
SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 1

EPISODE 485

[INTRODUCTION]

[0:00:00.3] JM: "Management is about human beings. Its task is to make people capable of

joint performance, to make their strengths effective and their weaknesses irrelevant." That quote

is from Peter Drucker.

It's one of the many useful quotes collected in Ron Lichty's book, Managing the Unmanageable:

Rules, Tools, and Insights for Managing Software People and Teams. It illustrates why we work

in teams. When we collaborate with each other, we make each other's strengths effective and

our weaknesses become irrelevant. To collaborate effectively, we need leaders, we need

management.

Ron Lichty spent six years managing engineers at Apple and many more years in management

and director roles elsewhere. In his book. Ron lays out the lessons he learned in 30 years of

these engineering management roles. He also describes concrete strategies for how to manage

engineers productively.

An engineer who becomes a manager needs to learn new skills. The hardest skills to master

have nothing to do with technology. Prioritizing the right projects, allocating engineering

resources, making architectural decisions, all of these skills are important. But the art of

relationships, the art of diplomacy and language, it's harder to learn than any technical skill.

How do you motivate an engineer to do something that is boring? How do you have a difficult

conversation with an engineer who needs to improve? When a conflict between engineers

comes up, do you confront the conflict head on, or do you wait for those engineers to resolve it

among themselves? These questions do not have easy answers. The best way to learn how to

react to these situations is to live through them, unfortunately.

The second best way to learn is to read and listen to people who have seen so much of the

management dynamic that they can distill it into anecdotes and aphorisms. In today's show, Ron

shares several stories that changed how I think about management.

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 2

Ron and I did not have time to discuss everything I wanted to, and I recommend checking out his

podcast episode on Software Engineering Radio for more detail. That link is in the show notes

for this episode.

I also recommend checking out his book, Managing the Unmanageable, which is also linked-to in

the show notes. Thanks for listening and thanks to Ron for coming on the show.

[SPONSOR MESSAGE]

[0:02:31.2] JM: Women 2.0 is a company with a vision of gender equality in the tech world.

Women 2.0 is a community, a media company and a jobs platform that connects top female

talent with engineering jobs around the world.

At the new Women 2.0 jobs platform, find vetted jobs for women engineers, data scientists and

product managers. To find a job that is right for you, go to women2.com/sedaily. If you're an

engineering company, you can connect with top female talent on Women 2.0.

Companies like Twitter, MongoDB and Craigslist use Women 2.0 to find new hires. Go to

women2.com/sedailly to find out how to post your company's jobs to Women 2.0.

Thanks to Women 2.0 for being a new sponsor of Software Engineering Daily. Check it out at

women2.com/sedaily.

Thanks for listening and let's get back to the show.

[INTERVIEW]

[0:03:39.7] JM: Ron Lichty is the author of Managing the Unmanageable: Rules, Tools,

and Insights for Managing Software People and Teams. Ron, welcome to Software

Engineering Daily.

[0:03:44.7] RL: Hey, thank you.

[0:03:46.1] JM: I have a bunch of questions for you about management, particular managing

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 3

software engineers, which you have a ton of experience in. The questions that I want to start with

are mostly related to experiences I have had personally being managed by engineering

managers, as well as some experience managing engineers myself.

The first question I have is something that is very close to my heart, because I would say it was

the number one frustration/difficulty I had as an engineer. That is the question of boring work. If

you're managing engineers and the engineers are doing work that is frankly boring, I mean this

is a frequent thing that's going to come up. How do you keep engineers engaged when the work

that they have to do is boring or otherwise uninteresting to them?

[0:04:43.6] RL: I think the first think you need to think about is… What's the contribution that

work is going to make to the product, to the company, to the customers, to the team and to the

world? One of the fundamental roles that managers have is to connect the dots basically

between the work that any individual programmer is doing and the contribution to all those

places - to the team, to the product, to the company and to the world.

It's really helpful to work in a company that's got a company mission that people can get behind.

But fundamentally - and Jeff I imagine this is true for you; it’s certainly true for me - most of us

got into engineering because we wanted to make a difference in the world. Knowing that… even

boring work can be really meaningful knowing that it's going to make a difference to somebody if

we do it. I think that's the biggest piece for engineers, for developers, for testers, for those of us

who are technical,… it's just knowing we're making a difference in people's lives.

[0:06:00.5] JM: That was the argument that was levied at me when I was at Amazon. I spent a

little bit of time at Amazon. That was the gist that I would get would be like, "Hey, I know you're

working on the service that you're not supper passionate about, but think of the scale… yes, this

is just a system that calculates taxes on items that come in, but it's calculating taxes on every

item that comes into Amazon. Isn't that exciting?”

I've heard other engineers who work at big companies and they say that this is a similar tactic

that is used by their managers where their manager says, "Listen. I know this is not a super

exciting project where you're refactoring this Ul component. It's going to take a month. But think

of the impact. Think of the number of people that will be affected by you."

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 4

There are engineers who just hear that and they're like, "Yeah, I still don't care. I don't care if a

million people are going to be seeing the new icon. It just doesn't - still doesn't motivate me." Is

that a sign that such an engineer is just in the wrong place? Is that just going to be a non-

starter? Or is there some sort of way to recover that situation?

[0:07:14.1] RL: Well, maybe. Or one of the other opportunities you hear from managers talking

to developers is it may be boring to do that work, but it's maybe significant from a technical

standpoint.

