
SED 469 Transcript

EPISODE 469

[INTRODUCTION]

[0:00:00.3] JM: Thumbtack is a marketplace for real-world services. On Thumbtack, people get

their house painted, their dog walked and their furniture assembled. With 40,000 daily
marketplace transactions, the company handles significant traffic.

In yesterday's episode, we explored how one aspect of Thumbtack’s marketplace recently

changed, going from asynchronous matching to synchronous instant matching. In this episode
we zoom out to the larger architecture of Thumbtack and how the company has grown through

its adoption of managed services from both AWS and Google cloud.

The word serverless has a few definitions. In the context of today's episode, serverless is all
about managed services, like Google BigQuery, Google Cloud Pub/Sub and Amazon ECS. The

majority of infrastructure at Thumbtack is built using services that automatically scale up and
down. Application deployment, data engineering, queuing and databases are almost entirely

handled by cloud providers at Thumbtack. For the most part thumbtack is a serverless company,
and it makes sense.

If you're building a high-volume marketplace, you're not in the business of keeping servers

running, you're in the business of improving your matching algorithms, your user experience
and your overall architecture. Paying for lots of managed services is more expensive than

running virtual machines, but Thumbtack saves money from not having to hire site reliability
engineers

Nate Kupp leads the technical infrastructure team at Thumbtack, and we met at QCon in San

Francisco to talk about how to architect a modern marketplace. This was my third time attending
QCon, and as always, I was impressed by the quality of presentations and conversations that I

had at QCon. They were also kind enough to set up some dedicated space for podcasters like
myself.

© 2017 Software Engineering Daily �1

SED 469 Transcript

The most widely used cloud provider is Amazon Web Services, but more and more companies

that come on the show are starting to use some of the managed services from Google. The
great news for developers is that integration between these managed services is oftentimes

pretty easy as just an API call. At Thumbtack, the production infrastructure at AWS serves user
requests.

The log of transactions that occurs across that production infrastructure gets pushed from AWS

to Google cloud where the data engineering occurs. On Google cloud, the transaction records
are queue in Google Cloud Pub/Sub, which is the message queuing service and those

transactions get pulled off of the queue and stored in BigQuery, which is a system for storage
and querying of high volumes of data.

BigQuery is used as the data lake to pull from when orchestrating machine learning jobs. These

machine learning jobs are run in Cloud Dataproc, which is a managed service that runs Apache
Spark. After training a model in Google cloud, that model is deployed on the AWS side where it

serves user traffic.

On the Google cloud side, the orchestration of these different managed services is done by
Apache Airflow, an open-source tool that is one of the few pieces of infrastructure that

Thumbtack does have to manage themselves on Google cloud. It’s kind of funny that this
Apache Airflow workflow management tool is managing a bunch of managed services, but

Airflow itself is not managed.

If you want to find out more about the Thumbtack infrastructure, you can see some great
diagrams and check out the video of the talk that Nate gave at QCon. That should be on

YouTube shortly if it's not already at the time of publication of this episode. You can also check
out the Thumbtack engineering blog, which I have linked to in the show notes for this episode.

Thanks again to the team at QCn for allowing me to show up and do some interviews and do

some research there. I really enjoyed the QCon Conference.

[SPONSOR MESSAGE]

© 2017 Software Engineering Daily �2

SED 469 Transcript

[0:04:09.6] JM: Women 2.0 is a company with a vision of gender equality in the tech world.

Women 2.0 is a community, a media company and a jobs platform that connects top female
talent with engineering jobs around the world.

At the new Women 2.0 jobs platform, find a vetted jobs for women engineers, data scientists

and product managers. To find a job that is right for you, go to women2.com/sedaily, and if
you’re an engineering company, you can connect with top female talent on Women 2.0.

 
Companies like Twitter, MongoDB and Craigslist use Women 2.0 to find new hires. Go to

women2.com/se daily to find out how to post your company's jobs to Women 2.0.

Thanks to Women 2.0 for being a new sponsor of Software Engineering Daily, and check it out
women2.com/sedaily.

Thanks for listening, and let's get back to the show.

[INTERVIEW]

[0:05:18.3] JM: Nate Kupp is an engineering manager with Thumbtack. Nate, welcome to

Software Engineering Daily.

[0:05:22.3] NK: Awesome. Thanks.

[0:05:23.4] JM: We’re here at QCon. I just watched your talk about scaling marketplaces at
Thumbtack, and you gave a great description for how the company has advanced, and in

particular how it has moved to many managed services. I think the idea of managed services
has coincided with the term serverless, and you began your conference talk with a discussion of

this is ambiguity. The fact that we have one terminology for serverless, which is the functions as
a service systems and then we have this other terminology, which is the managed services side

of things.

Do you want to start by just disambiguating these two terminologies and explain what that term
serverless means from your point of view?

