red car. You would need to ship it to three Mechanical Turks and have 
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them vote on it and have — You take whatever two out of three people voted on it. The labeling 

process is not straightforward at all. Is that right? It hasn’t been standardized, right?

[0:26:03.3] AK: Yeah. I mean, every single shop will maybe have their own labeling procedure. 
Again, it's also domain dependent. Depending on what you’re labeling, because deep learning 

doesn't just work on images. It also works on, say, voice data or text to data. So you might have 
different pipelines that you set up if you’re, say, trying to build a natural language understanding 

model where you have them annotating text versus an automatic speech recognition model 
where you have them transcribing audio files. Again, it's also very domain-dependent, but 

there's not really a standard procedure as of yet because of how heterogeneous this sort of 
process can be.

[0:26:47.7] JM: How much of a bottleneck is there on these people who are trying to build deep 

learning systems that are updating really quickly?

[0:26:56.8] AK: It depends, right? The systems that we have right now, largely, are trained off 
these large common data corpuses. So a lot of the image models end up being trained off of 

ImageNet, and because of how large these labeled data sets are, it's often actually quite easy to 
get started by taking this data, running it through a model, training that model, and then maybe 

taking a much smaller data sample, let’s say, a thousand data points from the specific thing that 
you want to recognize and using that fine tuning or transfer learning procedure on top of the 

model train with this gigantic labeled corpus. There kind of ways to accelerate the process, but, 
again, we have seen it be a bottleneck, but it's not something that's insurmountable. You can get 

around it by using things like transfer learning. 

[0:27:50.4] JM: Okay. Well, let's get into more of the mechanics. Amazon has adopted a deep 
learning framework called Apache MXNet as the framework of choice. Explain what Apache 

MXNet is and how it compares to the other popular machine learning frameworks?

[0:28:07.7] AK: Yeah. Apache MXNet is a fully open- source community project. Again, it's an 
Apache project, so a whole bunch of different institutions, from academic institutions like CMU 

and UDub, to to businesses, like Microsoft and Amazon actually contribute to it, and it's a deep 
learning framework. So what that means is it allows you to build these computer graphs, which 
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are essentially these layers of the deep learning model and it allows you to build these modular 

computer graphs and throw data at it for training and train these things across a whole number 
of different machines, often GPU machines, that will allow you to really accelerate the training 

process. 

Apache MXNet is fundamentally a way of abstracting yourself away from the hardware and the 
low-level mathematical mechanics of training the deep learning model and allowing you to, at a 

high level, define the modular components that comprise it, define the data you want to train it 
with and kind of click a button and just watch it go. 

[0:29:14.6] JM:  And is there any comparison between other machine learning frameworks 

that’s worth making here?

[0:29:20.7] AK: So the other machine learning frameworks, again, it's different tools for different 
tasks fundamentally. At AWS, we support all the major deep learning frameworks and machine 

learning frameworks, and Apache MXNet we found is the most open and one of the most 
performant. In fact, it actually scales linearly up to — I believe, our last test was 200+ GPU's in 

terms of training performance. That means is, essentially, while you’re training, let's say, a big 
image net model in MXNet, you can throw up to 200 GPU's with it and get essentially a linear 

speed up with each GPU you throw at it. There's no real degradation of performance, and that 
something that's extremely exciting because of the data scales that are needed and the training 

time that is incurred in training these models. It often takes weeks or sometimes months for 
large image models to train. So this is something that is really exciting for scientists working with 

large models and large data sets. 

Beyond that, we have kind of a broad breadth of support for actually interfacing with these 
compute graphs that you build. So we have an imperative interface which allows you actually 

act on the compute graphs as if it was a set of NumPy arrays, and we have a symbolic interface 
that allows you to build things layer-wise, kind of that nice high-level modular fashion similar to 

Keras or TensorFlow and a huge breadth of language support, so Julia, R, Python, C, Java, 
Scala kind of all support it.
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[0:30:51.1] JM:  So if I train a model in the cloud on a ton of data and then I deploy it to a 

device, what are the resource constraints? How much memory does it take? What are the other 
resource constraints that I need to keep in mind when I am deciding whether to deploy a model 

to — For example, like a Raspberry Pi that's running on maybe in an agricultural farm 
somewhere? 

