
SED 383 Transcript

EPISODE 383

[INTRODUCTION]

[0:00:00.4] JM: Self-driving cars are here. Fully autonomous systems like Waymo are being 

piloted in less complex circumstances. Human in the loop systems like Tesla Autopilot navigate 
drivers when it is safe to do so and they let humans take control in ambiguous circumstances. 

Computers are great at memorization but not yet great at reasoning. We cannot enumerate to a 
computer every single circumstance that a car might find itself in. The computer needs to 

perceive its surroundings, plan how to take actions, execute control the situation and response 
to changing circumstances inside and outside of the car. 

Lex Friedman has worked on autonomous vehicles with companies like Google and Tesla. He 

recently taught a class on deep learning for semiautonomous vehicles at MIT which is freely 
available online, on YouTube. I recommend checking out those videos. They are awesome and 

really informative and actually not too technically dense. It's pretty interesting. Well, there are 
typically dense parts of it but parts of it are just entertaining. 

There was so much ground to cover in this conversation because I have simply not talked in 

detail to many people who were involved in self-driving cars. Most of the conversation was 
higher-level. How to even approach this problem? What is the hardware and software 

architecture of a car? Lex had really satisfactory answers for these. They were not necessarily 
conclusive, but they were interesting. I really enjoyed talking to Lex, and if you want to hear 

more from him, check out his podcast. It's called Take It Uneasy, which is about jujitsu. It's about 
judo, and wrestling, and learning, and self-discipline. Totally unrelated to software engineering, 

but you might find it interesting especially if you like this episode. 

[SPONSOR MESSAGE]

[0:02:07.1] JM: Spring is a season of growth and change. Have you been thinking you’d be 
happier at a new job? If you’re dreaming about a new job and have been waiting for the right 

time to make a move, go to hire.com/sedaily today. Hired makes finding work enjoyable. Hired 
uses an algorithmic job-matching tool in combination with a talent advocate who will walk you 

© 2017 Software Engineering Daily �1



SED 383 Transcript

through the process of finding a better job. Maybe you want more flexible hours, or more money, 

or remote work. 

Maybe you work at Zillow, or Squarespace, or Postmates, or some of the other top technology 
companies that are desperately looking for engineers on Hired. You and your skills are in high 

demand. You listen to a software engineering podcast in your spare time, so you’re clearly 
passionate about technology. Check out hired.com/sedaily to get a special offer for Software 

Engineering Daily listeners. A $600 signing bonus from Hired when you find that great job that 
gives you the respect and the salary that you deserve as a talented engineer. I love Hired 

because it puts you in charge. 

Go to hired.com/sedaily, and thanks to Hired for being a continued long-running sponsor of 
Software Engineering Daily.

[INTERVIEW]

[0:03:36.5] LF: Zencastr doing the — My side recording too? 

[0:03:40.5] JM: Yes. Zencastr records a client side. It will throw it in your browser cache and it 

will upload it at the end. Actually, it streams it to Dropbox and it will upload a WAV file at the end 
and then you can send me your client side recording also at the end so just in case there’s any 

corruption that occurs in the Zencastr recording I’ll have a backup. 

[0:04:01.6] LF: Nice. Is that how it happened? 

[0:04:03.5] JM: It does happen sometimes. Very rarely. I would say 5% of cases maybe. I 
guess that’s significant, actually. 

[0:04:11.0] LF: That is. Actually, I’m asking because I used to do a lot of interviews for different 

kind of thing, athletes, Olympic athletes and so on. The podcast, I guess, but I haven’t talked to 
— 

[0:04:22.2] JM: Due! That’s cool. 

© 2017 Software Engineering Daily �2



SED 383 Transcript

[0:04:25.2] LF: I prefer sort of the because I can look of these bad-asses in the eye, and it’s a 
little more sort of — The kind of the questions I usually talk about is more about life and fear and 

overcoming difficult times, so you kind of want to be in-person for some of those. 

[0:04:47.3] JM: Listen. Hey, it helps to look somebody in the eye and ask them about 
reinforcement learning too. 

[0:04:52.9] LF: That’s true. I agree

[0:04:54.9] JM: What’s the name of your Olympic athlete podcast? 

[0:04:58.3] LF: It’s called — I’m not sure I want to advertise it, but it’s Take It Uneasy. Take it 

easy, but Take It Uneasy. 

[0:05:06.1] JM: I love the name. That’s great. Can I put that in the show notes? In fact, can I put 
this little preamble conversation in this show? This is good. I like it. 

[0:05:14.8] LF: Yeah, absolutely. 

[0:05:16.0] JM: Okay. Cool. All right, I’ve got a lot of questions to ask you about deep learning 

and self-driving if you’re ready to get into it. 

[0:05:22.2] LF: Yeah, let’s do it. 

[0:05:24.4] JM: Okay. Lex Friedman is a postdoc at MIT. He works on self-driving deep learning 
for semiautonomous vehicles. Lex, welcome to Software Engineering Daily.

[0:05:35.0] LF: It’s good to be here. Thanks, Jeff. 

[0:05:37.2] JM: You taught a class in deep learning for semiautonomous vehicles, and early on 

in that class you ask the question — I think this question recurs throughout your class is, “Is 

© 2017 Software Engineering Daily �3



SED 383 Transcript

driving closer to chess or to every day conversation when you're looking at it from the point of 

view of can we automate this?” Why is that important question to ask? 