One of the things that I've done with teams is to make sure that as a team, every engineer on

the team is making a contribution to that team and making sure that every one of them is

sharing what it is that they're doing with the rest of the team from an architecture standpoint.

It may be that there's a lot of piece work - a lot of work that seems insignificant - but that lot of

work can be communicated to the rest of the team in ways that explain how the whole system

works. You want to get engineers whiteboarding what their solutions are for the rest of their

teams.

There is a technical contribution and there's a customer contribution and there is a product

contribution. All of those things are wrapped up and key for managers is to understand what

motivates every one of their engineers. It may be that you've got an engineer that is just not

motivated to be on this team. That happens and we need to help them find somewhere else to

work.

[0:08:50.6] JM: In a big organization, they often have these kinds of things where you can't

switch teams unless you've been at a specific role for N months - some period of time before you

can switch. Are you a fan of that policy, or does it just vary from company to company? Is that

just a policy that you have to have when a company is at a certain scale? Otherwise, you just

have too many moving pieces?

[0:09:17.3] RL: Good question. It does vary from place to place. It varies totally from place to

place. What I see is that it’s a general - I think it's useful as a general rule, or a general principle.

But it's also - where it's effective - is when managers and HR can work together to customize it

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 5

to the individuals that we're talking about. I think saying that there's some one universal rule that

has to work for everybody is not terribly useful, but it's good as a guideline.

[0:09:58.7] JM: Part of the reason I start off with these kinds of questions is because your book

is called Managing the Unmanageable. When I imagine an unmanageable person, I imagine

these kinds of issues where you have an engineer who simply is in a role that they do not like.

They're clearly talented. They made it through the interview process. They have some set of

skills on their resume, or some set of side projects that is clear evidence that they are talented

and they're capable of getting stuff done, and yet they're in a role where it seems that they just

simply are not productive.

These things happen so often. I think they definitely happen in software engineering, particular

because engineers have so much latitude. I think in some case you could say engineers even

get spoiled, because we have such a plentiful set of opportunities, so we are definitely in a

position to take an unmanageable attitude. Let's talk about conflict.

[0:10:57.5] RL: Before we move into conflict, let me just - let me just suggest, … Reid

Hoffman, who was the founder of Linkedln, before he founded Linkedln, Reid and I worked

together at Fujitsu.

[0:11:10.0] JM: Wow.

[0:11:11.3] RL: He was one of our product managers and I was leading engineering on an

online animated virtual world product. Reid wrote a book in -

[0:11:21.1] JM: Is this SocialNet?

[0:11:22.6] RL: No, it was before SocialNet. It was at Fujitsu. It was a product called Worlds

Away, which was the - it was the third iteration of an online animated virtual world that was

originally called Habitat, that originally ran on the Commodore 64 ages ago. It was the original

online animated virtual world. We were doing the third generation of that and Reid came from

Apple. When he left Fujitsu then started SocialNet, then after that started Linkedln.

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 6

Reid has written a book on hiring and recruiting and getting people into jobs that I think it's got a

really valuable concept in it, which is this notion of terms of duty.

His concept, his realization that he puts out there in his book, and I forgot what the name of the

particular book is, but the concept he puts out there is this concept of terms of duty, which is...

we have this - we conjure up this idea that people are going to come work for us forever, and

that we're going to employ them forever. In both of those cases, neither of those is true.

Rather than doing that, let's identify a term of duty. It might be two years or three years or five

years, and look at what do you the employee, what do you the programmer want to get out of

that term of duty? What do you want to learn? How do you want to grow? What skillset do you

want to have at the end of the term of duty that you want to take on to your next role? Whether

that role is in our company or somewhere else. And what do we want to get out of it from your

having been here?

I think that's a really valuable, really important conversation to have in the hiring process,

whether it's an engineer, or a manager, or an executive who is coming into a company, what it is

that they want to get out of having been at our company and what it is we want to get from their

having been here? Having that very serious conversation about the contributions we're going to

make to each other I think really sets up a different relationship and a different way of working.

[0:13:41.1] JM: Yeah, I can't remember if that - I read Reid Hoffman's - the books that he wrote.

He had a co-author that I think he wrote both of his books with, or at least one of them. At least

one of them is called The Start-Up of You, which is kind of a cheesy title. It gets at this idea where

it's basically that you as a person can operate like a startup in the sense that you have a long-

term vision for where you want to get to and it's an ambitious vision.

If you think about it in terms of The Start-Up of You, maybe that vision is - can have different

constraints than the type of vision you would have a startup of a business, because the startup

of you, you could say like, "I want to scale into a person that can manage people. I want to scale

into a person that has good understanding of business finances. I want to scale into a person

that has great ability to deploy code in a high-scale organization."

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 7

I think the whole idea of that - “tour of duty” I think is - might have been the term that they used?

Reid Hoffman talks about this idea, if you're managing particularly an unmanageable person you

say, "Look, I get it. You don't want to be here long-term. Let's be honest, you want to be here one

to three years, and then you want to go on your way and do something else that's higher

upside, higher impact, more closely aligned with your artistic interests, whatever it is. But for

those one to three years, you're going to have to contribute to the company and we need to find

a way that our interests align during that tour of duty.

Alluding back to myself is just a personal example. That's something I probably should've done

more effectively when I was at Amazon. Instead, I was a little more impatient about doing

something that just impacted me positively. If I would've taken a step back and said, "Okay, how

can I evaluate this tour of duty in a way where I can grow really effectively and then have a good

exit from Amazon after about a year and a half or one of these more respectable tours of duty,

rather than the 8-month employee that looks terrible on your resume and so on." I probably

would've had a more effective experience there.