[0:31:18.3] AK: Right. So the constraints are maybe twofold. One is the memory constraint, and 

one is the processing time, the speed constraint. So if you need a model running in real time 
and it's a very large model, the Raspberry Pi might not be your best option, but let's say you can 

have something that will maybe take two, three seconds for inference, it doesn't have to run in 
real-time, then the bottleneck becomes the memory. Again, these models aren’t one-size-fits-all. 

They’re really slim models, like SqueezeNet, which actually comes in around 4.8 MB. Really 
tiny, really lightweight, and it gets pretty good accuracy on classifying images. 

Then there's AlexNet, which is kind of the model that sparked this whole deep learning for vision 

revolution back in 2012. That's around 233 MB. Then there are models like VGG that can be up 
to 548 MB, and even models can go up to a gigabyte. Again, there's a huge range here. Again, 

all these models I just mentioned are for the same task, for the same image classification task 
on ImageNet and, really, what you’re trading off there is accuracy than versus the number of 

parameters and the speed of inference that you want on your device. 

[0:32:36.9] JM: So how do those — If I'm throwing away certain parameters and I'm losing 
some accuracy in order to make my model smaller so that it fits on a device, how am I testing 

that judgment or how do I decide, “Oh! My devices is small. Like it's not going to be able to 
perform with this model.” Maybe you could give some description for how people — Because 

like — Okay. I think about Netflix, for example, and Netflix — Or I'm sure Amazon Prime Video, 
if we’re talking about Amazon. But when they’re thinking about which — They transcode of a 

movie into a bunch of different transcoding, like smaller ones, more resource-intensive 
transcodings, because if you're watching on your big screen TV, they want to give you one 

transcoding, and if you're watching on your mobile device, they want to give you another 
transcoding, and it's similar with these models. Like maybe if you're deploying to somebody’s 

smartphone, you would prune the model and make it less accurate by sacrificing one set of 
things, and if you are deploying it to maybe a set of cameras that are more performant than your 
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smartphone, you would do something else. How do people decide how to reduce or play with 

their model’s accuracy?

[0:34:03.6] AK: Yeah. So there are a couple things you can do. So one thing, as you 
mentioned, is you can just choose a different architecture for your smartphone. So let's say in 

the cloud, I want the same model that's running on my smartphone, but in the cloud I have so 
much more processing power. So I can go with the 1 GB VGG GG model, for example, which is 

a very large architecture. A whole bunch of parameters, and I know it's really accurate, but then 
down on the device, I might want to go with a 4.8 MB SqueezeNet architecture trained on the 

same data. That’s one thing that people can do. 

But on top of that, there are little tricks that you can do to actually deploy the same model 
without having to go through and train two separate models, actually train the same model, and 

then slim it down for deployment on to, let's say, a mobile device. So, for example, there are 
things like quantization where you can actually take a model that was trained with 32-bit floating 

point weights, and actually without throwing new data at it, without retraining it, bring it down to 
half precision, to FB16 or even into 8 precision, so that actually reduces the bit width of the 

model, reduces the size of the model, but because these deep learning models are so robust to 
noise. It’s one of the really nice properties when you stack all these layers up and train them, 

they become really robust to noise. They don't fail very frequently when you inject noise into 
your training data, or even throughout the network, you can inject noise, and that's 

fundamentally what's happening when you're quantizing. The accuracy is actually not hurt that 
much by just naïvely quantizing the weights. That’s one trick you can use to actually slim down 

the models for devices. 

Then on top of that, there are tricks that you can use during training, like parameter sharing. So 
you can actually, instead of saying, “Layer one has one distinct set of parameters, and layer two 

or three has another distinct set of parameters.” You can actually force the layers during training 
to share a set of parameters, and that actually will allow them to learn something the kind of 

works for both layers. It might reduce accuracy a little bit, but that actually will reduce the 
number parameters you’re then shipping down to your end device. So there are a lot of small 

tricks you can do to actually reduce the number of parameters. 
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Another big one is weight pruning, which we have in MXNet as a training operator, which means 

that while you’re training, you can actually start snipping away weights that are really small and 
you can actually get up to 80% sparsity we've shown most cases and not lose a whole bunch of 

accuracies. So 1% or 2% accuracy drop by pruning away 80% of the weights in the network 
while you’re training. 