[0:06:02.9] LF: It’s a fascinating question. It’s a subset of all kinds of questions that I can 
summarize as what is intelligence. Trying to understand as human beings and as engineers that 

are trying to build intelligent machines, we have to figure out what tasks require intelligence and 
what is meant by “intelligence” in that case. Something like every day conversational, or 

walking, there’s a whole category of things that as human beings we sometimes don't realize 
how difficult they are when actually have to sit down and implement that task. 

Walking and every day conversation is an example. If I told you to create a chat bot, maybe as a 

software engineer you would sit down, “Well, that’s pretty easy.” Maybe you would start — I’m 
not a chat bot person, but it's a good example with a Turing test and so on. It’s a good example 

of something that requires intelligence that we take for granted. If you wanted to implement to 
chat bot, you might say you build a giant database of different kinds of responses based on the 

keywords that the other person says, or you can start to try to understand the syntactical and 
semantic structure or the sentences. 

As you start to encode all of that information you realize that the database grows the, 

knowledge base has to grow exponentially and you have no way of growing that automatically. 
As an example something when you start to actually build an engineering system, engineer a 

system that does this task, you’ll realize how incredibly difficult that is. That’s what we think of 
everyday conversations as an example of that. 

Driving is an open question, whether driving is in that category of things that are actually 

exceptionally difficult and require human level intelligence or it’s something that could be 
reduced to a problem of detecting obstacles, detecting lanes, staying in the lane and not hitting 

obstacles. It's an open question that we have to face. We’re actually building autonomous 
vehicles that are supposed to drive the several trillion miles of driven every year on roads and 

there is only — It's tragic, but the number of fatalities in the United States is 38,000 last year. 
That means about one fatality per hundred or something, million miles. 

© 2017 Software Engineering Daily �4



SED 383 Transcript

That’s the kind of error rate you have to achieve with these systems. You have to ask, to 

achieve that error rate, to achieve that kind of low margin of error, what problem needs to be 
solved? Is it as simple as just detecting obstacles and avoiding them or is it something where 

we have to create a system that has an understanding of the physics of the world, an 
understanding of the human intent when you’re looking at pedestrians and so on. There’re just 

these millions of factors that you have to consider. Can they be reduced to something simple? 

[0:09:09.3] JM: These components of autonomous driving that you outlined in the class are 
perception, localization, mapping, control, planning, driver state. When you're breaking self-

driving into these different components, is that taking an opinion that self-driving is false in one 
of the camps of being closer to chess or closer to everyday conversation or is it sort of a hedge 

between those? 

[0:09:39.6] LF: Yeah. It’s a great question. I think it's — Breaking it down into those modules 
means you're leaning towards, saying, it's closer to chess. That’s a step towards — by chess, I 

mean something that's well-defined. You could formalize it. There’re concepts of pieces. 
There’re concepts of moves, actions. There are concepts of what the world encompasses, and 

breaking autonomous vehicles into these modules or perception, control, really, it’s those two 
perception control is going towards the camp of chess. 

[0:10:19.2] JM: Which is a problem that we’re much more comfortable approaching as 

computer scientists at least with our contemporary techniques. 

[0:10:27.8] LF: Yes. It’s really well put, the contemporary techniques. If you think of software 
engineering, it’s exactly the task of formalizing the problem, formalizing the solution, and you 

have to really draw out the entire thing on paper. There's no ability for systems to say, “Okay. 
90% of the task would only not solve, but the system will figure it out as it goes along.” You can’t 

write a program like that in the current approaches, a program that goes out there and has a 
human life at stake.

[0:11:08.6] JM: Okay. I want to talk about some of the technical aspects here. Deep learning is 

useful for a variety of problems in self-driving cars. What are some of those problems where you 
can apply deep learning? 

© 2017 Software Engineering Daily �5



SED 383 Transcript

[0:11:24.4] LF: Deep learning is a type of machine learning given how successful deep learning 
has been really. It can be just as comfortably, you referred to as machine learning. It’s most of 

the problems, the way it’s been effective has been dominated by deep learning. Deep learning 
has become machine learning. 

Machine learning is a set of techniques where you learn from data. A system is able to know 

nothing or very little in the beginning and given a lot of data and human annotation of that data. 
Human annotation meaning a human being steps in and says, “What's going on this data that’s 

useful for solving the task?” 

Given the human annotation and the data, you’re able to learn how to behave in this world or to 
learn to predict things about the data, to extract knowledge from the data. That’s machine 

learning. That’s deep learning. 

In the driving domain, a car, a passenger car is four wheels. Its task, it can accelerate, 
decelerate. It can — Go left, go right. More specifically, it can turn its steering when. It can steer. 

Really, those are the only actions. You can speed up, slow down, and you can steer. Then 
there’s an external world going on around the car. Its task with perceiving that external world to 

the degree that it needs to understand enough to be able to accelerate, decelerate and steer. 

You don’t have to do any learning there. The perception can be using a sense of LIDAR and 
map the external environment and save that map to build a giant map with a three dimensional 

map of the external world and localize yourself based on that map by using this LIDAR sensor 
that tells you — Gives you a depth of information about around you. That’s a non-learning 

approach. 

