SED 483 Transcript

EPISODE 483
[INTRODUCTION]

[0:00:00.6] JM: When you are writing code, you are manipulating objects. You might have a
user object that’s represented on your computer and that user object has several different fields;
a name, a gender, an age, and when you want to send that object across the network to a
different computer, the object needs to turn into a sequence of ones and zeros that will travel

efficiently across the network. This is known as serialization.

As the user object sits on your computer, it is represented in ones and zeros and you could just

send that same representation over the wire, but we use efficient serialization to send it over the
network in a more compact format. We also have to make sure that when we send that object to
another service, the other service knows how to de-serialize it and turn it back into a format that

we can operate on at the application level.

Protocol buffers are a serialization protocol that originated at Google. Protocol buffers created a
standardized interface for efficiently passing data between services. When Kenton Varda
worked at Google, he was the tech lead for protocol buffers and he joins the show to explain
how proto buffs work and a newer serialization protocol that Kenton lead called Cap’n Proto.
You can expect to walk away from this episode with an understanding of how serialization
protocols work and the design trade-offs that you can make when you are creating your own
serialization protocol. We also touched on a startup that Kenton founded called Sandstorm and

how he eventually found himself at Cloudflare where he now works on the Cloudflare workers.
With these topics, we did not go as deep as | would've liked, but we did cover proto buffs in
significant detail. | look forward to having Kenton back on in the future, because there was
plenty of stuff that we could have gotten into and we will in the future.

[SPONSOR MESSAGE]

[0:02:05.1] JM: Today's episode is sponsored by Datadog, a cloud scale monitoring and

analytics platform. Datadog was built to bring clarity to complex dynamic applications in the

cloud, on-premises, in containers or wherever they run. With beautiful dashboards, seamless

© 2017 Software Engineering Daily 1

SED 483 Transcript

integrations with more than 200 technologies and distributed request tracing, Datadog provides
deep end-to-end visibility into the health and performance of modern applications. Visualize key
metrics set alerts to identify anomalies and collaborate with your team to troubleshoot and fix

issues fast.

Try it yourself by starting a free 14-day trial today and listeners of this podcast will also receive a
free Datadog t-shirt. You can get all those things by going to softwareengineering daily.com/

datadog. That’s softwareengineering daily.com/datadog.

[INTERVIEW]

[0:03:05.7] JM: Kenton Varda is the former tech lead for protocol buffers, the lead developer of
Cap’n Proto and the founder and lead developer of sandstorm.io. He's also a systems engineer

at Cloudflare. Kenton, welcome to Software Engineering Daily.

[0:03:19.6] KV: Hi. How are you?

[0:03:20.6] JM: I'm doing great, and I’'m looking forward to talking about data serialization and
some different strategies for doing that. Let's start off with the basic question; what is data

serialization?

[0:03:32.8] KV: Well, you have a data structure and memory in your program and usually it's
doesn't exist in contiguous memory, because you might have like a tree of data or a map of data
that you're modifying, removing parts adding parts, but when you want to send that over a
network, it needs to be contiguous bytes. You need some way to take the data and pack it into
bytes to send it and for the other side to unpack that into data structures useful for computing

on.

[0:04:03.8] JM: We can communicate over a network by sending messages in JSON or XML,
but if we're just sending those messages, we need to have some way of sending those over the
wire. | mean the messages over the wire get put into ones and zeros eventually. How does

JSON, for example, get serialized and sent?

© 2017 Software Engineering Daily 2

SED 483 Transcript

[0:04:30.2] KV: You invoke a JSON encoder. You might call JSON.stringify in JavaScript and
you give it a JavaScript object, and the coder is going to iterate over all the fields of that object,
and for each one produce some text, that's field name: value, and if the value is another object

then that's going to be recursive, puts itself in braces. | guess that’s basically it.

[0:04:57.5] JM: Yeah. No. That's totally fine. That’s a good explanation. | think the lesson here
is that this is a seemingly simple problem. You just need to objects into ones and zeros so that
we can communicate them over the wire, but there's a lot of ways to turn an object into ones
and zeros and we can do that with — The knobs we are going to tune are going to depend on
— If we’re communicating from JavaScript to a Go service, for example, the way that a
JavaScript application consumes an object that is in JSON might not be the same way that an
application in Go wants to consume that object in JSON. Why do different programming

languages have different ways of representing objects?

[0:05:45.4] KV: Yes. This is interesting. In JavaScript — And JSOn was very much designed
around the JavaScript object model. JavaScript is a dynamic language. So you don't have to
know at compile time what fields a particular object might have. It’s just all figured out at
runtime, and that works really well for JSON, because when you parse a JSON object, this

message coming in over the wire could have any field names that the sender sends.

In JavaScript you naturally get this JavaScript object and now you can try to access certain
fields, and if they're not there, you'll get an undefined value back, and if you try to use that it’l
probably throw an exception. Whereas in a type safe language like Go or C++, it actually ends
up being a lot less convenient because you need to convince the compiler that you are
accessing data that's really there. You end up having to call some sort of function saying like,
“Get this field. Here's the name,” and then it might return a value if it’s there or it might return
null and you have to check that.

Interestingly, JSOn ends up really inconvenient to use this often in these type safe languages

unless you have some sort of a system for pre-generating code around that, which is a lot of
what proto buff does.

© 2017 Software Engineering Daily 3

SED 483 Transcript

[0:07:05.4] JM: Great. That's a great introduction to protocol buffers. They were first developed
in Google around 2001. You just alluded to part of the problem that they were solving. What
exactly was the intention of the proto buffs or otherwise known as protocol buffers? What was

the intention of that project?