I think from the point of view of the manager, just keeping in mind that your employees are

probably not going to stay - they're not going to be lifers anymore. They're going to do tours of

duty. This is not a lifer business anymore. Does that resonate with you?

[0:16:17.0] RL: Yeah. I don't think it's Start-Up of You. I think it was his next book.

[0:16:21.9] JM: Okay. What was that other one? What was this next book? Are you looking it up

right now?

[0:16:28.1] RL: Yeah, I'm looking it up right now.

[0:16:30.2] JM: The Alliance. That's what it is. Okay. Reid Hoffman's book is -

[0:16:32.9] RL: The Alliance: Managing Talent in the Network Age - the subtitle.

The Alliance is a great title for that book because what we're looking for in a tour of duty is what

am I going to contribute to you? What are you going to contribute to me? What is the

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 8

contribution this company is going to make to your career and what's the contribution you while

you're here are going to make to this company?

It's essentially creating an alliance for that tour of duty period. Not saying that we're going to

employ you forever, because that never - that almost never happens. It's really rare these days.

Also not saying that you're going to stay here forever, because that also rarely happens these

days.

We're really looking for how do we form an alliance for some period of time. And at the end of

that alliance, let's be honest with each other and look at is there an opportunity here for your

next tour of duty, or do we need to help you find the next place?

If you made the kind of contribution that our alliance asked you to make, I'm going to be

overjoyed to try to find you the right place, whether it's in our company or another one.

[SPONSOR MESSAGE]

[0:17:53.7] JM: Indeed Prime flips the typical model of job search and makes it easy to apply to

multiple jobs and get multiple offers. Indeed Prime simplifies your job search and helps you land

that ideal software engineering position, from companies like Facebook or Uber or Dropbox.

Candidates get immediate exposure to top companies with just one simple application to Indeed

Prime. The companies on Prime's exclusive platform message the candidates with salary and

equity upfront. Indeed Prime is a 100% free for candidates. There are no strings attached.

Sign up now and help support software engineering daily by going to indeed.com/sedaily. That's

indeed.com/sedaily if you're looking for a job and want a simpler job search experience.

You can also put money in your pocket by referring your friends and colleagues. Refer a

software engineer to the platform and get $200 when they get contacted by a company and

$2,000 when they accept a job through Prime.

You can learn more about this at indeed.com/prime/referral. That's indeed.com/prime/referral for

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 9

the Indeed referral program. Thanks to Indeed for being a continued sponsor of Software

Engineering Daily. If I ever leave the podcasting world and need to find a job, once again Indeed

Prime will be my first stop.

[INTERVIEW CONTINUED]

[0:19:34.2] JM: Yeah, absolutely. Conflicts occur within a engineering organization. Whether

those conflicts are between a manager and employee, or between two employees it is

oftentimes the job of the manager to resolve a conflict. What are the circumstances that create

conflict and how do you avoid conflict? Then once a conflict occurs, how do you resolve it? Do

you resolve it head on? Do you just avoid the conflict and try to find a way around it indirectly?

Tell me your philosophy around conflicts.

[0:20:10.5] RL: Yeah. I don't think that avoiding conflict is the right way to think about it. I do

think that we need to set up a culture of collaboration and a culture of cooperation and a culture

in which we work together and in which we find solutions together. That said, conflict arises out

of two different programmers having entirely different approaches to - or entirely different

thinking about, or entirely different architectures, or entirely imagining a solution entirely

differently - as well as the petty stuff. (heh) Like… I don't like the clicking you make when you're

thinking.

One of the goals for managers is to set up a culture of collaboration and of communication,

because fundamentally software development is a team sport. We need to not have jerks in our

teams, fundamentally. One of the learnings that many of us have along the way is we put up

with a jerk too long whom we should have helped out of the organization or out of the team.

[0:21:27.6] JM: Often a brilliant jerk.

[0:21:29.0] RL: Often a brilliant jerk, which is why we put up with them. If they weren't brilliant,

we probably would've helped them out of the team earlier.

Almost to a one - managers I've talked to, my own experience has been… managing jerks out

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 10

earlier is always better.

[0:21:47.9] JM: Yeah. I agree with that. Do you have any stories about managing a conflict

improperly, like when you made a mistake? Like things that just stick out in terms of conflict

management, where either you were too soft, or too hard, or you moved too quickly, or you

moved too slowly. What are the top mistakes in terms of anecdotes that come to mind?

[0:22:13.1] RL: The top mistakes are always moving too slowly in dealing with conflict that's

unhealthy for the organization or for the team.

I really lucked out as a manager. I began my managing career at Apple. I was hired into Apple to

create and manage a product management group, having been a programmer for seven years. I

did that for a year and a half. And immediately when Apple blew up my group, when Apple re-

org'd, I immediately headed back into engineering again and started being a programmer and

then managing software developers, and then being a programmer and managing software

developers… I went back and forth several times before I embraced management as a career.

As I said, I really lucked out in the sense that I didn't have that kind of conflict. Maybe I lucked

out, maybe I created the culture that I wanted to create. But a couple of companies later, I

walked into a culture that the person who had been the team lead was pretty toxic to the team.

He had just been demoted before I arrived to just a member of the team.