Learning says, “I’ll encode some information at the beginning, but I’m going to learn about the 
way the world changes. I’m going to learn about the way the world moves. I’m going to learn 

how the world looks visually in different situations. What is a lane marking? I’m going to learn 
what a lane marking is by looking at hundreds of thousands of lane markings. Having a human 

being step in and help me label the times when there’s a lane marking. Label of the part of the 

© 2017 Software Engineering Daily �6



SED 383 Transcript

image that’s a lane marking. Overtime, I’m able to generalize over videos I’ve never seen before 

of what a lane marking is.” 

A Tesla vehicle, for example, is one that used to use up until the end of last year, a mobile ad 
base system and now they have their own deep learning base system where it’s predicting lane 

markings and there’s a 100,000+ cars in the road today that are driving themselves 
autonomously. Tesla vehicles are able to drive for hundreds of miles in the highway and stay in 

the lane. It’s doing exactly that with a single camera, detecting lane. That’s done with machine 
learning. 

[SPONSOR MESSAGE]

[0:14:43.4] JM: Bugsnag is an error monitoring tool that enables developers to identify, 

prioritize, and replicate bugs in a time efficient and enjoyable manner. Automatically capture 
errors and diagnostic data in any app. See errors group by root cause and focus on fixing errors 

that have the greatest user impact. Instantly track the performance of each application release 
with interactive dashboards. Automatically capture a stack trace for every error and get 

automatic breadcrumbs for crashes so that you can easily reproduce and fix any error. 

To-date, Bugsnag has processed over 10 billion application crashes from thousands of top 
technology companies. To get started, go to bugsnag.com/sedaily and create an account. It 

takes three minutes to get up and running, an Airbns, Lyft, and Shopify are already using 
Bugsnag for their bug tracking and crash monitoring. Try all the features for free at 

bugsnack.com/sedaily. 

Thanks to Bugsnag for being a sponsor of Software Engineering Daily. It's much appreciated. 

[INTERVIEW CONTINUED]

[0:16:01.7] JM: We did a show recently about deep learning and reinforcement learning as 
applied to ViZDoom. You might have heard of that? Basically, you play your Doom, or you’re a 

bot playing Doom and they use reinforcement and deep learning. It’s a comparable problem to 
driving around because you’re navigating a dungeon, you’re evading foes or engaging with foes 

© 2017 Software Engineering Daily �7



SED 383 Transcript

in certain interaction patterns, and that show was an introduction for me to how deep learning 

and reinforcement learning are both key to this class of problems. 

As you write, neural networks are great at memorization and not yet great at reasoning, but 
reinforcement learning is brute force propagation of outcomes to knowledge about states and 

actions. Explain what the shortcomings of raw deep learning are and how reinforcement 
learning can shore this up with some reasoning. 

[0:17:12.4] LF: Sure. To be clear, you mentioned raw deep learning. I think the precise way to 

describe that is called supervised learning. Most of the success in deep learning has come from 
this category of techniques called supervised learning where every single piece of data that’s 

fed into the learning system has been touched in some way by a human being to say, “What’s 
going on in this particular piece of data?” 

For images, with lane markings, it’s marking the lanes in the image. For image net competition, 

that’s marking cat versus dog. Marking for an image; is this a cat? Is this a dog? Is this some 
other kind of animal? That’s supervised learning, and most of the successes have come from 

that. Up-to-date, but in terms of applications, it terms of value. 

That’s what I’ve referred to as memorization. You’re memorizing at a very low grade level. 
You’re memorizing what another human being is annotated for you. You’re memorizing patterns. 

How, what reinforcement learning hopes to provide, in deep reinforcement learning more 
specifically, is to remove as much as possible the human being from the loop of teaching a 

system things. 

The goal is to generalize over just a few examples provided by a human being in the form of a 
reward function or a form of an encoded model of a world that provides perhaps a simulation. 

Most of the success in reinforcement learning, like the Doom game, is simulation. It’s not really 
another agent walking around in the real world. Simulation. The idea is the system learns by 

playing through the different ways that the world can unroll. It acts in different ways and see 
what those actions have impact in the external world and seeing how it can act in the future in 

such a way that maximizes reward. 

© 2017 Software Engineering Daily �8



SED 383 Transcript

The problem is, currently, all the reinforcement learning approaches that we know off, and this is 

true for machine learning in general, we have to play for large amount — For a very long time, 
we’ll have to play with a very large amount of data in order to learn anything. If you think as 

human beings, when we were children, or young, or still, learning what a hot stove is like is very 
quick learning process. It doesn’t require more than maybe two, three times to touch a hot stove 

before you realize when it’s glowing red or its certain visual characteristics or tactile 
characteristics or different sensor inputs are associated with a lot of pain. That’s learned really 

quickly. 

Our current best reinforcement learning approaches and deep learning approaches have to 
touch that stove hundreds of thousands of times before they learn not to touch it. The problem 

there is we’re very inefficient learners. Yes, in simulation, you can simulate the touching of the 
stove over and over to understand which aspects of it lead to punishment to negative rewards, 

but if we want to put systems in the real world, like in the driving case and to teach those 
systems to avoid crashes, for example, you can’t quite — It’s not feasible to put that system out 

there and crash hundreds of thousands of times, tens of thousands of times in order to learn 
how to avoid the crashes. 