[0:07:22.5] KV: Well, there are a few different problems that Jeff and Sanjay, the creators of
protocol buffers and so many other technologies at Google were trying to solve initially. One
problem is that — So they had fronted servers that were talking to backend index servers in the
search engine and every time they made a change to the protocol, added like new kinds of data
that needed to be returned, they ended up with this code on the other end, on the receiving end,
that would have to do a lot of if statement saying, “If version equals X, or if version is more than

X, then expect this. If not, then expect this,” and it became a huge mess.

Really, what they wanted to do is have a way to be able to naturally add a new field and have —
Well, so | should say part of the problem here is that the they can’t — When you have a large
distributed system, you cannot just deploy or update all of your system at once. You might make
a change to the protocol and then update the backends, but the frontends are still running an
older version, and so they have to be able to communicate with the newer backends and be
able to ignore the data they're not expecting, the new stuff that was added. You might — You're
not going update even all of your backends at once. You’re going to do a rolling update if you
don't want any downtime, and so they all have to be able to talk to each other and understand

each other despite being at different versions.

Protocol buffers, the main thing it’s trying to do is deal with that, and it does that in a pretty
simple way, which is you define your data structure, which is it’s like a struct. You have a bunch
of fields. Each one has a type and a name, and you can add a new one, and if a message is

encoded that includes this new field and is sent to an old server, the old server ignored it.

Going the other way, if a new server receives data from an old server that is missing a field, that
field has a default value that is reasonable and allows the new server to do something
reasonable. That was the main problem they're trying to solve. There are a couple of other
problems solved at the same time. One is efficiency. | should say that the versioning problem is

actually solved pretty well by JSON as well. Like, in fact, it's almost the same model. JSON

© 2017 Software Engineering Daily 4

SED 483 Transcript

doesn't have a way for you to like predefine default values. You have to actually do it in the
code. You have to check if the field is there. If not, user default. That’s pretty easy to do.

Generally, JSON has the same model for version upgrades.

Proto buff also wanted to do a couple of other things. One is — So when you’re encoding data
into text and then reading that back on the other end and turning it back into data structures, the
computer is doing a lot of work just to make it so that the data sent over the wire can be read by
humans. But 99.99% of the time, no human is actually going to look at that. We’re spending a

lot of CPU time. Operations are basically not useful most of the time.

Protocol buffers instead uses a binary format that is much faster for a computer to put together
and to parse at the other end. So that’s the second thing it does. The third thing | would say that
proto buff does that's really useful is the generation of code, code generation. So you define
your data structures and then you input them into the protocol compiler and it generates classes
for you in your desired language that make it easy to manipulate the data structure you've
defined. That allows you to do things like define a default value and have the gather method for
this field will automatically return the default if the field is missing instead of you having to write

the check yourself.

It's also when you have a binary format, you need a parser. The parser can be really fast if the
code is generated instead of operating dynamically based on tables. It's an optimization, but
more importantly it gives you this type safety. It makes sure that you can't — If you misspelled
field name, you won't get an error at runtime. Your compiler can catch that assuming you’re
using this type safe language, and to me that’s the most important thing, is just the increased

ease of use that you get out of that.

[0:11:55.3] JM: You've just defined so many different reasons for the existence of protocol
buffers. If we just talk about the simple example of a Node.js service, which is a JavaScript
communicating with a Go service. We've got JSON objects that need to be sent from the
JavaScript service to the Go service. If we were doing this naively, we would just send a JSON
blob. We would just naively serialize it and the Go service would be responsible for de-
serializing it and figuring out if all of the fields are intact figuring out its own getter methods, its

own — Yeabh, its own getter methods to pull the data from the objects that got sent over the wire.

© 2017 Software Engineering Daily 5

SED 483 Transcript

It would have to figure out, “Okay. What version is this object? Did it come from an old API
version? If it came from an older API version, maybe it doesn't have certain fields or it has extra

fields that | don't need to worry about.”

Basically, protocol buffers are these — It's just a way of making communication between
different services easier to work with by giving you typing. You're typing these objects, which in
in JavaScript they might not have a type, and if in a typed language, a type may might be
required. It gives you a getter. It puts them in a format that is going to be more compact than if

we were just naively sending them over the wire.

There's all these different things that we get out of protocol buffers, and the way that we use
protocol buffers in one of our services that we want to communicate with another service that
uses protocol buffers is we define a schema, and the schema is the thing that translates our
objects into these proto buff, the serialized proto buff objects that will get sent over the wire. Can
you explain a little bit more about the schema? | think this is also called interface definition

language.

[0:13:55.1] KV: Yeah. With protocol buffers you have these files, these .protoprofiles. Some
people call them IDL. Some people call them schemas. Some people just call them protos
rather ambiguously, but in it you define your message format. So in proto buff you define a
message type. It's a lot like defining a class in an object-oriented language. You define the set of
fields that it has. Each one has a name. Each one has a type and each one has a number, and

the number is important for compatibility.

You can change the name and not affect compatibility of the messages sent between old and
new servers, but if you change the number, then will break. Usually, there's not really much
motivation to change number, whereas people like to rename things all the time. This is actually
one of the reasons this works so well and people don't accidentally introduce breakages, it’s

because of these numbers.

There’s such a thing as JSON schema, which is a similar thing for JSON. People rarely use it.