© 2017 Software Engineering Daily �3

SED 469 Transcript

[0:06:14.9] NK: Yeah. I think it's a super interesting. I’d like to kind of group these together, and
that the dimension that I care most about as an infrastructure engineer is the operational

overhead of using these systems. As we’ve scaled, we’ve got a very small — We’re a startup.
We have a small engineering team, and we want to make sure that the things that we’re

resourcing are directionally aligned with where the business is going.

To me, anything that’s just operational overhead is totally orthogonal to the goals of the
business and not a worthwhile place for us to invest engineering time. In a lot of ways, we care

a lot more about that than we care about dollars. Of course, we care about minimizing our costs,
but engineering is such a scarce resource at a small startup that I think across serverless,

across managed services, that’s the compelling piece here.

I guess to answer your question, I think about serverless is like, “Okay. We’ll draw a circle
around any of these things. That’s where we are.” Taking that operation piece out of the picture

where I’m not worrying about servers that are running and I’m not worrying about the machines.

In a lot of ways, I think Google has done a really good job of providing these kind of things in
terms of BigQuery, right? I never worry about what machines are backing my BigQuery tables,

and it means that I can kind of remove that from my mental model of how a system works. I
worry about the APIs to put data in and I worry about people writing SQL [inaudible 0:07:46.3].

That’s it.

[0:07:48.4] JM: The core competency of Thumbtack is to be a matching marketplace between
people who need home services and workers who are willing to do those home services. The

core competency of Thumbtack is not managing servers. Ideally, you would like to have the
operational aspects of your infrastructure be taken care of by a company like Amazon or Google

so that you can just think in terms of what sort of machine learning jobs do we need to get done.
What kind of services? What kinds of abstractions do we want to offer to our developers so that

they can be higher leverage and more productive.

© 2017 Software Engineering Daily �4

SED 469 Transcript

Can you give an overview of the infrastructure at Thumbtack? I know your operational

infrastructure is on AWS and the data infrastructure is on Google. So you’ve got a multi-cloud
set up. Paint us a picture for how that looks.

[0:08:50.9] NK: Yeah. I like to think that anything on a synchronous path to a user is on the

AWS side, and then kind of the more offline stuff is on Google. To zoom in to each of those, so
on AWS, all of our production serving including our microservices, the remnants of the PHP

monolith, the different kind of systems supporting that, they’re all running there. We run all of our
services on Dockerized containers on ECS and we use PostgreS and Dynamo along with a little

bit of Elastic Search as our primary data stores over there. We have a bunch of touch points
where we’re kind of piping data in and out of that to the GCP side of things, primarily though

Cloud Dataproc where we run Spark jobs, and then landing an awful lot of that in BigQuery
which then feeds downstream analytics and data science and things like that.

[0:09:43.8] JM: You and I were talking before the show about how little operations burden there

has been, how few outages there have been, and you think about building a marketplace
business 5 or 10 years ago, even 3 years ago. One of the earlier shows that I did was with the

Uber CTO about just the infrastructure of Uber. I’m sure Uber still has outages and craziness
just because the volume of transactions are going on so insane. But I do have a sense that

even just in the last two or three years there have been massive improvements in how few
outages a company can get to by having their infrastructure in managed services. Can you talk

a bit about that? I know because you’ve been at Thumbtack since 2014, have you seen that
drop in outages over that time?

[0:10:38.3] NK: Yeah, and I think I’ll attribute that both to this move to more managed services

and awful lot of investment in our infrastructure from the engineering team. Absolutely, I think
often a lot of the outages are problems that we cause ourselves, right? And a bad deploy,

something went wrong, we brought down some system. The more that we can kind of raise the
level of abstraction that our developers need to worry about, the less prone we are to those sort

of outages and we can kind of offload that responsibility to one of the cloud providers. To me,
that’s pretty compelling, and I think kind of looking where the puck is going over the next few

years, I think that that model of just raising the level of abstraction — Serverless is this kind of
one step in that direction. I think there’s a lot more that’s coming, and to me it’s super exciting,

© 2017 Software Engineering Daily �5

SED 469 Transcript

because it means that all of us at small startups don’t need to worry about that stuff anymore,

and we can focus on the things that are going to move the business forward and not these
operational issues and site outages and things like that.

[0:11:40.4] JM: On the user-facing infrastructure side on AWS, you’ve got people that are

getting matched with workers to do their jobs. For example, you have somebody who goes to
Thumbtack and they say, “I need my house painted,” and their request gets matched with

people who are willing to paint the house. They get matched up. The job goes through.
Everything is great. That data gets written into your production infrastructure side, I think, in

DynamoDB, and you have all these day-to-day transactional stuff. At some point, that data gets
loaded or transferred somehow into the Google side of things where you have, like you said,

Dataproc and other machine learning jobs.
 

Before we talk about the data infrastructure side, how does the data — What’s your pipeline of
transferring data from the AWS side to the Google cloud side?