For now, there’s this chase towards, “Well, can we simulate the real world to sufficiently high 

resolution that we’re able to teach a system a simulation that’s actually able to successfully act 
in the real world?” That’s currently an open problem that hasn’t been solved.  

[0:21:22.7] JM: Right. You’re articulating a specific case of explore versus exploit. We can’t 

really — Like I talk to some people at Stripe, this payment company, and they will consciously 
let payments through that they know are fraudulent or they will sort of turn down the dial on their 

sensitivity to preventing fraud in order to better gather data about fraud. In that case, okay, we 
lose some money. Not a big deal. You can’t do that with self-driving. You can’t just let accidents 

occur and then learn from them. It’s too sensitive.  

[0:22:01.7] LF: Right. This is one of the biggest challenges for me, the reason I am fascinated 
by autonomous vehicles. It’s one of the first and I believe it will be the first and the biggest way 

in which robots really enter our lives, everyday lives and when you begin to trust. You have to 
deal with issues of trust, or understanding, what a role of a robot is in a society from the 

© 2017 Software Engineering Daily �9



SED 383 Transcript

philosophical level, and the ethics side, to the technological, to everything, because the reality is 

if we’re to design to autonomous vehicle that successfully operates in this world, it’s going to 
have to crash. In the same way that the credit card fraud will occur. A car will have to be able to 

— We’re going to have to be more forgiving of a car causing fatality. It’s a very dark and difficult, 
at the philosophical level actually, to allow a machine decision to put — A human is in the hands 

of the machine and the machine acts in such a way that takes that human being’s life. That’s 
really difficult for us as a society to take, to understand, because especially in driving, it’s such a 

personal experience. It’s usually one human driver and there’s a car, it’s a machine, and here is 
the moment when you give control to that car and the car acts in such a way that it kills the 

person. 

PR-wise, The New York Times coverage and our general set of view of this is we’re not very 
forgiving. The fatality in a Tesla that happened during autopilot. It was a big deal. 

[0:23:46.1] JM: I was just thinking about that. I thought the response was pretty forgiving 

thought. You have a car that had the autopilot on, the driver falls asleep, slams into a truck 
trailer decapitating him. I don’t know. I felt like the public didn’t really have an outcry. You didn’t 

see people with posters in front of Tesla.  

[0:24:08.1] LF: Yes, absolutely. I agree with you. The general feel I get from the public, and I’ve 
talked to a lot of people, especially in the media, and there’s a hunger to attack the robots. In 

general, we see that robots as terminator. At any moment, they’ll take over. There’s a desire to 
find the weak link in the story, and a single fatality — I guess the point I’m trying to make is in 

the situation of the Tesla fatality, the car didn’t actually do anything outside that looks bad in 
terms of the car didn’t make a decision that’s very poor. That, actually, it makes perfect sense 

even for a human being not to see the white truck. It makes sense. 

What I’m more referring to is if we start allowing machine learning to be part of controlling a 
vehicle, there’s going to be times when a lane marking is completely not seen by a car and it 

runs off the road. It runs off the road in such a way where any human being would have easily 
kept the car in control. It would lead to a fatality that looks terrible. 

© 2017 Software Engineering Daily �10



SED 383 Transcript

For example, sort of the publicize ethical issues, a car might accelerate into a crowd of people 

for whatever reason, whatever malfunction, perhaps in the sensor side or whatever the 
prediction is that the intent that it uses in detecting pedestrians, in predicting where the 

pedestrians go. It might accelerate into that crowd. That’s a tragedy, but if overall it leads to a 
much safer, much slower. If it significantly decreases at 38,000 fatalities that we have in the 

roads today, perhaps it’s something that we should be more open to. That’s kind of a society we 
have to struggle with these questions.  

[0:26:13.9] JM: I think a good preface to how weird the cases are going to be is — You have 

some slides in your course notes where you have these cases where you take an image of, let’s 
say, the Empire State Building, and then you add these minor — You show it to a computer and 

the computer is like, “Okay, Empire State Building,” and you add these minor perturbations to 
the picture and if a human looks at it, they’re still, “Okay. It looks like the Empire State Building. 

The picture looks a little fuzzy now.” Then you show it to a computer and it’s like, “That’s an 
ostrich.” That just shows how different our perception of the world is compared to a machine, 

and that’s why you’re going to get these crazy edge cases that seem like, “How on earth did the 
computer not recognize the lanes there?” but if you look into the system you’ll be like, “Oh, well. 

The model was trained in this way and it just didn’t learn this edge case.”  

[0:27:13.4] LF: That’s right. That’s absolutely right. I guess I’m trying to imagine cases, but just 
imagine tragic cases which are very possible where a machine runs over somebody’s daughter. 

A young girl is crossing the street and a car accelerates. As a society, we have a really hard 
time dealing with that concept, because, after all, an artificial intelligence system is a technology 

and that’s heavily regulated when it’s on the roads. They’ll come up immediately as a discussion 
in public. The question is, “Well, should this technology be part of cars?” That’s constantly — 

This comes up with drones as well and in other applications of artificial intelligence. It’s definitely 
on our minds as we’re designing machine learning algorithms for the perception side. Exactly as 

you said, Empire State Building being mistaken for an ostrich. 