I'm not entirely sure why. Once you've defined this schema file, this proto file, then that's what

© 2017 Software Engineering Daily 6

SED 483 Transcript

they input to the protocol compiler that | mentioned earlier, and then it outputs code in your

favorite programming language based on that input.

[0:15:13.0] JM: There are many instances where data gets sent between two places. So if |
have a micro services architecture, different services are requesting data from each other. If |
have a more simple web app, the user might just be making a single request to a server and
loading in their browser. If we’re talking with these two different communication patterns where
services are talking to one another versus a client just talking to a server, would | use proto buffs
in both of these types of communications or is this just for services communicating with each

other?

[0:15:48.7] KV: This is a matter of debate. One thing about trying to use proto buff in the
browser is that it can be inconvenient. It can add a lot of code to the JavaScript that has to be
downloaded up from, and so a lot of people just choose basically to use JSON there, because
JSOn is pretty convenient to use from JavaScript. There is already a JSON parser built in to the
web platform, and what you can do is on the server-side that your browser talks to, you can
have a converter layer that basically converts JSON into proto buffs or other formats. Most of

them have some sort of conversion library that you can use.

Also, like another point is that on the browser side you have lots of CPU time to work with. Now,
when you get into sort of the server in big distributed systems where you’re crunching a lot of
data, that's where it starts to matter if you're spending 30% of your CPU time just encoding

things and you want to cut that down.

[SPONSOR MESSAGE]

[0:17:03.4] JM: DigitalOcean Spaces gives you simple object storage with a beautiful user
interface. You need an easy way to host objects like images and videos. Your users need to
upload objects like PDFs and music files. DigitalOcean built spaces, because every application
uses objects storage. Spaces simplifies object storage with automatic scalability, reliability and

low cost. But the user interface takes it over the top.

© 2017 Software Engineering Daily 7

SED 483 Transcript

I've built a lot of web applications and | always use some kind of object storage. The other
object storage dashboards that I've used are confusing, they’re painful, and they feel like they
were built 10 years ago. DigitalOcean Spaces is modern object storage with a modern Ul that
you will love to use. It’s like the Ul for Dropbox, but with the pricing of a raw object storage. |

almost want to use it like a consumer product.

To try DigitalOcean Spaces, go to do.co/sedaily and get two months of spaces plus a $10 credit
to use on any other DigitalOcean products. You get this credit, even if you have been with
DigitalOcean for a while. You could spend it on spaces or you could spend it on anything else in

DigitalOcean. It’s a nice added bonus just for trying out spaces.

The pricing is simple; $5 per month, which includes 250 gigabytes of storage and 1 terabyte of
outbound bandwidth. There are no costs per request and additional storage is priced at the
lowest rate available. Just a cent per gigabyte transferred and 2 cents per gigabyte stored.

There won’t be any surprises on your bill.

DigitalOcean simplifies the Cloud. They look for every opportunity to remove friction from a
developer’s experience. I'm already using DigitalOcean Spaces to host music and video files for
a product that I’'m building, and | love it. | think you will too. Check it out at do.co/sedaily and get

that free $10 credit in addition to two months of spaces for free. That’s do.co/sedaily.
[INTERVIEW CONTINUED]

[0:19:22.2] JM: Now, if | am starting up brand-new project and my requests are fairly small and
they're fairly infrequent, do you think it is a premature optimization to use proto buffs there?
You’re hacker. Do you start with proto buffs in place for all of your basic applications that you

build or is there a volume of data throughput where | should start to use proto buffs?

[0:19:47.5] KV: | have not used proto buffs in a long time, because | use Cap’n Proto these

days.

[0:19:50.9] JM: Okay. Fair enough. A serialization framework or whatever you would want to

call these.

© 2017 Software Engineering Daily 8

SED 483 Transcript

[0:19:54.3] KV: Yes. | actually very much do like to start a new project by writing out schema
files before | write code, because it's basically the interface. | should note on the last question,
like even though the browser side client may be sending JSON up to the server, I'm still going to
write a schema file and it may still be in proto buff or Cap'n Proto format and then | use the

converter library that | mentioned.

But I like to start with these schema files because it lets me think about the interface and the
interactions between systems before | think about the implementation details. Having it written
out, like when you write out the schema file, you're basically — It's just your API. It's not the

implementation, and it's a great way to sort of outline the design.

[0:20:49.9] JM: Yeah. | mean it's the API of an object. It's not exactly the API of the service, but
I guess it’s the interface of the object. Would you say that’s accurate? | guess you could define

the services around what those objects, what their attributes are.

[0:21:11.0] KV: It's the object that — It's the data format that you're using to communicate to the
server or between components. So it really is the API for those components, is these message

formats.

[0:21:23.5] JM: Okay. Fair enough. So | want to get to Cap'n Proto eventually, and | think the
way to get there is I'd like to talk a little bit about your work at Google. You were the tech lead for
protocol buffers, which is a pretty incredible role, because I've been in a lot of different places
that use protocol buffers, and you lead the development getting proto buffs from V1 to V2 and

getting them open sourced. What was that project like?

[0:21:52.3] KV: Yeah. Well it was fairly ad hoc actually. Early on at my time at Google, | took an
interest in protocol buffers. | started adding some features to it, because basically the state of
the project was when people needed something, they add something. Then the company was
getting bigger and that was getting kind of difficult to maintain just having everyone add what
they need, and people started looking to me to maintain the project. Then | said, “Hey, we

should open source this.” Basically everyone said, “Yeah, that sounds great. Do it.”