[0:12:37.5] NK: Yeah. There’s kind of two modes. We have the near real-time streaming

infrastructure and then we have batch ETL. For like our data stores for PostgreS, for Dynamo,
right now it’s mostly batch. We’re working on building change data capture out of PostgreS to

pipe that — Piping streaming changes into the Google side.

I’d say that the primary source more real-time data, we log events out of the website, out of our
services. These events are JSON or thrift objects. These hit a Fluentd cluster running on the

AWS side, which then feeds those into Google Pub/Sub and then we have various things
downstream on the Google side which subscribe to that data and process it from there.

[0:13:22.6] JM: Okay. You have an event stream on the AWS side and that event stream is like

the change log of everything that is changing across your production infrastructure, and you
said something called Fluentd is reading that and transferring and communicating that to the

Google side.

© 2017 Software Engineering Daily �6

SED 469 Transcript

[0:13:40.1] NK: Yeah. We’re just using that as a relay into Pub/Sub, and it’s a pretty quick hop

rate into Cloud Pub/Sub, and then we’re sending on the order of hundreds and millions of
events per day through Pub/Sub and then going from there.

[0:13:52.7] JM: You just buffer all the events into Google Pub/Sub.

[0:13:56.2] NK: Yeah, and that corresponds to kind of — You can imagine, like every user

action. Basically, any kind of action that happened within some context that we want to capture,
we’ll capture kind of a timestamp event around that end log right into this event stream.

[0:14:09.7] JM: On the AWS side, what are you doing for — How do those events exist on the

AWS side?

[0:14:17.8] NK: You can imagine in PHP we’ll just collect, basically compose a JSON object
and then that gets logged into this event stream.

[0:14:26.4] JM: It’s that you’re using PostgreS for that you said?

[0:14:29.8] NK: It’s directly from the application layer.

[0:14:32.0] JM: Okay.

[0:14:32.2] NK: Yeah, the application layer writes directly into this event stream.

[0:14:35.4] JM: Okay. The event stream is just sitting in memory on some box?

[0:14:41.5] NK: It will write directly to Fluentd. The application layer handles the action, writes to

Fluentd, passes on —

[0:14:47.2] JM: What is Fluentd? Can you just explain what that is?

[0:14:48.7] NK: It’s really just this relay that basically can buffer some data and then feed that to
a downstream consumer. That piece is kind of minor in the pathway. In some cases we may

© 2017 Software Engineering Daily �7

SED 469 Transcript

write directly to Pub/Sub, but then basically once the event is slammed in Pub/Sub, then Pub/

Sub durably persists them in a distributed queue and then downstream consumers can
subscribe to a particular event topic that has events from the website or events for a particular

service.

[0:15:16.2] JM: How durable is Fluentd?

[0:15:18.5] NK: Fluentd, in some ways that’s a bit of a weak spot for us. We run that ourselves
on sort of machines on the AWS side. At some point we may transition everything to just write

directly from the application layer to Pub/Sub.

[0:15:32.6] JM: Have you evaluated Kinesis for I guess — I guess that might get costly. If you
were keeping the entire event stream in both Kinesis and —

[0:15:41.7] NK: Yeah. Basically, Kinesis the AWS version of Google Cloud Pub/Sub, so those

are pretty much one-to-one, alternative being in like Kafka if you want to self-host it. We looked
at all three. Again, I think the thing that we found really compelling about Pub/Sub and a lot of

the services in the Google side is I don’t have to worry about the knobs. Pub/Sub gives me an
API to write events and an API to subscribe and consume events and I don’t have to worry

about any of the operational details of how Google handles that on their end. Whereas like
Kinesis, I have to worry about sharding and there are some knob that are there and it’s minor,

but incrementally all these things add up and then the more kind of these knobs that we put
across our infrastructure, the more work operationally that we have to do to keep things in a

good place.

[0:16:33.9] JM: Okay. Right. You haven’t had any issues with the Fluentd system. Have you
had any outages that resulted from like some problem with the event stream on the —

[0:16:46.1] NK: Yeah, no. I think our — Overall, this whole like infrastructure has been pretty

solid. I think the places where we’ve hit issues have been mostly, you know, I mentioned it in a
talk a couple of cases like where BigQuery has made API changes that have broken us. We’ve

been chatting a little bit with the Google team around how we can handle that better and get

© 2017 Software Engineering Daily �8

SED 469 Transcript

some more API stability on their side. Pretty much everything else has been really solid and

very handoff, which has been great.

[0:17:13.9] JM: Okay. Cool. All these events that are coming in, the change log across the
application infrastructure goes through Fluentd, it does into Google Club Pub/Sub and then you

have several different things that are reading from that event stream. What are some of the
consumers of that event stream?