[0:28:17.4] JM: I want to talk about some lower level stuff hoping we can get into eventually. 
Hearing you talk about the policy stuff is really interesting and just the philosophical concerns. 

Continuing on that high level thread, how does human in the loop fit into the role out — Do you 
have a picture for how the ideal roll out strategy is going to work? I hear your concerns and 

© 2017 Software Engineering Daily �11



SED 383 Transcript

they’re valid and they’re very kind of hard to deal with. How do you do that? Is human in the 

loop the gradient that gets you off of the humans towards the full autonomy? 
 

[0:29:01.7] LF: Yeah. I’m a big believer that the human has to remain in the loop as a 
supervisor and as a teacher of a car. There’s mostly folks building autonomous vehicles, most of 

my colleagues have come from the success — Are robotics folks. Have come out of the success 
of the DARPA challenge, which was a challenge where vehicles were tasked with, first, going 

through the desert and going through an urban environment fully autonomously. No human in 
the picture. The car is tasked with dealing with every possible situation and not hitting things 

and staying in lane and all those kinds of things and not breaking down. 

That’s the robotics approach. I see that that, a fully autonomous vehicle, that doesn’t have a 
steering wheel and based on the learning system or other optimization base system, is able to 

fully control itself. Autonomously, I agree with Warren Buffett. I think he said in 2030, 10% of 
cars will be fully autonomous in this way. He said that’s a hedging. That’s not a conservative bet. 

That’s a risky bet. I think we’re very far away from vehicles being fully autonomous. 

Before that, I think human will be in the loop the way Tesla, in the case of autopilot, is now. 
Whenever the car can’t do a situation, it has to give control to the human and say, “Holy crap! 

Help me out here.” The big challenge here, this is the semi-autonomous vehicle approach. The 
challenge is the moment of, “Holy crap! Help me out here,” shouldn’t be one or two seconds. 

The transfer of control currently, like in a Tesla, is sometimes less than a second, or a couple of 
seconds. It depends. The red hands of shame come up as they’re called. In a Tesla, where 

these red hands glow and you’re told to take control of the vehicle, that’s very few seconds. The 
ultimate successful system to me, you said how will this be realized, I think it would be a system 

that’s able to 10 seconds out tell a human being to wake up, to bring their attention back to the 
road. 

One of the missing pieces there just to quickly say is our current cars on the road today, for the 

most part, have no driver facing cameras or any sensors that are able to detect the driver, 
except the steering wheel pressure to determine that the hands are on the wheel. Your vehicle, 

our cars, have no idea about our state at all. Whether we’re drunk, sober, sleepy, distracted, in a 
seat at all. There has no information about us, us personally, each individual human being, and 

© 2017 Software Engineering Daily �12



SED 383 Transcript

just general global state of where our eyes are looking, where our head is directed. That 

information which have a big proponent of is crucial to make a car that’s able to handover 
control safely and give you plenty of time.  

[SPONSOR MESSAGE]

[0:32:29.4] JM: Hosting this podcast is my full-time job, but I love to build software. I'm 

constantly writing down ideas for products; the user experience designs, the software 
architecture, and even the pricing models. Of course, someone needs to write the actual code 

for these products that I think about. For building and scaling my software products I use Toptal. 

Toptal is the best place to find reasonably priced, extremely talented software engineers to build 
your projects from scratch or to skill your workforce. Get started today and receive a free pair of 

Apple AirPods after your first 20 hours of work by signing up at toptal.com/sedaily. There is none 
of the frustration of interviewing freelancers who aren’t suitable for the job. 90% of Toptal clients 

hire the first expert that they're introduced to. 

The average time to getting matched with the top developer is less than 24 hours, so you can 
get your project started quickly. Go to toptal.com/sedaily to start working with an engineer who 

can build your project or who can add to the workforce of the company that you work at. I've 
used Toptal to build three separate engineering projects and I genuinely love the product. 

Also, as a special offer to Software Engineering Daily listeners, Toptal will be sending out a pair 

of Apple AirPods to everyone who signs up through our link and engages in a minimum of 20 
work hours. To check it out and start putting your ideas into action, go to toptal.com/sedaily. 

If you’re an engineer looking for freelance work, I also recommend Toptal. All of the developers 

I’ve worked with have been very happy with the platform. Thanks to Toptal for being a sponsor 
of Software Engineering Daily. 

 
[INTERVIEW CONTINUED]

© 2017 Software Engineering Daily �13



SED 383 Transcript

[0:34:33.9] JM: Engineers who are listening to this podcast, often times, they tune in to get a 

high level view of how to build certain things. If you’re building a web app, you would learn 
model view controller, or client server. With a self-driving car, I don’t really understand how the 

different systems fit together. We talked about these components; perception, localization, 
mapping and so on. Is there sort of best practices for how these system are put together today? 

Can you, I guess, give me an overview for the software architecture of a self-driving car? 

[0:35:17.5] LF: Sure. There’s no best practices, first of all. It’s such an open world. There are so 
many different approaches in terms of from the very subtle, the thousands of parameters that 

control every algorithm, to just how the pieces fit together, which sensors are used, and so on? 
There’s just a lot of variety. 