© 2017 Software Engineering Daily 9

SED 483 Transcript

So | ended up being the one doing most of the work for that, but the state of the code at that
time, the proto one code base is very much tied to Google's internals, lots of other internal
Google libraries and it was going to be really hard to pull that all apart in order to open source
this component. So what | ended up doing was rewriting it. Also, proto one had evolved slowly
over time and not everything was planned out in advance, and things get a little messy. So |
rewrote it, clean some things up and with the intent of being able to open source it, and then did,
and then it took off.

[0:23:04.8] JM: It’s interesting to hear the similarity between that and what | hear when | talk to
the Kubernetes developers, because they said that when they were building Kubernetes, they
couldn't just open source Borg. Borg is the project that Kubernetes was based on, but they
couldn't open source it because the code base was tightly coupled with Google infrastructure.
So a lot of it just wouldn’t even make any sense if they open sourced it. It sounds like that was

the same case with proto bulffs.

[0:23:30.9] KV: Yes. Google basically has their own set of infrastructure that they’ve built from
scratch. Everything is written inside Google. There're very few external things that they use, and
they have enough people, enough really smart people that they’ve built some really great stuff
and it all turns into this nice little internal world that they used to build products, but then when

you want to release any of it, it's very difficult.

[0:23:57.6] JM: You saw protocol buffers adopted by large companies like Twitter, and then of
course there widely used within Google. Do you remember any anecdotes from especially the

external use cases where you talk to people and they explain to you how proto buffs improved
to the infrastructure that they were working with. Were there any very specific use cases that

come to mind, like, “Oh my gosh! This changed my life having proto buffs.”

[0:24:26.2] KV: | feel like I've heard that kind of thing so often that it is hard to come up with
specific use cases. You mentioned Twitter. My understanding is that it was a big part of their
rewrite for scalability. Although my understanding is they don't use exclusively proto buffs. They
use some other serialization formats as well, and | don't really know the details. Yeah, | don’t

know. | don’t know a specific example off the top of my head.

© 2017 Software Engineering Daily 10

SED 483 Transcript

[0:24:55.6] JM: I'm sure it contributed vanquishing the fail well. You left Google in 2013 to start
Cap'n Proto which is an open-source project to be the successor to proto buffs. So was this you

left to work full-time on the open-source project?

[0:25:12.3] KV: | left to start a startup, which is sandstorm.io. | knew that that's what | was going
to do eventually at the time that | left, but | wanted to spend some time playing with some ideas
that | have had around proto buffs.

One thing | could change about protocol buffers at Google was the basic underlying encoding,
because Google has petabytes of data in this format. It can't possibly change because then
they'd have problems reading all that old data.

Now when | left | thought, “Well, now if | wanted to write a new proto buff, it could have a
completely different format and | could play with ideas to make it faster.” A few people had
asked me about this idea of, “l want to share messages in shared memory. If | have two
programs that can both access a segment of memory, how do | efficiently allow them to share
data through it?” A problem you run into their — Well, if you’re using proto buffs, basically what
you have to do is you encode your data structure into this memory and then the other side
decodes it. It just seems like a big waste to like turn in-memory data structures into an encoded
representation and then take it back out all on the same machine instead of just like letting them

reference each other's memory.

Another problem that — Proto buff is much more efficient than JSON, but there are still a lot of
services inside of Google and other places that use a lot of CPU time just encoding and
decoding proto buffs. | thought that if we could change the underlying format so that it was
closer to what the in-memory data structures would eventually look like, we could save a lot of
that time. Especially when you're talking about services inside of the data center, talking to each
other, network bandwidth at this point is basically infinite between two machines on the same
record in the same data center. Proto buffs spends a lot of time encoding integers in a way that
makes them variable length so that smaller numbers take fewer bytes, and it's all just to save
few bytes on the wire. That’s kind of wasted when bandwidth is not your problem and CPU time

is.

© 2017 Software Engineering Daily 11

SED 483 Transcript

[0:27:32.4] JM: You're describing the same issue that | talked to the Apache Arrow people
about. | don't if you've heard of that project, but it's sort of — For example, if you’re doing “big
data” and you want to do some crazy, like hot high-volume data processing between Python and
Hadoop, for example. Like you're doing some data processing pipeline where you have a
Hadoop job and it's a big map reduce and then you want to hand it off to something that's in
Python. Before Apache Arrow, you would have to convert that data from a format that Java
understands to a format that Python understands, because Hadoop is in Java and Python is
Python. You have the same data transference problem that we talked about with protocol

buffers.

Apache Arrow is a way of standardizing the in-memory representation. So instead of doing this
wasted effort of serialization, you just represent it in a way that both the map reduce job and the
Python job can access, and you're talking that whereas Apache Arrow might do that with some
large-scale data processing, you're describing something that at a fundamental level it’s
essentially the same thing except it's like microservices communicating with each other on a

frequent basis over the wire so the volume is overtime rather than like in large batches.

[0:28:56.4] KV: Yeah, sounds similar. Actually, I’'m not very familiar with Arrow, but it sounds like

the same problem. Yeah.

[0:29:02.6] JM: This in-memory representation thing, if we want to have the same in-memory
representation in contrast to serializing and de-serializing into our own, | guess, native in-
memory representation, what kinds of changes does that require? That's a rather dramatic
change between — Contrasting protocol buffers with Cap'n Proto. Cap'n Proto being the shared
memory, shared in-memory representation format versus the proto buff’s serialization-
deserialization aspect. What architectural — And the developer APIs. What changes when you
shift that model?