He continued to be toxic and I let that go for - I let that go, because I didn't want to deal with it. I

think most of us who are managers don't like dealing with conflict. Most of us who are people

don't like dealing with conflict. It's a people issue more than a manager issue.

It's probably endemic to programmers. Most of us who are programmers are - the people who do

Myers Briggs have told us that most of us who are programmers all have the same personality

type, something like 70 plus percent of us are INTJs, and the “I” stands for Introverted. We tend

to not want to deal with interaction generally. Stepping up into managing as a big change in

thinking about interaction, and dealing with conflict is the worst end of that.

But I had the benefit in that very first conflict situation that I had a coach who had written the

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 11

book on handling problem employees, and I truly had a problem employee at that point. He

coached me through handling that employee in what I thought was a very humane was… in a

way that was very - I don't want to say friendly, because it wasn't friendly, but it was a very

human - it was a very human way of dealing with a problem employee - by pointing out the

impact that that person's behavior was having on the rest of the team, and devising a plan going

forward that would… that would result in change, that would result in change from that

employee, result in change for that team.

[0:25:26.3] JM: Now when you sit down with somebody who you have a conflict with, how

important is the preparation before that conversation? Because my experience is that it's super

important and you almost have to map out in your head the decision tree where you say, "Okay,

here is the thing I'm going to start with. Here is how I'm going to phrase it in a way that will not

be super offensive, but will get my point across. Here are the different ways where he or she

might respond, here are the responses I will give to that."

It sounds like over-engineering a human interaction, but it's one of those things where it's like

planning - what is it? Plans are nothing, planning is everything - where you do want to do this

because your impulse - the improvisation that you will have during conflict - will almost always be

incorrect.

[0:26:15.2] RL: Yeah, the planning…

That very first one, so that coach who took me through it, the planning was days of planning for

that meeting.

[0:26:27.3] JM: Yeah. For a single conversation.

[0:26:28.3] RL: For a single conversation. I should say that when I've done these and I've

probably done a half dozen of them in my career where I've got somebody who's - who either

has to change or has to leave. I want to have that conversation before I get to the HR plan. I

want to have a conversation with HR and tell them I'm doing this, but….

There is this HR plan thing. This is really an intervention that I'm trying to create before I get to

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 12

the HR plan. My coach was a guy named Marty Brounstein. Marty had written a book called

Handling the Difficult Employee. I've got a copy of Marty's book. I've never read my copy of

Marty's book, even though I've recommend it to other people, because I had Marty.

Marty walked me through the planning for this. This is a meeting and this is how that first

meeting went at that company; I set up a meeting with that employee for either an hour, or hour

and a half, but I reserved the room for half a day. That meeting lasted for almost half a day. I

spent probably two days planning that meeting. That two days planning that meeting had to do

with identifying the - first identifying the behaviors that I needed to be changed - but then being

able to address those behaviors in terms of impacts.

So the impact of those behaviors - some of the impacts of those behaviors - included the fact

that I had just spent two days planning a meeting with this employee to deal with these

behaviors. There were impacts on the whole rest of the team, there were impacts on the team's

morale, there were impacts on the quality of the code, there were impacts on how other people

on the team delivered the quality of the code, there were impacts on customers, there were

impacts on… - I literally had a list of impacts that the behavior resulted in.

The interesting thing that Marty taught me was that - or the interesting realization of what Marty

taught me - was that while an employee may argue with your perception of their behavior, it's

pretty hard to argue with impacts. It's pretty hard to argue with the fact that I've just spent two

days planning for this meeting. It's pretty hard to argue with the morale of the - with an

observation about the morale of the team. It's pretty hard to argue about the quality of the code

and the results of the behavior on the quality of the code.

By talking less about behaviors and more about impacts, now we're talking about what it is -

how those impacts need to be changed and what it is - how the past is represented - and what

the future needs to represent.

This was a meeting in which… it started out with my presenting impacts. And then in Marty's -

I'm going to say in Marty's words, although this is so long ago that I don't know what his words

were. But he basically said, "You're going to put out the impacts, and then your employee is

going to let out whatever they need to let out. They are going to deny it. They're going to go into

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 13

rationalizations, they will do any amount of talking they want and your job is to listen until they're

done."

The interesting thing - you're saying, "Do you plan for all of the possible ways this conversation

could go?" "No." I had no idea what he was going to say at that point. To Marty's point, what my

job was, was to listen reflectively until he was done, to just hear him out, and to listen reflectively

to really hear him not just let it come at me, but to really hear him and then to come back to,

"Okay, but we've got these impacts we have to change. We need to come up with a plan that

we're going to change them.” And that plan is going to mean that we have to have a plan going

forward with check-ins that might be every day, or might be every three days, or might be every

week, or might be every two weeks.

There's a huge commitment on the part of a manager to that turnaround. Marty's claim at the

time, and this has been my experience with one exception that an employee who has that really

honest conversation - with whom you engage in that really honest conversation about the

impacts that have to change and coming up together with a plan that will make that change -

that employee will either stay and make that change, or that employee will leave.

That gets out of the whole HR plan, it gets out of the whole firing thing, it gets out of all of that

aftermath is over. You're getting it done in this meeting. You're getting it done in this meeting with

the plan that has to go forward in the commitment you have to make the to the employee, to

meet with them and to follow through.