In terms of the abstract classes of the different approaches, is first, you have to have an ability 

what’s called SLAM, simultaneous localization and mapping. You have to be able to find out 
where you are in the world. As a car, you need to be able to position yourself in the three 

dimensional world. That can be done in a bunch of ways. One is having already — First of all, it 
can be done with having a pretty good map of the world, like Google Maps, and having a GPS. 

That’s one very crude estimate of where you’re located, GPS location, latitude, longitude. It will 
tell you where you are in that map. You can do some basic information. Which road I’m on? How 

close am I to the intersection? Which lane I’m on? Obviously, GPS is very noisy. That’s one 
estimate. 

There could be another estimate. You build that separate system. As a software engineer, you 

would build that system that says, “I’m going to.” The input to the function is my GPS 
coordinates and I have a database, that’s a Google Maps, and it puts me to those GPS 

coordinates and says, “Okay, I’m in the left lane in this road and I am 100 meters away from this 
intersection.” That’s one little module. 

Another module will be, “Okay, I’ll have a stereo vision camera,” which means there’s two 

cameras positioned close to each other looking out into the external world and that camera is 
able to locate the different obstacles, objects in the environment and estimate crudely their 

depth, meaning the three dimensional position, the point cloud of where they’re located; the 
pedestrian, traffic lights, signs, and so on. That’s another little function that says that input is two 

© 2017 Software Engineering Daily �14



SED 383 Transcript

images coming at 30+ frames a second. The output says, “I am located at this position relative 

to the traffic sign, the pedestrian, other objects in the scene. Triangulating everything together.  

If I have implemented both these functions, I have two pieces of information that says my GPS 
coordinates and my approximate triangulation of where I’m located relative to those objects. 

That can fuse those together, decision fusion, or sensor fusion, data fusion, where you take 
those two pieces of information and combine them to make a slightly better estimate about 

where you’re located in that world. The whole point is to be able to locate yourself as accurately 
as possible in the semantic structure of what this task is. Driving task, you have to be in be lane. 

You have not be hitting things, other obstacles in the scene, and you have to be navigating, 
moving around to get to some location. 

In that sense, part one is you localize yourself. It’s plug and play. Another developer might come 

up and say, “I have a LIDAR, and that LIDAR will be able to do a much better job than your 
stereo vision camera to give you a better position in this world.” We can all just combine those 

functions together with sensor fusion and chase the more and more and more accurate 
localization. 

The second part of driving is once you know where you are, you want to — And where the other 

objects are. You want to move around those objects. That’s where the control planning 
happens. The way you do it is you have a three dimensional model of the world with some 

degree of uncertainty and you generate thousands of different trajectories for yourself and the 
trajectories for others that you believe based in your model how other objects move, other 

vehicles, other pedestrians. 

Based on all those trajectories, it’s an optimization problem for the optimization based approach 
to pick which is the best trajectory. For the learning best approach, you use something like 

reinforcement learning to say, “What is the best trajectory around those objects?” That’s it. 
That’s driving. Perceive the world, and then move in that world.  

[0:40:21.2] JM: When you’re teaching the course in self-driving deep learning, what have been 

the concepts that are most difficult for the students to grasp? 

© 2017 Software Engineering Daily �15



SED 383 Transcript

[0:40:33.2] LF: That’s a good question. 

[0:40:36.0] JM: That’s a tough question. Talk about how you sequence the course in self-driving 

deep learning, or talk about how if somebody’s listening to this and they want to know how to 
get started. Obviously, there’re courses. I think there’s Coursera course, but you maybe you 

have some abstract suggestions for how to strategize about the learning process. 

[0:40:59.9] LF: Right. I think it’s just a really good question to say what’s the struggle the most, 
and just to answer it quickly, is I think as not just students, but Ph.D. students and research 

scientists, professors, everybody, is struggling with the question of why something works. On 
the very basic, feet forward, fully connecting you on that works to all the different flavors in 

neural networks, convolution neural networks, or current neural networks for deep reinforcement 
learning, figuring out why something works so that when something doesn’t work you know how 

to fix it. 

Why there’s a bunch of parameters that control the behavior of a neural network. What do I set 
each individual parameter to make it work for my particular application? Gaining an intuition, this 

is the process of learning, I think, in the case of deep learning course like the one I taught, like 
the other out there, is gaining an institution about what works and what doesn’t. How many 

nodes in a network? How many layers? What kind of optimization algorithms? What kind of 
learning parameters? Learning rate? What kind of preprocessing on the data is needed? What 

kind of — There’s a lot of different parameters that control, especially reinforcement learning 
that control the training process. 

The way you teach and the way I learn myself is really boiled down every single type of 

approach, the simplest possible problem. Look at a very small neural network and learn how — 
For example, I was looking at back propagation, which is the process of training a network, a 

network that is producing random results. How do you take that network and, overtime, train it to 
produce the correct results? That’s the process of back propagating, back propagating errors 

through the networks such they just waits not to make those errors. 

You can start with a network of 100 million parameters, or you can start with a network with just 
10 parameters. To visualize and play around and see how different hyper parameters of training 

© 2017 Software Engineering Daily �16



SED 383 Transcript

a network affect the way the waits are adjusted. Look at toy problems for each one to slowly 

gain the intuition, because the problem is when you scale the size of a network, that’s where the 
“magic happens”, but we don’t have a good intuition about why it happens. Why in the case of 

deep reinforcement learning, a system that knows nothing is able to learn overtime how to play 
an Atari game is a mystery. It would see through this kind of brute force process of reward and 

punishment. The ability to learn abstract notions of what it takes to win a game would seem to 
be impossible, but it works. Overtime, you start to gain an intuition of why it might work. That’s 

the challenge. 