[0:29:43.4] KV: Yeah. First | want to add one more thing about where this is useful. Shared
memory is where | started thinking about it, but where it has often come up in practice is you
have a large file on disk. Let's say it's many gigabytes of data and it's all encoded as one

gigantic message. Now, people would do this with proto-buffs sometimes. The problem is in

© 2017 Software Engineering Daily 12

SED 483 Transcript

order to read any data from that file, you have to read in the entire file, parse the entire thing into

an in-memory proto buff data structure and then you can play with it.

With Cap'n Proto, you can use the trick called memory mapping where you tell the operating
system like, “Place this file into this address in-memory and don't actually read in the data from
the file until | access the memory.” This is a feature that most operating system support and that

I think is underused because it's really cool.

If you do that with Cap'n Proto, since the encoded format is appropriate as an in-memory
format, which means that it can be randomly accessed, you can then go and read the one part
of the file that you wanted just naturally and only the pieces of the file that are needed to support

that will come into memory.

To answer your question about the programming interface, so mostly using Cap'n Proto actually
looks a lot like using proto buffs. There are some — When you get into the details — When you
use proto buffs, as | said, you generate these classes which are in-memory data structures and
then you read into them and sometimes people then go another step and convert those into

some other representation that they really want to use now.

Now, Cap'n Proto also generates classes for you. The trick is that all of the accessories in these
classes, instead of reading member variables of the class, they do pointer arithmetic on an
underlying buffer and figure out where to read that data out of, but that's all hidden from you,
because you’re calling these successors and it looks a lot like proto buff. Sometimes the API in
order to really make the zero copy aspect work, there are some spots that end up a little bit

more awkward. For the most part, it’'s the same model.

[0:32:07.2] JM: Does that mean that you have to write stuff that’s specific to each programming
language? Because we talked earlier, like if you want to convert — If you want to have proto
buffs convert JavaScript objects, JSON objects into something that Go can understand, you
have to write the serialization protocol for doing that conversion. Do you have to do something
like that when you're reading from these — You're doing this arithmetic to a pointer arithmetic to

understand how to read different objects in different — Sorry. The same object in different

© 2017 Software Engineering Daily 13

SED 483 Transcript

languages, because you're talking about in-memory representation that can be accessed by, for

example, a Java service as well as by a Python service. How do you do that?

[0:32:53.1] KV: So this is all handled for you by the library. There is a — Just like with proto
buff, proto buff has ready-made implementations for many programming languages. Cap'n Proto
also has ready-made implementations for a fewer number of languages, because it's not as

mature, but they’re there.

The main implementation that I've written is in C++, but there's a Go implementation. There's a
Python implementation and so on. You use those libraries, and they handle all the — These
pointer arithmetic happens under the hood. They're dealing with that and you just get a nice

interface where you call get field, set field.

[0:33:29.0] JM: Okay. You left Google to start Sandstorm and you wound up working on Cap'n
Proto. | want to talk a little bit about Sandstorm and how that informed some of your decisions in
building Cap'n Proto Proto. Talk a little bit about what Sandstorm is and what the motivations for

building it were.

[0:33:49.1] KV: Sandstorm, it’s infrastructure for web apps with a unique design. Product-wise,
one way to think of it is it’'s something like Google Docs or Dropbox where you have a bunch of
data that you can collaborate on, like document editors and such, but it runs on a machine that
you control. Like you can download this and run it on your own server, and it's all open source,

but it's also a platform for these kinds of apps.

So there's an app store, you install apps. So one kind of app might be a document editor.
Another one might be an RSS reader. Another one might be a chat service. The idea was to
make it really easy for anyone to do that and to actually run their own server and make it even

like just as easy as using these online services was the goal.

At a lower level, the infrastructure is designed in a very different way from the way we view most
service today and that every instance of a — Like if you have a document editor app, like
Etherpad is a popular one on Sandstorm. Each document you create runs a separate instance

of the Etherpad server in a separate container isolated from all the others. This is a thing we call

© 2017 Software Engineering Daily 14

SED 483 Transcript

fine-grained containerization. No one else that | know of really does this, and it has a lot of really
interesting properties that come out of it, like that the system, Sandstorm, can now manage

access control for you.

So if | share a document with you and then | have another document that’s super secret and |
don't want anyone to have access to, because Sandstorm manages the sharing, no bug in
Eitherpad or whatever the app is can allow you to — Based on your access to the document |
shared with you to like hack your way into the other document, because the platform itself

enforces that separation. So security. Big focus on security.

[SPONSOR MESSAGE]

[0:36:00.5] JM: Consensys is the largest blockchain company focused on building software on
the Ethereum platform. They’ve developed Truffle, the most popular Ethereum development
framework. Truffle is your Ethereum Swiss Army knife and it’s available for free by going to

softwareengineeringdaily.com/consensys.

Nearly 200,000 developers are working with Truffle and you can download it today and start
building your own software on Ethereum. Find blogs and tutorials there as well to get started.
Truffle is written in JavaScript in a completely modular fashion allowing you to pick and choose
the functionality you’d like to use. For example, you could use Truffle as a library in our own tool
using only the modules that you need. This lets you take advantage of powerful features, like

Truffle migrations in your own command line tools.