[0:31:53.3] JM: You lay out objective facts, so that this is not an emotional conversation,

because you can keep referring back to objective facts. You're not going to get into some

debatable loop. You can say, "Hey, look. You left out a semicolon in this line of code and

you left out a unit test in this highly sensitive matter. You did these eight things. Then here

are anonymized comments that your teammates have given you. You're unreliable.

Another one of your teammate said you didn't show up to five meetings in a row." You just

have these objective things. It's not an emotional conversation…

[0:32:30.4] RL: And it's not the words, “You are unreliable.” It's the words, "When you didn't

show up to those five meetings, your teammates were unable to move forward." It's cast not in

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 14

terms of their behavior, but cast in terms of their impact.

And that's a really lot of work for a manager. This is not how my brain thought. I'm not sure it's

how my brain thinks now, but it definitely was not how my brain thought 20 years ago when I did

that first one.

[0:33:00.4] JM: Yeah. I mean, this whole defusing of a problematic, unmanageable employee

seems like one of the pillars of becoming a good manager, because if you do it correctly you're

going to be viewed as humane, you're going to recover difficult to recover situations, and you're

going to avoid giant HR issues.

If you do it incorrectly, then you're going to be seared in that employee's memory as that horrible

manager that I had, because these are the types of conversations and interactions - I mean, I'm

probably referring to something that happened to you 20 or 30 years ago and it sounds like it's

crystal clear in your head and you aren't even the one being criticized. I'm sure for that

employee, that whole half day, probably his entire day that day is seared into his memory. And

probably seared into his memory is a vision of you as a more sympathetic, reasonable person

than could have otherwise happened if you would've had less preparation.

[0:34:04.9] RL: I'm sure that's true. Yes, I'm sure that's true. I'm going to reflect back on an

earlier one, the very first performance review I gave. The very first performance review, …

You know, all of us walk into managing with role models. The role models most of us have for

managers - in my experience and in talking to a lot of managers and a lot of employees -

managers of programming teams tend to either be micromanagers, or they tend to throw their

employees into the deep end and see whether they sink or swim.

But they don't have a lot of - human interactivity and human factors - Human interactivity skills

are not strengths in technical people generally. Partly, because we don't have a lot of role

models. All of my role models were managers who had thrown me at the deep end to see if I

could sink or swim. I sort of thought that was how this manager thing worked until…

Because I had the advantage of managing at Apple initially - Apple had Apple University - Apple

had a set of course work internally for managers. There was nothing in Apple's curricula that

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 15

was specific to managing programmers but there were a number of classes on managing in

general and on becoming a better manager. The very first one I took was Managers and the

Law. My manager told me I was going to take that. It was a half-day class, and I came back with

my jaw having dropped for things I had not known about managing and the law that were really

valuable. I thought, "Okay, so I need to keep taking classes, because I clearly - there's clearly a

lot to learn here."

I think the second one was situational leadership, in which you need to take into account the

junior-ness, or senior-ness of a particular employee combined with their knowledge and

experience and wisdom in the particular… - for a programmer, the particular code they're

working in - and take into account where that employee's at in terms of how much of a deep end

you can throw them into.

The very first employee I had was a kid out of college, and I had thrown him into the deep end.

It was now two months into his tenure when I took the situational leadership class. I came back

from class, sat him down and said, "I think that I've really erred on your part. I'm sorry. I've throw

you in the deep end. I'm actually now going to provide you considerably more support in what

you're doing, and we're going to have… I'm here for you in a different way." And he breathed

this audible sigh of relief.

I think that we as - I've talked to a number of managers about this - and all of us, almost to a one,

are apologetic to the first people who worked for us, because that transition from being an

individual contributor to being a first-time manager is a hard one for us, but it's a hard one for

those first employees.

I'm starting to talk about that performance review. When I gave my first performance review I

had this notion of “I’m telling you what's wrong with you.” I was really uncomfortable. I really

hated doing it. I disliked it enormously. And as I thought through that process, as I thought

through that interaction over the next few weeks I realized that the next performance review I

wanted to give - I wanted to give it in an entirely different way.

And I did give it, and I totally changed how I gave performance reviews from the first one to the

second one. The second one, what I envisioned was sitting down on a park bench with my

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 16

employee, and it's sort of the - it's why Reid Hoffman's book The Alliance so resonated with me -

I imagined sitting down on a park bench with my employee, looking out at the horizon and

saying, "Tell me about where you want to go. Let's envision out there on the horizon where you

want your career to go. Let's now talk about what's standing in your way and what's going to get

you to where you want to go."

That's a really different conversation for a performance review and one that's enormously

helpful to the people that work for you, and one that's enormously helpful to you getting what you

want - the contribution you want from the employees who work for you.

[0:39:22.2] JM: Yeah. Because it doesn't assume that they're going to be lifers. It assumes that

they may be people who might leave the organization and they want to develop skills that are

agnostic of the organization.

[0:39:34.3] RL: But it also gives you the opportunity to say - not to say you're really screwing up

- but to say, "Here is what's standing in the way of your reaching where it is you want to go."

[SPONSOR MESSAGE]

[0:39:54.0] JM: You've got a bacon delivery service and you need to notify your customers

when their bacon has arrived at their doorstep. Twilio helps you make sure your customers get

the bacon while it's hot.

Twilio's programmable API lets you build SMS or voice alert easily in the programming language

of your choice, all in under five minutes with only a few lines of code. Now your customers get a

text or a call the instant their bacon is ready.