[0:44:18.6] JM: What’s funny about this is I used to be a poker player back in the day, back 
when it was easier to win money playing poker online. One of the things — The people who are 

successful were the people who read these books about mathematics, poker math, or they 
could articulate — Many of them could articulate mathematically why a play was good. Why a 

strategy was useful. We always used to mock the people who were instinctive players and like, 
“Oh, I’ve got a feel for this thing.” 

Some of the players who would play by feel, they would be successful. Overtime, the people 

who are mathematically oriented just dominated them. They always had a reason for why they 
did something. It’s just funny that, now, you’re talking a branch of computer science where, 

basically, we don’t really know how to talk about this formally. I’ve heard multiple say this, like, 
“You have to develop this intuitive feel for what’s going to work in deep learning.” Why is that? 

How did we get here?

[0:45:34.9] LF: It’s interesting. Because, yeah, in the case of poker, the math guys and girls — 
Probably, they succeeded because they’re able to silence the irrational parts of our brain that 

says, “I have a feeling that the flush is coming or something.” You’re able to look at the actual 
odds and calculate statistically what is the right move here, and based on that information, start 

to play with the bluffing and all that kind of stuff. 

It’s hard, because that’s the scientific way. To give that up, to explore how a system, how 
intelligence can emerge requires some intuition. You have to let go of the need to prove stuff. I 

come from the theoretical computer science background where you have to prove P versus NP. 
You have to prove the running time complexity of an algorithm. The idea that you have no way 

© 2017 Software Engineering Daily �17



SED 383 Transcript

to prove, but it just works, was viewed very negatively in academia when I started. I think that’s 

changed completely with the success of deep learning. 

It’s actually the reason why deep learning — Deep learning is just another word for neural 
networks. The reason why neural networks have gone through a couple of winters, AI winters, 

that because we don’t understand why they work but they seem to work. It captivates the minds 
of people and they get super excited. They start thinking that they will solve everything in the 

world. We have created general intelligence. That was true when the first Perceptron came out 
in the ‘50s, I think. They’re going to solve everything. They’re going to fly to the moon. Flying 

cars, for sure, will be around. 

The reality is, “No. These are just effective tools,” and we’re slowly, slowly trying to discover in 
the same way that Darwin sailed around the world discovering what the hell is the mechanism 

behind the evolution, the diversity that we see in the world. That’s how we’re trying to sail 
around the neural network world and trying to understand what is the mechanism behind the 

emergent ability of these networks to predict stuff, cat versus dog at the simplest level. The 
coolest and most difficult level is the reinforcement or even unsupervised learning, how you’re 

able to find generalized patterns from nothing, essentially, from no dictionary, no supervised 
learning human input.  

[0:48:23.4] JM:  Okay. I can talk to you for a long time about this, but we’re running up against 

time. We’re drawing to the close of the interview, and I wanted to ask you some about the 
business of self-driving and how these companies are strategizing about it. How they’re thinking 

about it. I read that you’re interested in jiu-jitsu and you practiced jiu-jitsu and I think of the 
strategy of Google as very Jiu-Jitsu in the self-driving world because it seems like they’re very 

much trying to lay as low as possible. I don’t know. How do you see the different players in the 
self-driving space and how do you contrast their strategies? Do you have any predictions about 

how they’re going to roll out things? 

[0:49:13.9] LF: It’s interesting. I used to work at Google, and I now work a lot with Teslas, or 
Teslas, and it’s a very different approach of Elon Musk and Google are way mono. One is, yes, 

Google is way-mo. The approach is to stay low, to stay quiet. Design vehicles that are very safe, 

© 2017 Software Engineering Daily �18



SED 383 Transcript

never hit anything. They map at a very high resolution, the world around them, and travel at 35 

miles an hour, at 40 miles an hour around a very well-mapped safe street. 

The Elon Musk approach is to say, “Basically, everybody in the auto industry is scared, and I’m 
going to — Just like you go to Mars, I’m going to release fully autonomous vehicles by next year 

and say, “We’re going to do it. We’re going to shoot to the moon and get it done.” That’s his 
approach and how shy away and, on Twitter, promise things. Literally, like I said, there are 

100,000+ vehicles are driving themselves autonomously on the roads today. This is sort of the 
little known secret of Tesla is autopilot, for those that haven’t driven it, is really pretty advanced 

in terms of automation capability. Those are the two approaches. 

I am generally a fan — In terms of just personally speaking, I’m a fan of the bold and the brave 
and the risk takers in the world. I believe that in order to get reduce from 30,000 fatalities to zero 

fatalities, we have to take risks. We have to be brave. We have to be willing to lose our entire 
company and idea, and that’s exactly what we have to do with autonomous vehicles, because if 

your car kills several hundred people from a malfunction, there’s a very big risk you’re taking 
than PR or government stepping in and shutting down the company and so on. I’m a big fan of 

Tesla in that way, but I’m also because we’re working closely with NHTSA, which is a 
government organization tasked with ensuring that vehicles on the road are safe.