Consensys has built several of the leading dapps, decentralized applications, in the Ethereum
ecosystem and offers some of the most popular free Ethereum developer tools such as
Metamask, Infura and Truffle. These tools are essential if you’re thinking about building an

Ethereum dapp.
Learn about Truffle and download it directly from softwareengineeringdaily.com/consensys to

get going on Ethereum development. If you want to hear a show about one of the topics that

Consensys knows a lot about, send me a tweet @software_daily and tag @consensys, that’s

© 2017 Software Engineering Daily 15

SED 483 Transcript

consensys with a Y instead of a U, Consensys, with the topic that you would like to hear about.

Tag both of us and let us know the topics that you’re interested in hearing about. Thank you.

[INTERVIEW CONTINUED]

[0:37:51.4] JM: To put a finer point on what you said, Sandstorm is a way of — It's an app
platform where you've got things like Etherpad, which is this collaborative Google Docs type of
document store. You've got a Trello-like task and project management system. You've got a
Dropbox-like file storage system. You've got a chat system that is somewhat like Slack, but the
difference is you manage the data yourself and you have control over it, and it's open source so

you actually know what the code is. Am | articulating it correctly?

[0:38:28.8] KV: Yes. | think currently all of the apps are open-source as well, and these are —
By the way, we didn't develop these apps. These are all separate apps. Some of them were
developed specifically for Sandstorm. Some of them were existing open-source apps that we

made work on Sandstorm. Yeah, gathering all these together and making it easy to use them.

[0:38:51.0] JM: Okay. Well, now I'm regretting not doing more research about Sandstorm
before this episode, but | guess | had enough content just from the proto buffs and Cap'n Proto
stuff. Yeah, okay. I'll opportunistically jump into that. So you built this infrastructure that allows
people to build apps that are self-managed, but | guess they can also sync with other instances.
| guess is there like a peer-to-peer way of resolving conflicts? For example, like we have a
shared document on Etherpad and | have the copy and you have the copy and we want to
synchronize that. Conflicts can occur, right? Did you build all the infrastructure for resolving

those types of conflicts?

[0:39:37.1] KV: The way that works today is one person is the owner of that document, and the
document lives on their server. That basically largely solves that kind of problem in a

straightforward way.
[0:39:51.0] JM: Actually, that's really interesting, because — It's so funny, because | talked
earlier today and | think | was telling his before the show about CRDTs to Martin Kleppmann,

and he was talking about CRDTs as a way of resolving conflicts in a system like Google Docs,

© 2017 Software Engineering Daily 16

SED 483 Transcript

for example. The way that Google Docs does it is they funnel all the conflicts through a central

server, which is not exactly a decentralized model.

You're talking about a decentralized model where like you and | are controlling our data, we’re
controlling our own documents, but you can still do the — | think it's called — What is that?
Operational transform way of resolving conflicts, but it's fine because the two of us controls the

server where those changes are centralized.

[0:40:39.4] KV: Right. Etherpad, for instance, is an example of an app that uses operational

transforms. In fact, they invented operational transforms.

[0:40:48.4] JM: Wow! Okay, interesting. Talk more about what the infrastructure of Sandstorm
is. What are the APIs and stuff that you've built?

[0:40:57.7] KV: Yeah. It's interesting, Sandstorm is one of the few pieces of infrastructure where
the end-user is actually expected to interact with the infrastructure as part of the whole
experience. You log into your Sandstorm instance and it gives you a list of your files or your
documents or your chat rooms or whatever, which we call grains. They’re fine-grained instances
of apps. Then you choose one to open and then it opens in an I-frame within the sandstorm U,
and Sandstorm provides some of the features like sharing and file management while the app

itself provides the actual business logic of this particular app.

The big challenge in making that work is — So now there is this — Apps aren’t any longer
responsible for a whole lot of these sort of boilerplate things, like how do | do access control and
how do | do file management and such. Instead, the app is now focused just how to render its
particular type of data. While that makes it easier to develop apps in this model, a lot of existing
apps already had built a lot of these things and now they kind of have to delete them, delete all

that code in order to fit into Sandstorm and integrate with the Sandstorm APIs Instead.

The Sandstorm APIs — So the sandstorm — Bringing you back to Cap'n Proto here, the
underlying communication layer between all the app instances is Cap'n Proto based. In fact,
when an HTTP request comes in and is destined for a particular app, actually it hits the

Sandstorm frontend proxy first, which converts it into an HTTP over Cap'n Proto format in order

© 2017 Software Engineering Daily 17

SED 483 Transcript

to send it to — Route it to the appropriate backend, and there's a lot of reasons we did that, but

| could go on for too long.

[0:42:50.1] JM: In terms of Sandstorm, do | host a version — So if I'm hosting my own
Etherpad, for example, where | want to do document management and I've shared that
document with you and | am the — We decided that | am the source of truth. You Kenton and |
are sharing this document and this document is within Sandstorm. Do | have a server instance?
| have a sandstorm server instance running on my local box, and then HTTP — If you make a
request that you want to change that document, you send in a HTTP request to my Sandstorm

server. Is that correct?

[0:43:31.3] KV: Yes, and more broadly like | would visit your servers, like the Sandstorm Ul on
your server and then | would open the particular document that you’ve shared with me, or you
might send me a sharing link which would go to the Sandstorm Ul on your server with that
document opened within it. Yes, HTTP requests for that I-frame, which displays the app. The
HTTP request for that also go to your server, but go through this proxy and end up at that

particular app.