[0:17:33.9] NK: Yeah. The primary consumer today is a Spark Streaming job, which pulls

events out of these Pub/Sub topics and then writes those down into BigQuery tables. One of the
things that we’ve found pretty compelling about BigQuery was it has these streaming APIs

where I can do streaming writes into a table and it’s immediately queryable in BigQuery. That
means that like from the time a user took an action in production to the time that our analysts

can query it is like 30 seconds at scale with millions and millions of events. That’s pretty cool,
and it’s helped us a ton when we have any issues on the side and we want to understand kind

of at a higher level, kind of more of the business level rather than the engineering operations
level of what’s going on. The analyst can be a good partner to us, because they can go and look

at the events and see what’s happening.

[SPONSOR MESSAGE]

[0:18:36.0] JM: Simplify continuous delivery GoCD, the on-premise open-source continuous
delivery tool by ThoughtWorks. With GoCD, you can easily model complex deployment

workflows using pipelines and you can visualize them end-to-end with its value stream map. You
get complete visibility into and control of your company's deployments.

At gocd.org/sedaily, find out how to bring continuous delivery to your teams. Say goodbye to

deployment panic and hello to consistent, predictable deliveries. Visit gocd.org/sedaily to learn
more about GoCD. Commercial support and enterprise add-ons, including disaster recovery, are

available.

Thanks to GoCD for being a continued sponsor of Software Engineering Daily.

© 2017 Software Engineering Daily �9

SED 469 Transcript

[INTERVIEW CONTINUED]

[0:19:36.5] JM: We had a show about BigQuery recently and this is one of the things that we

kind of discussed on that was like 5 or 10 years ago, the things that BigQuery offers you today
at a pretty fast SLA. This was like you needed to do as a nightly job on Hadoop, right? Now, you

can do like an aggregation, a giant aggregation or a giant query on the fly and deliver it to the
user as like business logic, right?

[0:20:10.2] NK: Yeah. Which is amazing, right? I think it’s pretty cool from our side, and I think

being able to — We still have those nightly batch jobs around as the kind of just in case version
of that. Yeah, one of the things that we appreciated a lot about the way that BigQuery is set up

and this kind of between Pub/Sub and BigQuery. We built this as a Spark Streaming job and
then we can just reuse the same data models that we were using in the batch job in the

streaming job. We got a fair amount of code we used there from across both.

[0:20:47.2] JM: That’s like the whole Dataflow vision of like, “There should be no batch. There
should be no streaming. There’s only this thing.

[0:20:52.6] NK: Yes. I think we’re kind of moving incrementally towards — I’m kind of — We’re

holding our breath to see where things shake out with Dataflow versus Spark Streaming and
what emerges as kind of the winner in that space. We went the Spark Streaming route in the

short term given that we have lots of Spark code already and it was this easy hop to go build
that. Well, comparatively easy versus rewriting everything in Dataflow. We’ll see. I think there’s a

lot of things that Dataflow does really well, and particularly this like — Where we don’t have to
worry about the knobs is really compelling. I think the thing that I’d like to see is just more

adoption there and more people using Dataflow, Apache Beam, where I can be convinced that
we’re not just getting locked in to this small query of the ecosystem.

[0:21:39.9] JM: Yeah. That was something I had done a couple of shows about last year and I

didn’t fully understand what was going on there. I did two shows about Dataflow/Apache Beam,
and what I understood about Apache Beam is this is a way of making your Spark Streaming or

Apache Flink things compatible with Dataflow, but I could never really wrap my mind around

© 2017 Software Engineering Daily �10

SED 469 Transcript

what that means. Can you shed some light on that or do you understand what they’re talking

about there?

[0:22:10.3] NK: Yeah. My understanding is that Apache Beam is basically the open-source —
Well, it’s the open-source version of Dataflow. Google provides Dataflow as a managed offering

and then Beam is API compatible with that.

I think, today, those two things largely go hand in hand and then I would hazard a guess that
most Apache Beam users are going to be on Google using Dataflow.

[0:22:34.7] JM: Yeah, that what confused me about it.

[0:22:38.3] NK: Yeah, I’m kind of curious to see if that changes and if there’s kind of more broad

adoption than just within the GCP ecosystem. I’d love to see that before we kind of dive in head
first and get locked into using it.

[0:22:52.1] JM: Right. Spark Streaming — Help me understand, what is Spark Streaming doing

there and why was it the choice of technologies versus the other options in that situation?

[0:23:06.1] NK: Yeah. If you have this mental model of Spark as doing distributed processing on
like an array of data. I have an array of data as the inputs, maybe multiple arrays of data and I’m

joining them, merging them, doing map-reduced kind of operations over those arrays of data
and then piping them downstream. Spark Streaming kind of takes the same thing and then

moves it to where you have these micro-batches, and you can conceptualize like Spark
Streaming as working in a similar way to Spark, but working it over kind of small batches of

data. You have these windowed sets of data that are coming in.

The way that we use it is we’re applying the transformation logic ETL that we’re doing on our
data across these small batches of events that are coming in that we’re reading off of Pub/Sub

processing through Spark Streaming and then syncing into BigQuery on our downstream
consumers.