[0:36:33.5] JM: I think one other place for savings that I saw you discuss in a talk you gave 

was, I guess, you can do something to reduce the cost of convolutions. Can you remind us what 
a convolution is and why it's expensive and how you can reduce the costs there?

[0:36:50.3] AK: Sure. In many image classification, image recognition tasks using deep 

learning, we use this thing called a convolution, which is essentially a sliding window over the 
image that we call a set of filters, and the sliding window of filters over the image is essentially 

applied to each patch and it gives this really nice property in the image recognition model of 
translation invariance, which essentially means that if your dog is in the bottom right of the 

image or the top left of the image, it doesn't really matter, because no matter where it's 
translated to in the image, this convolution window will pick it up and be able to actually 

recognize it. 

This operation is actually quite expensive, because for each patch you slide over in the image, 
you actually have to multiply all three of the color channels, the RGB color channels, by each 

one of the filters, and there can be sometimes 3 to 10 filters. It’s a really expensive set of 
multiplication operations. While it might not reduce the parameters like we were talking about 

earlier, it actually helps the speed of the model lot if you can either take this convolution and run 
it on the GPU where you can do a lot of these multiplications in parallel, or if you're in a 

constrained device, like a smartphone that only has a CPU, you can actually factor this 
convolution. You can do something like a depth-wise susceptible convolution, where you 

actually convolve, i.e., you apply the filters to each one of the color channels individually instead 
of to all of them and then apply another convolution to merge all the color channels. 

Essentially, what this is doing is you don't really have to understand the mechanics of it. What 

it's essentially doing is reducing the number of multiplications that you really need to do to kind 
of approximate a whole convolution by factoring it out into these two separate steps. 
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[SPONSOR MESSAGE]

[0:38:48.8] JM: Your company needs to build a new app, but you don’t have the spare 
engineering resources. There are some technical people in your company who have time to 

build apps, but they’re not engineers. They don’t know JavaScript or iOS or android, that’s 
where OutSystems comes in. OutSystems is a platform for building low code apps. As an 

enterprise grows, it needs more and more apps to support different types of customers and 
internal employee use cases. 

Do you need to build an app for inventory management? Does your bank need a simple mobile 

app for mobile banking transactions? Do you need an app for visualizing your customer data? 
OutSystems has everything that you need to build, release and update your apps without 

needing an expert engineer. If you are an engineer, you will be massively productive with 
OutSystems. 

Find out how to get started with low code apps today at outsystems.com/sedaily. There are 

videos showing how to use the OutSystems development platform and testimonials from 
enterprises like FICO, Mercedes Benz and Safeway. 

I love to see new people exposed to software engineering. That’s exactly what OutSystems 

does. OutSystems enables you to quickly build web and mobile applications whether you are an 
engineer or not. 

Check out how to build low code apps by going to outsystems.com/sedaily. Thank you to 

OutSystems for being a new sponsor of Software Engineering Daily, and you’re building 
something that’s really cool and very much needed in the world. Thank you, OutSystems. 

[INTERVIEW CONTINUED]

[0:40:42.1] JM: Okay. We’ve outlined the relationship between the cloud and the edge. We've 

talked about some savings that you can use to reduce the size of your model if you're deploying 
it to an edge device that is less powerful. Let's talk about some actual deployments and what 
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they look like. If I am deploying this camera that’s going to identify red cars versus not read 

cars, or maybe I am deploying a Raspberry Pi based system that detects the soil quality of a 
farm, and agricultural farm, describe some deployment that you've seen in more detail. What 

kind of cloud instances do we need? What kinds of devices do we need? What kinds of services 
do we need? Just give a description for maybe some prototypical example. 

[0:41:37.4] AK: Sure. So a really nice prototypical example, and I think we talked a little bit 

about this, is essentially the vision use case where you have a bunch of cameras with enough 
compute power to run these models in real-time sitting down at the edge. A perfect example of 

this is the new Deep Lens device that we actually released at Reinvent about two weeks ago. 