[0:44:00.6] JM: Got it. Now, when you make that request and it hits my Sandstorm server, you
said it's transformed into a Cap'n Proto representation of the HTTP request, and then what
about — On my Sandstorm server I'm going to be running an app like Etherpad or I'm going to
be running an app like the Trello version on Sandstorm, some project management system. So
is there a shared memory representation where if | want to handoff that HTTP Cap'n Proto
representation from the Sandstorm HTTP conversion into Cap'n Proto, if | want to hand it off to
my Etherpad instance, do | need to transform it at all or does the Etherpad instance just read

directly from that Cap'n Proto format?

[0:44:55.1] KV: It depends on the app. Most apps on Sandstorm use a tool we call Sandstorm
HTTP bridge. It's a little program that actually ends up being the main process of your app, and
then it runs — You give an HTTP server application that it runs as a child process and then the
bridge receives the Cap'n Proto requests and converts them back into HTTP over loopback, but
there are some apps that directly implement the Cap'n Proto interfaces, and those ones tend to

be very fast and quick to load.

© 2017 Software Engineering Daily 18

SED 483 Transcript

[0:45:34.7] JM: We've talked about a lot of different concepts here. Can you talk more
generally, like if somebody want to — Let's say somebody has their infrastructure built around
protocol buffers and they are considering switching to Cap'n Proto for their service-to-service
communication serialization protocol. How would they evaluate those that type of migration?

Would you want to make that kind of migration or is this for different types of use cases?

[0:46:07.9] JM: Yes. It depends on how much stuff you have. How many protocols you've
defined? How many types you have? If you have hundreds of proto files all defining lots of
different types. Doing a full migration to a different format is probably impractical. As software
engineers, we have to live with that sometimes. Sometimes we’re stuck with something that isn't

as good as it could be, but we move on, because it’s not the worst problem that we have.

Now, if you have a format or protocol that's defined in like one schema file and you have a few
types, then you can pretty easily evaluate. You can try writing the same schema in Cap'n Proto
and then writing the code both ways and then you can actually do a benchmark and see which
one is faster. | would only go to this effort if you see CPU profiles showing that you're spending
a lot of time serializing and de-serializing. If so, then it would be worth evaluating between the

two.

Just to note. Don't trust benchmarks done by someone else on data that isn't your data,
because each of these formats has strengths and weaknesses and it completely depends on
what kind of data you are sending which one is going to be fastest. | don't actually publish — |
have benchmarks for Cap'n Proto versus proto buff and I'm happy about where they are, but |
don't publish the numbers, because it's not really meaningful for someone else to make a

decision based on those. You really have to test your own setup and see how it performs there.

[0:48:02.0] JM: Okay. | know we’re kind of running up against time, but | want to talk a little bit
about Cloudflare, which is where you now work. What was the transition from working on
Sandstorm full-time to Cloudflare? What motivated you to go back to kind of big company

world?

© 2017 Software Engineering Daily 19

SED 483 Transcript

[0:48:20.9] KV: Well, we ran out of money. Sandstorm was a startup and it received funding, but
ultimately the business model that we really need to go for was one involving a lot of enterprise

sales, and that's hard. In classic fashion we underestimated how hard it would be.

Last December or so we looked around to — The company was going to have to shut down and
we looked around to see where we wanted to go, and | was really interested in Cloudflare,
because I've always — Sandstorm was a Cloudflare customer. Well, | guess technically still is a
Cloudflare customer, and | was always impressed by their focus on security, their focus on
infrastructure. I'm an infrastructure engineer, | like being somewhere where infrastructure is the
product where it's not like when | was doing infrastructure at Google, it was a lot wait for a
product team to ask for something and then do what they ask. Whereas at Cloudflare, it's

actually the thing that we’re selling and | like that a lot.

[0:49:30.8] JM: Now | can — I'm sure that was a really painful experience and I think | can
relate to it somewhat, maybe not to the same degree, but for the last year | | was working on a
company called Adforprize. | spent a lot of money and | spent a lot of time on it and | didn't end
up shutting it down. The product still exists. | would love to revisit in the future. At some point I'm
sure you think about the same thing with Sandstorm. You didn't like shutter it down, because
there’s no reason to. It’s like probably is not super expensive to run, or | could be wrong, but it's
probably not massively expensive to run, or at least at a minimum host the open source code
out there. There’s no reason to delete that from the world, but it's funny because | mean what
you said, you underestimate how long it's going to take or you underestimate what the sales
process is going to be and eventually you have to just have this reckoning moment where you
just have to admit to yourself, “Man! It sucked, but this not going to work out the way it worked

out in my dreams.”

[0:50:38.1] KV: Yup. That's pretty much what happens. | still work on Sandstorm an an open
source project. I'm still making updates and | intend to continue doing so. There's still a
community publishing apps, building things. We recently added, for instance, internationalization
and now there's a bunch of people translating the Sandstorm interface into a bunch of different

languages, which is really cool.

© 2017 Software Engineering Daily 20

SED 483 Transcript

Yeah, | don't know where it will end up if it will just continue to be an open source project. Just is
the wrong word. That's a great outcome, or if it might become a business again someday. | don't

know.

[0:51:16.9] JM: Yeah. Has there been like some solace in going back to a place where now you
wake up in the morning and you know that you work and you're going to be remunerated for that
work on a reliable basis. You know that your work at Cloudflare — For example, | know you
work on Cloudflare workers, is going to have massive impact. Have you found some solace in
the fact that you’re going back to working on stuff that a large customer base are paying for and

really treasuring?