© 2017 Software Engineering Daily �11

SED 469 Transcript

[0:23:57.9] JM: Okay. Right. Because you need some sort of system that will transfer the data

from Pub/Sub, because Pub/Sub is basically this queue of different topics. So you’ve got
different types of events that are sitting on this queue and you need to write those events into

BigQuery, because BigQuery is a file system plus — It’s a file system plus a query system, so
you’ve just got this big layer of storage and you need some way of transferring the data from the

queue into the storage layer and you’re using Spark Streaming to pull that data and put it right
to the correct places.

[0:24:40.2] NK: Yeah. I’ll say what I appreciated about it is from our perspective, the model is

I’m querying an API, because there’s an API on Pub/Sub and all I’m doing is pulling my events
out of that API and then I’m querying another API, the BigQuery API and putting my events over

there. I’m really just kind of shuffling data between these two managed services, which is great,
right? Then I can do some transformation logic in the middle if I need to, but it’s more or less just

a connecting pipe between these two APIs.

[0:25:09.2] JM: Yeah. On the Google Cloud side, in the talk that we just saw here at QCon, you
were also talking about this Google Cloud Dataproc and Airflow. We had done a show about

Airflow recently, and I understand that came out of Airbnb. It’s kind of like a way of orchestrating
different aspects of your data infrastructure and sequencing them in a certain way to patch

together different logic of different components of your data infrastructure.
 

Explain what Google Cloud Dataproc is and how Airflow fits into your system.

[0:25:49.8] NK: Yeah. Cloud Dataproc is a managed Hadoop and Spark offering. Again, it’s
basically a set of APIs that you can call and say like, “Create a cluster with some set of

resources.” Say, “I want to create a cluster with a hundred workers and I want them all to have
16 cores, whatever.”

You hit this API and 60 to 90 seconds later you’ll have a cluster sitting there. There’s another

API, you say like, “Schedule this workload on that cluster,” and then it will go off and run that
job, Spark job, MapReduce job, whatever it might be. Of course, then you can just shut down

the cluster with a third call.

© 2017 Software Engineering Daily �12

SED 469 Transcript

What we did is we wrote an Airflow operator which kind of orchestrates that whole process to

bring up a cluster, schedule a job on that cluster and then shut it down and kind of wrap that as
one atomic unit, an operator that we use in Airflow and then we just put all our jobs inside of

those containers. We say like, “Here’s the job. Put it inside of this container. Configure how
much resources we think it needs and we can kind of adjust that as the job scales and then just

throw it into Airflow along with all the other things that we have running.”

Like I said, we have kind of more than 600 of these that we run on a daily basis, bring up a
cluster, run it, shut it down. As our scale goes up, we basically just — Is a configuration change

just bump up the size of each of these clusters and we can do it at the job kind of granularity
where we can say, “This job is either running too long or using a lot of resources, so we just give

it some more resources and we’re off to the races.”

[0:27:19.4] JM: Cloud Dataproc is a thing that is managing servers in a way where you don’t
actually have to spin up the servers or whatever. You’re just saying, “I’ve got this machine

learning job that I want to run Cloud Dataproc. Provision the stuff that I need and take care of
this job for me and hand me back the answer.”

[0:27:38.7] NK: Yup. Exactly. Which is super attractive from our perspective. Especially coming

from this world where in the old days, like bringing up a Hadoop cluster was go edit a bunch of
XML files, distribute them across 20 machines, wire them altogether and cross fingers and hope

it all works out.

[0:27:55.2] JM: Yeah.

[0:27:58.0] NK: It’s really painful, right? Then it kind of got better as Puppet and Jeff and other
tools came along and you can kind of manage all of that through those tools. Still, it’s like you

have to worry about physical hardware with all of these configuration deployed across the
cluster and it’s a huge pain to keep everything in shape. Particularly in the Hadoop world, you

often have a lot of local disc if you’re working on jobs on HTFS, which means you often maybe
have a machine with 20 or 30 drives attached to it multiplied by 10, 20, 30 machines. All of a

sudden, you have hundreds of discs and basically you’re multiplying your failure risk for a hard

© 2017 Software Engineering Daily �13

SED 469 Transcript

drive. There’s always something breaking and there’s always like a drive failing somewhere and

it’s just annoying.

Being able to take all of that out of the picture and just say, “Okay. It’s an API and I don’t have to
worry about it,” is incredible.

[0:28:53.5] JM: Yeah. Airflow here is — I’m wondering why — Airflow, you must have to

manage yourself though. That is a system that is actually — That’s one of the rare systems that
you’re actually managing yourself on a server somewhere.

[0:29:09.4] NK: Yes. For now. I think we’ll probably, at some point, containerize pieces of it and

deploy it on top of that side of the infrastructure. Yeah, for now, that’s just — We’ve configured it
with Puppet. It’s running on some machines on AWS and then kind of orchestrating the whole

thing.

[0:29:26.9] JM: Is there any operational burden to that or it pretty straightforward?