If your customers want to see the bacon frying on a hot pan, Twilio has video APIs and SD case

for the platforms that you know and love. Learn more at go.twilio.com/podcast and get an

additional $10 when you sign up and upgrade your account. That's go.twilio.com/podcast. You

will only pay for what you use and it costs less than a penny to send a text.

Get started at go.twilio.com/podcast, get your bacon delivery service cooking with Twilio's APIs

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 17

for voice, SMS and video.

[INTERVIEW CONTINUED]

[0:41:13.7] JM: Yes. Yes, agreed. I want to shift to talking about something - something a little

more day-to-day, not necessarily managing conflict or doing performance reviews or something,

but just a management idea that I read - I've read it in a couple difference places, but the place

that sticks out is Peter Thiel saying about his management days at Paypal - and Paypal is often

regarded as one of the best managed companies and one of the most uniquely managed

companies.; you can see that by the Paypal mafia and how successful the people that came out

of Paypal have been… One of the management tips that Peter Thiel says from that event and

people have varying beliefs on whether they agree with Peter Thiel on certain things or not, but

you can't dispute that he is an effective manager.

What he says is that to succeed as a manager, you have to give every person exactly one thing

to work on, and that there is massive downside when you assign multiple things to one person.

How much do you agree with that? Should we be assigning multiple tasks to a single person?

Should we assign a chain of tasks to them? What do you think about multi-tasking versus

single-tasking?

[0:42:37.8] RL: Multi-tasking. Every single study that's been done shows that human beings do

not multi-task, we context-switch. And context switching is enormously costly. It's especially

enormously costly I think to programmers. It's one of the things that - what I've done for the last

five years is I switched my career from being a fulltime manager to consulting as interim VP of

engineering, interim VP of products, interim CTO, interspersed with training teams in agile.

One of the things that I try to do in training teams in agile is to get their product managers, their

product owners, their business side of the team to recognize that multi-tasking - that interrupting

programmers - has enormous cost.

One of the questions that I'll ask developers is if you leave work on Friday afternoon, you put a

bookmark into the code that you're writing, so that you can on Monday morning pick it back up

again. We're going to imagine that you don't work over the weekend and you don't think about

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 18

your code over the weekend, and I know that's hard for some of you to imagine, but we're going

to imagine that. When you come in on Monday morning and, okay so you're going to look at

your e-mail for a little while and figure out where things are. But now you're sitting down in front

of your code, you're in your IDE and you're about ready to write the next line of code, how long

does it take you between sitting down and actually writing that first line of code?

I'll get answers that range from, "Well, it would probably take me 10 minutes to, it will probably

take me to half hour to, it will probably take me two hours."

Then we'll walk through that a little bit and people will describe the process of re-setting up all of

the context to write the next line of code, because that next line of code has implications for

other lines of code that are - well some of which are right in front of you and others of which are

in other parts of the code and other files and other modules and other components and other

objects. And you're forming this mental model that has almost certainly 10, or 12, or sometimes

20 or 30 different mental pieces in order to get this all set up.

For those teams that say, "Well, it will take me 15 minutes to be ready to write my first line of

code,” I'll then say, “well so what happens when you're interrupted on Monday every 14

minutes? How many lines of code do you write during the day?” They'll look back at me and

they'll say, "Zero."

I'll point out that that's true, except that there is this other way of doing it. So I've never met

a programmer who said, "I came to this company to write bugs." Jeff, have you ever met a

programmer who said, "I came to this company to write bugs"?

[0:45:59.8] JM: No. But I have come to a company and been asked to fix bugs all the time.

[0:46:04.7] RL: Yeah. So where do bugs come from if programmers don't come here to write

bugs?

I think one of the places they come from is it takes 15 minutes to set up all that context, and at

14 minutes you see one of your colleagues, or you see the product manager, or you see your

manager, or you see somebody coming your way and you think, "I've got enough. I've got

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 19

enough context to write this line of code. If I don't write this line of code right now, I may never

get any lines of code written today."

So you write the line of code, but you are one minute short of having enough context to write that

line of code correctly.

That's the cost of multi - that's the cost of interruptions - but it's also the cost of multi-tasking.

[0:46:50.6] JM: Yeah. So is the implication here that as a manager, you should literally be

thinking of each person - in an ideal world - doing one thing at a time?

[0:47:01.0] RL: Yes. I've actually come across a really interesting study that actually Mike Cohn

has it in one of his books. In his book Succeeding with Agile, he's got a chart, a study that shows

the number of projects that people are working on. This is not programmers specifically, but it's

a study that shows the number of projects that people - that information workers are working on

and their productivity.

It actually shows productivity going up with two projects, and then it pretty much falls

precipitously with three and four and five and six projects if you do that.

The interesting thing is - I've asked this question to lots and lots of product teams, "Why do you

think that productivity rises with two projects?" Pretty much to the one, the two big answers, one

of them is, "Well, I get bored with something and I want to work on something else." The other is,

"I get blocked on one. To be productive, I need to work on something else."

The interesting thing is that that study was done in 1993, or 1991 maybe - it was the early 90s -

and it was - that was the time when inter-company e-mail was just arriving and it was a time

before all of the Slack and IRC and texting and mobile phones and all of the million channels that

we've got of electronic communication had happened.

There are folks who have contended that that first project is already taken with e-mail. When I

sit down on Monday morning to write code and programmers will say this all the time, "Well, the

first thing I do is sit down and look at my e-mail.” When I'm coding, if I get blocked the first thing I

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 20

go back to is go back and look at my inbox, or go back and look at Slack, or go back and look at

the electronic communications that have come my way, because darn it, those people who e-

mail me expect that I actually read that stuff and respond to it.