[0:51:52.3] KV: Yes, exactly. So Cloudflare was definitely the right place for me to go. I've had
a lot of fun there. This project Cloudflare worker has actually started from scratch when | joined
Cloudflare. I'm the lead of that, and it’s been a lot of fun being able to write a new service from
scratch, making all the design decisions the way | want to and not have to worry about things
like; how am | going to sell this? Because there is already a sales division of Cloudflare that can

help me with that.

Knowing that this is going to be — It's pretty clearly going to be a big deal once we get this out
the door, but then just being able to focus on the engineering part, which is the part that | do well

and the part that | enjoy is really great. Yeah, getting a regular paycheck is pretty great too.

[0:52:41.6] JM: Yeah. | know it's impossible to explore Cloudflare workers in the level of detail
that | would've liked to, because | probably managed our time not as well as | could've, but just
to explore it a little bit. At a basic level, Cloudflare is a giant cash with 100+ locations around the
world, and cloud flare workers is a way to push custom logic to edge servers. Basically, it's a
way of making your edge computing and your cash servers operate more intelligently because
you can deploy programmable logic to those edge servers. Some of us — Maybe you could call
it serverless computing, because you sort of deploy the logic and you're not exactly managing a
server. You’re managing the notion of your caching and your edge computing. Maybe talk a little
bit about what the goals of a Cloudflare worker are and how it contrasts with other serverless

types of systems?

© 2017 Software Engineering Daily 21

SED 483 Transcript

[0:53:47.0] KV: Yeah. | think the future of cloud computing is that you don't have a central
server for your applications anymore. Instead, you send the code to wherever it's best for it to
be running. If you have code that is operating in some particular database, you probably want to
send the code to run next that database, and | think we'll see a lot of big database services start

letting you run code directly on them in the future, bits of JavaScript for instance.

Now, Cloudflare, the thing that Cloudflare does is it's close to the users. 90% of the world’s
population is within 10 milliseconds of latency to a Cloudflare location. If you want to have code
that can respond very quickly to end-users, you put it in a Cloudflare worker. Actually, this could
end up being the place where most of your logic ends up going in the long term, because a
Cloudflare worker is arbitrary JavaScript. It’s using the service worker’s API, which is an existing
W3C standard API that exists in browsers today, but this runs on Cloudflare poplar servers and
it basically gets HTTP request in and then it responds to them however it wants, and in the
process it can make sub-requests to other servers not just to your own server, but any server.
So you can make your API requests from the edge and assemble your response. Maybe do
your HTML templating on the edge and return that and eEventually end up with a better
experience for users, because they're not round-tripping all the way back to your central location

for every request.

[0:55:26.0] JM: Well, that sounds like it ties in nicely with your notions of efficiency that led you
to starting Cap'n Proto, “Let's avoid these round-trips. Let's avoid these excess serializations.
You're doing a great job to make the Internet infrastructure more efficient. That seems like a

great place to wind down the conversation.

Lastly, do you have an example, like any case studies for people who are really leveraging

Cloudflare workers or how somebody in the audience might be able to leverage them?

[0:56:01.2] KV: Yes. Here's a really common thing. You have a website, say, you’re news
service. You have a website. It has a bunch of content on it that's all very cacheable. As long as
people are not logged in and they’re visiting your site, they get everything served out of cache
that's 10 milliseconds away from them. But then as soon as they log-in, because you want to

offer subscriptions or whatever, now you want to write at the top of every page like, “Hello such

© 2017 Software Engineering Daily 22

SED 483 Transcript

and such. You are logged in. Manage your subscription options,” but now the page is different

for every user. Now, you can't utilize the cache anymore.

With Cloudflare workers, what you could do is add that name to the top of your site on the edge.
So you're actually loading the public cache content and then you’re modifying a little bit using
the — The user’s name might just be in their cookie, and so there's no need to make a request
back to your application server at that point. You can do it all on the edge and then you’re
utilizing the cache much better, you use much less bandwidth and response times are way

faster.

[0:57:09.5] JM: Okay. That’s a great place to wind down the conversation. Kenton, | want to
thank you for coming on Software Engineering Daily, and all your projects are really interesting.

It was great talking to you.

[0:57:19.1] KV: Thanks. You too.

[END OF INTERVIEW]

[0:57:22.5] JM: At Software Engineering Daily, we need to keep our metrics reliable. If a botnet
started listening to all of our episodes and we had nothing to stop it, our statistics would be
corrupted. We would have no way to know whether a listen came from a bot or from a real user.

That’s why we use Encapsula to stop attackers and improve performance.

When a listener makes a request to play an episode of Software Engineering Daily, Encapsula
checks that request before it reaches our servers and filters bot traffic preventing it from ever
reaching us. Botnets and DDoS are not just a threat to podcasts. They can impact your
application too. Encapsula can protect your API servers and your microservices from

responding to unwanted requests.

To try Encapsula for yourself, go to encapsula.com/2017podcasts and get a free enterprise trial
of Encapsula. Encapsula’s API gives you control over the security and performance of your
application and that’s true whether you have a complex microservices architecture, or a

WordPress site, like Software Engineering Daily.

© 2017 Software Engineering Daily 23

SED 483 Transcript

Encapsula has a global network of over 30 data centers that optimize routing and cacher
content. The same network of data centers that is filtering your content for attackers and they’re
operating as a CDN and they’re speeding up your application. They’re doing all of these for you
and you can try it today for free by going to encapsula.com/2017podcasts, and you can get that
free enterprise trial of Encapsula. That’s encapsula.com/2017podcasts. Check it out. Thanks

again, Encapsula.

[END]

© 2017 Software Engineering Daily 24