[0:29:29.9] NK: I’d say the operational burden comes from some of the bugs that are around in
Airflow and we’ve had a few of those, but largely it’s been pretty good for us.

[0:29:39.6] JM: We’ve been talking pretty abstractly about data just blasting from the event

streams on your production infrastructure, going over to Google cloud, being pulled off of Cloud
Pub/Sub, written to BigQuery. You’ve got BigQuery jobs that are — Actually, okay. You’ve got

the data going into BigQuery and you have business logic BigQuery jobs. I want to ask you
about some of those business logic jobs, but also we just talked about these Dataproc jobs, it’s

like machine learning jobs. How was the data getting from — Is BigQuery your system of
record? Do you move all the data from BigQuery into a Dataproc container to do machine

learning jobs there?

[0:30:23.2] NK: Yeah, that’s a great question. The way that things work, imagine kind of each
step along a data pipeline that we build, will read from some source, whether it’s Pub/Sub or

some third-party API for external data or wherever we’re getting data from. We read form there.

© 2017 Software Engineering Daily �14

SED 469 Transcript

We write to Google Cloud storage and then we call the BigQuery load APIs on that data we just

wrote to Google Cloud storage.

Then the next stage of the jobs will all read from Google Cloud storage, process the data and,
again, write to GCS and load into BigQuery. GCS is really our system of record, and then

BigQuery kind of just mirrors what’s on GCS.

[0:31:03.8] JM: GCS is like the Google S3 equivalent.

[0:31:05.9] NK: Exactly. Yeah. The reason we do it that way is it’s kind of expensive to read
from BigQuery. If you imagine like I’m running a Spark job and I’m processing terabytes of data,

I want to do my reads out for GCS versus doing my reads out of BigQuery, because I’m paying
for its $5 a terabyte out of BigQuery.

[0:31:26.2] JM: I think it’s a columnar store, so it’s probably harder to read for individual

records.

[0:31:31.0] NK: In a lot of ways, the APIs will end up doing the read, writing to GCS anyway and
then like then processing the data. It’s easier to just read the mirror that we have on GCS and

process from there.

[SPONSOR MESSAGE]

[0:31:49.2] JM: Do you have a product that is sold to software engineers? Are you looking to
hire software engineers? Become a sponsor of Software Engineering Daily and support the

show while getting your company into the ears of 24,000 developers around the world.
Developers listen to Software Engineering Daily to find out about the latest strategies and tools

for building software. Send me an email to find out more, jeff@softwareengineeringdaily.com.

The sponsors of Software Engineering Daily make this show possible, and I have enjoyed
advertising for some of the brands that I personally love using in my software projects. If you’re

curious about becoming a sponsor, send me an email, or email your marketing director and tell
them that they should send me an email, jeff@softwareengineeringdaily.com.

© 2017 Software Engineering Daily �15

SED 469 Transcript

Thanks as always for listening and supporting the show, and let’s get on with the show.

[INTERVIEW CONTINUED]

[0:32:51.4] JM: To make this more tangible for people, could you may be give an example — I’d
like to talk maybe some examples of BigQuery, particular just a random BigQuery query that

comes to mind is business logic, and then also a piece of some — One of those Dataproc jobs,
just to make this a little bit more tangible for people.

[0:33:11.8] NK: Yeah. Maybe I can trace through kind of end-to-end from, say, like production

data to our analytics dash-boarding, you know, key company metrics. I’d say most of product
data lives in PostgreS. We have these scoop jobs that we run which run on Dataproc. Scoop

still uses MapReduce, but it just runs with Dataproc job on a Dataproc cluster, reads from some
PostgreS table. Imagine we have like the users table in PostgreS. We have a user’s table, has

30 columns for whatever it is. We pull that data out of PostgreS via Scoop, process it through
Dataproc and Scoop and then land it as Avro files on GCS and then [inaudible 0:33:52.2] to put

those in BigQuery.

We may have a bunch of these and we pull a bunch of different datasets into GCS, BigQuery.
Then we actually have this kind of what I call last mile ETL, where we let the analysts write SQL

queries for BigQuery, which they can run to take this set of tables and transform to more
consumable tables for the rest of the business.

Imagine, we have all these kind of like tables which are laid out exactly the way they are in

PostgreS, right? You have all your PostgreS tables, now they’re kind of mirrored into BigQuery.
That’s maybe not the format you want in terms of measuring KPIs for the business. That

mapping from like PostgreS table schemas to entities that the business cares about and all the
KPIs for those entities, the analytics team owns a lot of those definitions and we just run those

automatically on a regular cadence.

Then on that last step, we have now — You can imagine a user’s table, maybe separate table
for pros, for customers, for requests and kind of all that key entities on Thumbtack and then all

© 2017 Software Engineering Daily �16

SED 469 Transcript

the KPIs we care about for each of those different entities. From there it’s kind of this last hop of,

well, create all of our key company dashboards and read form these tables and we’re off to the
races.