What that means is that the first project is already taken, and the project that I'm working on is

the second one and productivity falls precipitously after that first project. Because what I fall

back on is e-mail and electronic communications.

[0:49:41.6] JM: Well, that makes sense.

I guess, the 20% time idea are you a fan of that, or not a fan of that?

[0:49:49.4] RL: I'm a fan of organizations figuring out what works for both the Individuals on the

team, the teams and the organization. I am a fan of 20% time, I am a fan of Atlassian's FedEx

days, I'm a fan of lots of - I'm a fan of organizations that figure out how to make work be fun and

productive and interesting and useful and making a difference.

[0:50:27.1] JM: Right, right. Yeah, maybe you have the 20% time in one giant batch. Maybe it's

one day per week. Maybe it's in the form of people just have a day off occasionally. I think the

20% time is commonly used as a way to allow an engineer to decompress. Many engineers

decompress by doing more engineering, but it's more relaxing engineering, more free-thinking,

more creative, less constrained to fixing bugs, but at some organizations it might be more just

taking time off and decompressing completely. I think that's what the implication of the 20% time

is.

[0:51:06.3] RL: Yeah. I think there are other alternatives. I think that life balance is really useful

and important. If you look at what Menlo Innovations is doing in Ann Arbor, if you look at what its

founder Richard Sheridan has written about in his book Joy Inc., if you look at what Pivotal

Labs does in training teams to teams use XP - actually, both of those companies are using

Extreme Programming - they are…

Code is only checked in when both members of pairs are there. They only pair program.

Programmers do not work when they're not pairing. And they tend to work eight or fewer hours

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 21

a day because pair programming is so intense. And then people go home. It's yet another way.

Again, I'm really a fan of organizations figuring out ways that do not make programming - that

do not attempt to have people running at 100-yard dash speeds for what is fundamentally a

marathon.

[0:52:20.6] JM: You have in your book Managing the Unmanageable this section where you've

got a large collection of quotes. Many of these quotes are useful aphorisms. I think one way of

understanding management is through a series of aphorisms.

[0:52:37.8] RL: We refer to them as rules of thumb and nuggets of wisdom.

[0:52:41.5] JM: Yes, exactly. These are things like “Save early, save often.” “Managers must

manage.” “Leading by example occurs whether you like it or not.” These are… I picked out some

of my favorite ones.

[0:52:55.5] RL: I think the one in programming that both my co-author and I both collected

very, very early: “Brook's law: adding manpower to a late project will make it later.”

[0:53:09.0] JM: The one I want to ask you about is actually leading by example. If you're a

manager and you're not writing code, how are you setting an example for your engineers?

[0:53:20.8] RL: I think you're setting an example by the culture you create. You're setting an

example of being a collaborative person and creating a collaborative team. I think that…

Agile teams have this notion of self-organizing teams. That notion is one in which everybody on

the team needs to be a leader and needs to contribute their unique skills, insights, ideas,

observations to the team in a way that in a lot of ways is very similar to what you see in acting

with improv groups, or in music with jazz groups, or maybe in sports with the Warriors who won

the NBA championship last year.

I am not a sports guy, but when, at Schwab, I had a management coach who thrust a book into

my hands by a guy named Phil Jackson, who it turned out, I had no idea at the time because I'm

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 22

really not a sports guy, but it turns out Phil Jackson was the - at the time - the coach of the

Chicago Bulls. He had inherited the only basketball player whose name I knew, which is Michael

Jordan, who was setting all kinds of shooting records at the point at which Phil Jackson arrived.

And the team was not winning. Phil Jackson's job as coach was to create a winning team. Phil

Jackson did not do that by going out and playing basketball. Phil Jackson did that by coaching

the team.

The Warriors, when they won the championship last year, at the end of the third game in which

the Warriors had been up by 20 points or something like that in the first quarter and the second

quarter, and then went down by almost that number of points, until the last minute and a half of

the game, at which point they came back and won. The ESPN reporter came up to Kevin Durant

at the end of the game and said, "How is it? What is it that makes your team so selfless?" And

Kevin Durant said, "We practice it every day. Coach talks to us about it every day." That's the

kind of leadership that managers need to provide to teams to get them to form that self-

organizing team, a great programming team.

A great programming team is like a great basketball team, if that basketball - at least if that

basketball team is the Warriors, or the Chicago Bulls under Phil Jackson, or the LA Lakers

under Phil Jackson. Phil Jackson said, "When my team is firing…” In one of his books he said, "If

my team is firing, they're like a jazz group." I thought, "Oh, they're like a programming team.

That's it. Got it."

[0:56:32.9] JM: From the management perspective, what I take away from that is that there are

traits that extend from managers to the team. For example, reliability, or communication, or

cleanliness in conduct. If you're a manager, you follow-up with e-mail in a timely manner. If you

don't, then your… your programmers - programmers are perceptive - they are going to see that

you take three days to reply to something and they're going to say, "Well, I guess that's

excusable." It's certainly easier to reply to something in three days than to reply immediately, and

they'll copy your behavior and your organization will immediately backslide.

So you’ve got to do that stuff responsibly and people are going to follow suit.