I also am well-aware of safety and how important that is. There’s a lot of my colleagues in 

computer science, sometimes are so enamored by the coolness of a technology that they don’t 
think about the safety implications. This is sort of the worry that people have about creating 

artificial intelligence that us, nerds, will create this awesome AI and forget to make it ethically 
sound, to make sure it makes safe decisions, ethically sound decisions. All that said, I really 

despise caution and being careful, is I think the whole idea of science and innovation is being 
brave, bold in these ideas. 

That said, Google, I think — That’s one side. It’s just me personally, sort of on a horse with a 

sword. In terms of business side, what is the right bet here? I think Google has been 
exceptionally successful at playing the long game, and I think Google has a lot more to lose 

than Tesla. I think, as I said, autonomous vehicles will not be here until — I’m with Warren 
Buffett. He’s rarely wrong. I think they won’t be here for a couple of decades. As a business 

© 2017 Software Engineering Daily �19



SED 383 Transcript

decision, it’s not a good one to go all in on autonomous vehicles at this time. Even though the 

public is generally very hopeful and optimistic about it — There’s been a lot of companies that 
promise in 2020, in 2022, in 2025, we’ll have fully autonomous vehicles, Toyota, Ford, 

everybody, and their grandmother is promised that they’ll have fully autonomous vehicles. 

My bet is that the realities will be a farther out because of all the different, the technology side, 
the policy side, the societal side. Just all of those are huge challenges to overcome. To 

overcome them, I believe we need the risk takers. I’m a huge supporter of our friend, Elon. 

[0:53:45.5] JM: Yes. Okay. Last question to wrap up, deep learning and machine learning, 
these fields are so rich. There’s so much going on in them. There’s this chart you have in one of 

your presentations that I really like that shows, basically, that the trajectory of a person who is 
learning about deep learning. You start off like, “Oh, this is so intimidating,” then very quickly, 

you’re like, “Oh, I know everything and this is going to be awesome,” and then it drops off again 
and you realize you know nothing about the field because it's so deep and there's so much 

going on. Do you feel like we’re witnessing a field that's going to bifurcate away from computer 
science because it is so deep? 

[0:54:46.5] LF: That’s a really interesting idea. That’s really, really interesting. I haven’t actually 

heard that articulated in that way before. That’s a feeling I actually have. The experience I have 
is there’s a lot of folks, there’s so much interesting. There are young students coming to me 

every day saying, “I’m fascinated by learning.” They’re not talking about I’m fascinated by 
databases or JavaScript frameworks, or the software engineering concept, or theoretical 

computer science, big-O, or system architecture. 

It almost feels like there’s this very hot topic that’s actually counter to the way computer science 
is taught. It’s a fascinating idea that you would have a deep learning engineer that’s completely 

— 

[0:55:39.3] JM: Because you don’t need to know databases. You don’t need to know model 
view control. You don’t need to know big-O. You don’t really need any of these stuff.  

[0:55:45.5] LF: Of course. 

© 2017 Software Engineering Daily �20



SED 383 Transcript

[0:55:48.5] JM: It helps. It doesn’t hurt. 

[0:55:51.4] LF: You need to know all that stuff if you want to innovate the future of deep learning 
architectures, but you’re right, this sort of — There’s a lot of companies out there that sort of 

need to solve practical problems with machine learning. For that, that’s essentially — That’s kind 
of called data science now. it’s when you basically are cleaning datasets, organizing datasets 

and extracting information from them using various methods, statistical or machine learning. 
Really, that could be some discipline. That’s a really fascinating thing to think about, but I hope 

not, because I hope computers — It’s a weird thing to think about because computer science is 
infiltrating everything. It’s mechanical engineering, electrical engineering, aerospace. Every 

single field — Library sciences, psychology. 

Psychologists now all have to code. It’s the people in psychology who aren’t able to program are 
finding themselves left behind because most — With the advent of mechanical Turk, you want to 

be able to use computers to put together cool experiments. It’s hard to know what computer 
science will be in 30 years, because software engineering is becoming the core of every 

discipline. That’s a really interesting question to think about what that evolves, where robotics 
fits into this whole picture too. Yeah, it’s a great question. I think we’re going to be doing deep 

learning — If you’re a literature major college, I think, in 20 years, you’ll probably be using 
TensorFlow for your homework. 

[0:57:41.1] JM: All right. Lex, it’s been really fun talking to you. The time flew by. 

[0:57:44.3] LF: Yeah. Thanks, Jeff. Thanks so much. 

[0:57:46.0] JM: Okay. Cool. 

[END OF INTERVIEW]

[0:57:49.9] JM: VividCortex is the best way to improve your database performance, efficiency, 

and uptime. It’s a cloud-hosted monitoring platform that eliminates your most critical visibility 
gap, providing insights at 1-second granularity into production database workload and query 

© 2017 Software Engineering Daily �21



SED 383 Transcript

performance. It measures the execution and resource consumption of every statement and 

transaction, so you can proactively fix future database issues before they impact customers. 

To learn more, visitvividcortex.com/sedaily and find out why companies like Github, 
DigitalOcean, and Yelp all use VividCortex to see deeper into their database performance. 

Learn more atvividcortex.com/sedaily, and get started today with VividCortex.
[END]

© 2017 Software Engineering Daily �22