[0:35:09.0] JM: Yeah. That example — Maybe I missed it, but did you cover something that

happened in Dataproc, in the Dataproc layer?

[0:35:17.9] NK: Yeah. The Scoop jobs that pull from PostgreS run on Dataproc, and I will say
we also — As I mentioned in the talk, like we also pull in data that it’s Dynamo. We also pull in

these events from production. Often, this kind of last mile ETL will grab data from each of those
to compose these key tables for each entity in the product.

[0:35:40.5] JM: Okay. We just glossed over the production infrastructure, I guess. We just

talked about this big event stream that’s being created and going through Fluentd and then
making its way to the Google side, AWS on one side and Google on the other side. We just

talked about the event stream on the AWS side. Obviously, as these events are being created
across the application architecture, the AWS side of things, you want to have databases that are

subscribing to that application event stream and updating. What’s on the production
infrastructure side of things? What’s getting updated off, or who is reading form that event

stream?

[0:36:21.7] NK: The event stream is strictly over to the Google side. The way that the
production serving infrastructure works, so we have the PHP monolith, which is kind of the entry

point for everything. Then we have a layer of microservices behind that. Those microservices
we write in Go and in Scala, primarily in Go. Three or four services are written in Scala. All of

these, the website and the microservices are on Docker containers orchestrated through ECS
and all of these then kind of write to either PostgreS or Dynamo, read and write from both of

these data stores and then also elastic search for search applications.

[0:37:04.6] JM: Do you ever have a problem where let’s say a transaction comes through the
system, a user gets their house painted and it all goes through and of course it gets paid and

the transaction is over. You need to update the system of record that is like the history of the
user like, okay, that now there’s a new transaction that they’ve done. You also need to update

© 2017 Software Engineering Daily �17

SED 469 Transcript

certain search indexes on Elastic Search, and so in a number of the shows I’ve done, they use

this event stream as the source of truth and then the user database will read from the event
stream and update and the search index will also read from the invent stream and update it,

because otherwise you’ve got to contact both the database, the user database and the search
index and update both of those things. Many people use the event stream as a way to decouple

the reads and the writes. You have a different solution there?

[0:37:58.6] NK: Yeah. This is exactly the problem that’s keeping me awake at night.

[0:38:02.3] JM: Okay.

[0:38:02.7] NK: Yeah. Essentially, what I would like to move toward — What we are moving
towards is basically PostgreS is the system of record, Dynamo in some cases, but primarily

PostgreS, and then we do change data capture off of PostgreS and feed the changes out of
PostgreS, which then become the canonical data stream feeding all of our work on the Google

side.

The events that we’re logging from the application layer are in a sense a shortcut until we finish
building that, because they suffer from exactly that problem. When you’re looking events from

the application layer, if, say, the transaction fails from some reason, then now you have this
inconsistency between the event stream and the data store and vice versa. If you fail to write

events to the event stream but your PostgreS write succeeded, you get this inconsistency. The
ideal world is where everything is kind of going through your data store. In our case, PostgreS,

and we don’t have this separate event stream.

To bridge from the world where we don’t have anything to the world where everything is kind of
consistent through the event stream, consistent from PostgreS, these application events we’ve

provided the engineering team with is basically big asterisk that we are not providing guarantees
on a strong consistency with that’s in PostgreS. It’s like it’s close and kind of gives us coverage

in the interim, but our goal is to move towards a world where everything is built off of that
change log out of PostgreS.

[0:39:34.0] JM: Is to write ahead log, right?

© 2017 Software Engineering Daily �18

SED 469 Transcript

[0:39:35.4] NK: Yeah. Basically, using logical replication from PostgreS, you can capture all the
changes, all the transaction sequence through PostgreS and feed that into your data pipelines.

Since we don’t have this yet, for all of like key company metrics, everything is built off of this like
batch export out of PostgreS today, and events are kind of additional signal, but they’re not kind

of driving any of the KPIs for the business.

[0:40:01.2] JM: Sure. In your dream infrastructure, would the write ahead log would be like
writing to Kafka or something?

[0:40:09.5] NK: Essentially, imagine we have this entity that’s reading out of PostgreS and then

writing into Pub/Sub, so we have something sitting in the middle between the — Basically,
reading this replication log from —

[0:40:19.1] JM: Google Cloud Pub/Sub.

[0:40:20.0] NK: Yeah, and then writing directly to Cloud Pub/Sub, and then we have a Spark

Streaming job which consumes that log, transforms it and things go from there.

[0:40:29.0] JM: Yeah. Okay, that sounds great. Then this is the Google cloud infrastructure
making its way to the production infrastructure, right?

[0:40:39.8] NK: Yes. I think we’ll continue kind of moving in that direction with much of these

things. I think I will say it’s sort of an open question on whether we’ll move any like production
serving infra, and that as long as we’ve got this tight coupling with Dynamo in a bunch of places,

any sort of migration away from that would be pretty challenging.