Another quote - actually this one comes from you specifically - is that “You cannot over-

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 23

communicate.” I found this one interesting. The idea that it is impossible to over-

communicate in an engineering organization. Because there are places in life where over-

communication can be pretty bad. If you're negotiating over the price of a car, for example,

you don't always want to communicate everything that is going on in your life.

Why is engineering management a place where over-communication is a good thing?

[0:57:59.1] RL: Yeah. So I think that fundamentally - I'm going to go back to the example I was

giving, which is jazz groups and improv groups and basketball teams… Software development is

almost to an organization very similar. It's a team sport.

You were calling out a number of attributes, Jeff, that we want to be and expect of our teams.

The two that when I get - when I ask developers to call out - to think about the best, the very

best team they've ever been on and to call out characteristics of those teams, two of the

characteristics that almost universally come out are trust and respect. Almost all of the attributes

that you are listing actually fall under those two things. If you get trust and respect, you are

going to show up for meetings on time, you are going to actually listen to each other, you are

going to communicate with each other.

Fundamentally, software development is - short of an application that you or I are writing and we

can be the only person writing it and we can create it; there are some mobile apps that are small

enough that we can still - I think that was the amazing thing that happened when mobile

applications came out on IOS and on Android - was that suddenly, there were again applications

small enough that a single programmer could write one of those applications.

But most applications that most of us work on are require more than one person and when we've

got more than one person working on an application, it's fundamentally a team sport, and we

really need to talk with each other.

The notion that we cannot over-communicate… I think that in sales people can over-

communicate. I think in marketing, people can over-communicate. But I don't think in software

development we can over-communicate. We tend to be introverts, we tend to not talk with each

other enough, we tend to not be terribly good at talking with each other, and we just need to

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 24

learn that stuff and become really good at collaboration and communicating.

I'll go to that example you were giving. We've got a nugget of wisdom, and I just looked it up, the

nugget of wisdom from Tim Swihart, who was an engineering director at Apple who said, "Have

your annual reviews done on time. Nothing undermines your credibility as a manager more

completely than pounding on your team all year to get their work done on time and then telling

them that you don't have their reviews done because you were busy. Whatever you're busy with

likely wasn't managing your people, so you've just proven to them that they don't matter. Good

luck motivating them next year."

[1:00:57.7] JM: Yes, indeed. I want to begin to wrap-up. We touched earlier on this anecdote of

you doing this difficult conversation with an employee. What are some other lessons that were

very hard to learn, that were like touching a hot stove, where you had to learn these lessons

from negative experience? Any other anecdotes would be fantastic.

[1:01:22.0] RL: Well, I'll give you a couple.

One of the rules of thumb about moving up the ladder, whether it's moving from programmer to

manager, or moving from manager to director, or director to VP of engineering, and presumably

from VP of engineering to a CEO role is that the things that make you successful at one level

often get in your way at the next level. This was not obvious to me, anyway. I don't know. Maybe

it's obvious to somebody else, but it was not obvious to me.

It's really clear when you think about moving from being a programmer to being a manager. As a

programmer the thing that makes you successful is the ability to shut out the world. It's the ability

to climb into the microprocessor and listen to the gates open and close. It's the ability to become

one with your code, one with the program you're writing, one with the computer. And shut out all

of the distractions.

When you become a manager, on the other hand, you really not only need to put a welcome mat

out in front of your door, but to invite interruptions: interruptions from your team, all those people

who work for you; interruptions from your peers who are going to be coming to you with

concerns and well, with all kinds of things; and interruptions from your boss.

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 25

That is just a dramatic change and it's a change that, if you don't see it coming, it is painful. The

change happens again when you become a director and it happens again when you become a

VP of engineering and there are levels in between in large organizations that that's true of as

well.

For example, the realization when you become an executive that the CEO, or the CIO, or the

SVP of engineering is operating at a… is operating in bullets. They expect to be communicated

to in PowerPoint in really short, pithy communications. It doesn't have to do with their inability to

deal with detail. It has to do with the fact that the detail is not relevant at that level, and that

you've got to communicate at a different level.

I think that growth through the latter is pretty universal. There is at least one really good book

that's helpful in seeing what it is you need to learn at each level and what it is that you need to

cast off at that level.

I think that's one of those.

[1:04:23.6] JM: Okay. Well, Ron, it's been great talking to you. Time has flown by and I enjoyed

your interview on Software Engineering Radio. I enjoyed your book. I expect to consult it in the

near future as I become more of a manager.

[1:04:39.7] RL: Okay!

[END OF INTERVIEW]

[1:04:42.3] JM: Ready to build your own stunning website? Go to wix.com and start for free.

With Wix, you can choose from hundreds of beautiful designer-made templates. Simply drag

and drop to customize anything and everything. Add your text, images, videos and more.

Wix makes it easy to get your stunning website looking exactly the way that you want. Plus your

site is mobile-optimized, so you'll look amazing on any device. Whatever you need your website

for, Wix has you covered.

SED 485: Ron Lichty, Managing the Unmanageable Transcript

 © 2017 Software Engineering Daily 26

Showcase your talents. Start that dev blog detailing your latest projects. Grow your network with

Wix apps made to work seamlessly with your site, or simply explore and share new ideas. You

decide.

Over 100 million people choose Wix to create their website. What are you waiting for? Make

yours happen today. It's easy and free. When you're ready to upgrade, use the promo code SE

Daily listener discount. Terms and conditions apply.

For more details, go to www.wix.com/wix/lp/sedaily. Create your stunning website today with

wix.com. That's W-I-X.com

[END]