So the idea of the kind of system that you can set up is that you want to be able to run some 
sort of model. Let's say, in one case, a security camera that detects people and actually start 

streams up to the cloud and triggers alerts when people are detected in the shot. So you want to 
stream like that running at the edge, so in real-time you're getting that feedback, but you also 

want to start keep ingesting that data into something local that is able them to ship the data up 
to the cloud to re-label it and fine tune your model that you're deploying down to the edge. So 

kind of the prototypical system I’ve seen is something like AWS Greengrass running on the 
devices, which is essentially a way that we allow users from the AWS cloud console to manage 

fleets of devices at the edge over these lightweight MQTT channels that we set up securely 
back to the AWS cloud, and over these channels they can push things like lambda functions, 

which are just little Python scripts that run at the edge as well as serialized model files. 

So, essentially, what a user will do, will take a serialized pre-trained model file, like a person 
detector that they’ve trained on Pascal VOC. They’ll bundle that with some Python code. They’ll 

hit a button in their AWS cloud console and it will be deployed over Greengrass down on to 
something like their Deep Lens, which then runs that model in real-time on the device, and 

using the outputs from that model in the Python code that users define will send alerts back to 
the cloud over that MQTT channel and also warehouse that data locally to eventually send in 

batch backup in the cloud. That sort of system kind of is set up entirely from your cloud console 
with devices running Greengrass such as AWS Deep Lens. 
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[0:43:47.8] JM: Let's say I'm going to deploy this deep — I’m going to put this Deep Lens 

camera throughout a shipyard, and I want to put some of these cameras in places where the 
shipyard does not have a Wi-Fi connection. What can I do to get the information between the 

Deep Lens camera and my cloud if I don't have a Wi-Fi connection in these places?

[0:44:13.1] AK: So there are a couple things. The first is you can store the information locally 
and go and manually extract it from the cameras. That's one kind of simple step that you can 

take. We have an SD card slot on the camera and you can just pop out the SD card, pop in a 
new one and take the data.

 Another thing that's really exciting about Greengrass is it allows your local devices to 

coordinate with each other So you can actually start to form a mesh network to get your data off 
these cameras if on one camera there isn’t an immediate Wi-Fi connection. So things like that 

become possible. Beyond that, there are steps to actually go and wire the cameras together, but 
that can often be expensive, and the mesh networking scenario is actually much, much easier to 

set up. 

[0:45:00.6] JM: What if you had the people that work in the shipyard, you force them to put an 
app on their phone that fits into the mesh network as well so they can just have like — Their 

phones can be the like gossip nodes between the different disconnected devices in the 
shipyard. Does that pattern happen at all?

[0:45:20.6] AK:  We haven't seen, or at least I haven't seen it, but that's totally feasible. Any sort 

of mesh network, you can have them set up their phones to be repeaters or carrier around little 
repeaters with them, but that's all kind of possible and enabled with Greengrass. 

[0:45:35.5] JM: All right. That's pretty cool. Yeah, let’s talk about that Greengrass, AWS 

Greengrass. This is a tool that lets you run local groups of devices. Can you talk about like what 
that actually means?

What does Greengrass give you?

[0:45:50.7] AK: Yeah. Greengrass kidn of sits on top of our AWS IoT service, which is 
essentially a set of secure MQTT channels that we can set up from devices backup to the cloud 
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and among devices at a local network. What Greengrass gives you is essentially a really nice 

suite of management tools on top of that and a way to locally coordinate devices AWS kind of 
IoT things in a local network, even if they’re disconnected from the cloud. 

So one big thing that Greengrass lets you do is actually it lets you write lambda functions, 

pieces of Python code up in the cloud and then deploy them down on your devices to run kind of 
either as a pined lambda function, which means it’s running in a continuous loop if the device 

shuts off and comes back up. This lambda function will still be running, or run kind of one-off 
actions on the device. You can employ down the lambda function to make a quick action on the 

device and then sit dormant on there. 