[0:41:04.4] JM: That is interesting. I did a show — Actually, the show that was published today
was with Fiverr, the company Fiverr.

[0:41:10.7] NK: Yeah.

© 2017 Software Engineering Daily �19

SED 469 Transcript

[0:41:12.0] JM: That company kind of has similar engineering tasks as Thumbtack, right? Fiverr

is sort of like a gig economy thing for digital services. Thumbtack is for mostly physical services,
I believe. One thing that he said was — You’re basically talking about like how are you going to

implement event sourcing. One of the things he said was they’re going with Kafka for event
sourcing because they figure this is like kind of the Kubernetes of the event queue architecture

and they think that all of these event sourcing evolutions are going to come first to Kafka and
maybe they’ll come — They might be later to the game on Google Cloud Pub/Sub. Have you

thought about that all?

[0:41:54.4] NK: Yeah, absolutely. I think as we’re building this change data capture out of
PostgreS, it’s an open question on whether we will go the Pub/Sub route or standup Kafka. I

think we’re very hesitant to add yet another piece of infrastructure we need to operationally
manage, but I think that that point is absolutely right. Kafka is the status quo for this, and there’s

also this kind of one asterisk today with Pub/Sub, and that Pub/Sub does not provide ordering
guarantees. You’re putting all these messages in and you’re reading them out and there’re no

guarantees that the order in which you can consume them was the order in which they were put
into the queue. Kafka can provide ordering within partitions, right? Then in some cases,

particularly if you’re trying to reconstruct the state of your PostgreS database, that can be
helpful.

[0:42:49.9] JM: This has been like the wonkiest episode of Software Engineering Daily ever. I

think about where to wrap it up, because this has been really interesting. You had some
interesting thoughts in your talk about just some general lessons that you’ve learned in your

time at Thumbtack. I guess you’ve been there for about three years at this point and the team
has scaled as we were talking right before the show. You’ve gone from moving just past the two

pizza team in terms of how many people are kind of directly reporting to you. What are some of
the management and scaling lessons that you’ve learned, because Thumbtack is growing like a

weed, really fast growing company. I’m sure it’s growing in terms of employees as well as in
terms of traffic. What are just some of the engineering management lessons you’ve learned?

[0:43:42.2] NK: Yeah. One; it’s hard. It’s hard to do well. I think something that just has been

constantly on my mind as we’ve grown is like how do we protect the engineering culture while
we’re growing the team so fast. If we’re adding so many engineers, we want to make sure that

© 2017 Software Engineering Daily �20

SED 469 Transcript

like we’re able to kind of add them to the team and not just totally derail a team culture, and I

think there’s a big risk. When you’re adding people really, really fast to an engineering team,
there’s kind of this carrying capacity that you don’t want to exceed. It’s just hard, right? It’s just

really hard. Especially if you get kind of big spikes of lots of new people, it can be really hard to
kind of get everyone on boarded and up-to-speed and figure out all the existing systems and

processes.

I think that’s something that we give a lot of thought to, even kind of top of funnel in terms of as
we interview people, as we bring people to the process and into the engineering team. We want

to hire people who aren’t jerks and people that we’d be excited to work with and just be really
thoughtful about the kind of engineering team that we’re building. That, I think, has been a key

priority for me and for us and I think we’ll continue to be as we keep growing fast.

[0:45:00.8] JM: Yeah. Okay. Nate, this sounds like a great place to stop.

[0:45:03.8] NK: Cool.

[0:45:04.0] JM: Yeah. Thanks for coming on Software Engineering Daily. It’s been great.

[0:45:06.1] NK: Awesome. Thanks for having me.

[0:45:07.2] JM: Thank you.

[END OF INTERVIEW]

[0:45:10.1] JM: When you are continuously deploying software, you need to know how your
code changes affect user traffic around the world. Apica system helps companies with their end-

user experience focusing on availability and performance. Test, monitor and optimize your
applications with Apica system. With Apica Zebra Tester, Apica Load Test and Apica Synthetic,

you can ensure you’re your apps and APIs work for all your users at any time around the world.

Apica Zebra Tester provides local load testing for individuals, small teams and enterprise dev-
ops teams to get started quickly and scale load testing as your needs evolve. Apica Load Test

© 2017 Software Engineering Daily �21

SED 469 Transcript

ensures that your app can serve traffic even under high load. Apica Synthetic sends traffic to

your website in your API endpoints from more than 80 different countries ensuring wide
coverage.

Right now you can go to softwareengineeringdaily.com/apica for a webinar about the real ROI of

API testing. You can also find past webinars such as how to optimize websites for fast load
time. Go to softwareengineeringdaily.com/apica to find the latest webinars on load testing and

lots of other topics and check out Apica system for testing, monitoring and optimization.

Thanks again to Apica for being a sponsor of Software Engineering Daily.

[END]

© 2017 Software Engineering Daily �22