So it allows you to essentially really easily, with kind of Python code, manage logic on these IoT 
devices down the edge, and with the newly announced Greengrass ML inference service, that is 

— I think it was announced last week at Reinvent. The Greengrass suite of services also now 
allows you to deploy model files down to the device [inaudible 0:47:07.1] MXNet models to the 

device, and that actually allows you to then manage your entire inference stack on the device, 
which is a pretty difficult thing to do if you don't have kind of an easy management service like 

this to handle the large model files that could potentially be pushing down as well as setting up 
all of the interfaces to the low-level device primitives that frameworks like MXNet TensorFlow or 

Café need to actually run these models for inference on the device. 

[0:47:42.9] JM: Sorry. Can you explain that in more detail? You’ve got like a large model the 
you want to deploy and — I’m sorry. How does Greengrass help you in that situation?

[0:47:52.9] AK: Yeah. So with Greengrass ML inference, you can actually add this model asset 

as part of your deployment alongside your lambda function, and the lambda function can also 
be provisioned with things like MXNet. So instead of having to go down into your device and 

manually you’ll, say, pip install MXNet, and the right version of MXNet with the right 
configuration for that device, the Greengrass service will actually come with a kind of prebuilt 

instance of MXNet that can deploy down on to the device and run that serialized model that 
you're pushing down for inference. 
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[0:48:28.2] JM: I see. We’ve done a bunch of shows on these AWS lambda functions and other 

serverless functions. How does the AWS lambda tool — These are functions as a service, 
basically, these one-off functions that you can deploy and they'll be run on demand. How do 

lambda functions fit into this environment of Greengrass IoT machine learning stuff?

[0:48:53.9] AK: Right. The lambda functions that we’re talking about in the Greengrass setting 
are obviously a little bit different from the ones that run in the cloud, but the general concept and 

the semantics are the same. The lambda functions are fundamentally a piece of code, a Python 
code, a function as a service, but instead of being run on our AWS device fleet, it’s actually 

being run on one of your devices down at the edge, and there are a couple of other things 
because this is an edge device that you can do with these lambda functions that you can't really 

do with the lambda functions that you're familiar with from the AWS cloud. So you can actually 
access things like local devices. So you can access your local microphone or your camera on 

this device. Say, if It's like a Raspberry Pi, you can access the pi camera. 

Then on top of that, you get things like pinned lambdas that can actually gushy run forever on 
the device and be robust to device restarts and device failures and things like that. So when the 

device comes back up, this lambda functions has now come up with Greengrass and is running 
again. The semantics kind of look the same for the cloud, but obviously it's a little bit of a 

different paradigm.

[0:49:56.7] JM: We explored this deep Lends video camera a little bit, this video camera with 
deep learning functionality built-in. I’d love for you to go into a little more, like maybe some 

speculation about what other hardware devices would make sense to custom build with deep 
learning in mind.

[0:50:17.4] AK: Yeah. So, I mean, maybe I can speculate too much, but I was actually one of 

the early folks on the Deep Lends project. 

[0:50:24.9] JM: Oh, congratulations. 

[0:50:26.2] AK: Thank you. I can speak a lot to that. The idea of a vision at the edge is 
something that's really natural with kind of the state of deep learning right now. Most of the 
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vision use cases we've heard from customers have been, “Hey, I have all these vision data 

collecting at the edge. How do I play with it up in the cloud,” or being collected at the edge, but 
I'm just having to throw it away because I don't even have the compute power or the bandwidth 

or I don't want to set up a whole snowball edge to bring it back up. 

Kind of a natural solution is to actually bring a lot of those deep learning compute cycles down 
to the edge. Beyond that, what’s really nice about a device that can run deep learning kind of 

locally is that we can really use it as a teaching tool to help customers play around with deep 
learning and prototype with deep learning down at the edge, because while you could build a full 

production system with these things, there is definitely — With any piece of hardware, it was 
really targeted to come out as a developer platform, as a prototyping platform, and if you want to 

go to full production, there might be different parameters that you have to build your hardware 
with it. 

That said, the idea of vision being kind of the initial use case is something that's really natural 

given the impact that deep learning and, more broadly, machine learning has had to kind of in 
the vision space in the last 5 to 6 years. 

Other devices too, there’s — I know Google has an AIY audio kit. Deep learning has also started 

to make impacts in audio and ASR and NLP as well. These are all domains where there is a lot 
of value to be added, but vision is definitely the big one.

[0:52:04.9] JM: Yeah. I mean, kind of imagine little bits of deep learning being useful for 

everything. You can imagine deep learning being useful for your TV. Like what should the 
acoustic settings on your TV be? Well, they should probably be based on the room that your TV 

is situated in. You could say the same for any speaker system. How should your refrigerator 
manage power? Well, probably depends on the temperature of the house that you live in. We 

think of these as kind of like little things that are on the edge of usefulness, but — I don’t know, it 
seems practical to me. 

There's this other service, AWS SageMaker. This was announced fairly recently. Can you 

explain what SageMaker does and how that fits into the machine learning workflows that people 
have been implementing for a while in AWS?
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[0:52:59.5] AK: Yes.  The idea behind SageMaker is it’s essentially a managed service that 
helps you with kind of all the steps of the lifecycle of your model. So from the prototyping phase 

where you have usually data scientists working with an IDE, like IPython notebooks, which is 
something that you SageMaker offers Jupiter notebooks as a service, which is, essentially, this 

IDE that you can use to slice and dice your data, test out different models and come up with a 
good model for your problem. So from that kind of workflow to the actual training workflow and 

retraining workflow where we have these training containers that can actually automate a lot of 
the steps to ingest that new, let's say, label data, kickoff a training job, run it in the cloud and spit 

out a new model, and then all the way down to the deployment step. At lease the deployment 
step in the cloud where you can actually create these inference containers that then you can 

take that serialized model and then put it behind something we call an endpoint for serving, and 
that endpoint also allows you nice things, like kind of A/B test different models and run these 

little simulations over the models that you can put out as well as auto scale the models so you 
don't ever run out of compute power to run your workload. 

[0:54:16.7] JM: To wrap up, I’d love to get your perspective on how fast this stuff is coming to 

market. We’re seeing lots of great tools. We've been talking about some great tools that people 
could use to build IoT systems into their shipyard or their agricultural facility or their windmill or 

something, but are these kinds of — Are shipyards and other types of places, are they actually 
adopting this kind of technology, or do you have a vision for how our old world industry will start 

to adopt this kind of stuff?

[0:54:56.8] AK: . Yes. So a lot of our old industries are kind of seeing the light that, look, deep 
learning is making your labor and capital more efficient. So that’s fundamentally what the role is 

playing in your business, and adoption is definitely starting. We’ve seen a lot of big players start 
to move in this space. There are some recent acquisitions that can speak to that such as the 

Blue River acquisition by John Deere, the acquisitions of a lot of the companies in the self-
driving space by large automotive manufacturers. We’ve seen the adoption start to pick up. 

We’ve seen the trend kind of starting, and I think obviously we’re going to see a lot more in the 
years to come, but it's there, it’s happening and it's going to be something that really is shaping 

industry and, more broadly, our world in the next 2 to 4 years. 
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[0:55:46.8] JM: All right. Aran Khanna, thank you for coming on Software Engineering Daily. It's 

been fascinating talking to you.

[0:55:51.7] AK: Thanks so much for having me, Jeff. 

[END OF INTERVIEW]

[0:55:56.9] JM: If you are building a product for software engineers or you are hiring software 
engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an email, 

jeff@softwareengineeringdaily.com if you're interested. 

With 23,000 people listening Monday through Friday and the content being fairly selective for a 
technical listener, Software Engineering Daily is a great way to reach top engineers. I know that 

the listeners of Software Engineering Daily are great engineers because I talked to them all the 
time. I hear from CTOs, CEOs, directors of engineering who listen to the show regularly. I also 

hear about many newer hungry software engineers who are looking to level up quickly and 
prove themselves, and to find out more about sponsoring the show, you can send me an email 

or tell your marketing director to send me an email, jeff@softwareengineering.com. 

If you're listening to the show, thank you so much for supporting it through your audienceship. 
That is quite enough, but if you're interested in taking your support of the show to the next level, 

then look at sponsoring the show through your company. So send me an email at 
jeff@softwarengineeringdaily.com. 

Thank you.

 
[END]
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