
SED 360 Transcript

EPISODE 360

[INTRODUCTION]

[0:00:00.0] JM: Containers make it easier for engineers to deploy software. Orchestration

systems like Kubernetes make it easier to manage and scale the different containers that
contain services. The popular container infrastructure powered by Kubernetes is often called

cloud native. On Software Engineering Daily, we've been exploring cloud native software to get
a complete picture of the problems in this space and the projects that are being worked on as

solutions.

One area of interest; how should services communicate with each other? What should be
standardized? How can you easily identify problems and avoid cascading failures? One solution

is the service mesh, a tool that allows services to communicate with each other more safely and
effectively.

William Morgan was an engineer at Twitter, he was helping to scale the company in the early

days when the company was dealing with lots of outages, fail whales. He was on the show
previously to discuss his experience scaling Twitter, and in today's episode we go into the

company that he is running today; Buoyant, where he works on building a service mesh called
Linkerd.

Software Engineering Daily is looking for sponsors for Q3. If your company has a product or a

service, or if you're hiring, Software Engineering Daily reaches 23,000 engineers listening daily
and we’re looking for interesting sponsors who have a message that they want to get out to

engineers. Send me an email, jeff@softwareengineeringdaily.com. I'd love to hear from you.
Thanks for listening to the show.

[SPONSOR MESSAGE]

[0:01:50.0] JM: Artificial intelligence is dramatically evolving the way that our world works, and

to make AI easier and faster, we need new kinds of hardware and software, which is why Intel
acquired Nervana Systems and its platform for deep learning.

© 2017 Software Engineering Daily �1

SED 360 Transcript

Intel Nervana is hiring engineers to help develop a full stack for AI from chip design to software
frameworks. Go to softwareengineeringdaily.com/intel to apply for an opening on the team. To

learn more about the company, check out the interviews that I’ve conducted with its engineers.
Those are also available at softwareengineeringdaily.com/intel. Come build the future with Intel

Nervana. Go to softwareengineeringdaily.com/intel to apply now.

[INTERVIEW]

[0:02:46.1] JM: William Morgan is the CEO of Buoyant and, recently, he was on Software
Engineering Daily to talk about scaling Twitter, and he's now back on to discuss Linkerd.

William, welcome back to Software Engineering Daily.

[0:03:00.5] WM: Thank you very much, Jeff. It’s a pleasure to be back to one of my favorite
podcasts.

[0:03:04.2] JM: We’re going to talk about Linkerd, but first we should talk about what Linkerd is

more abstractly, which is this idea of a service mesh. What is a service mesh?

[0:03:13.8] WM: Service mesh is a dedicated infrastructure layer that handles service-to-service
communicating, handles kind of the operational aspect of that. If you think of a big micro-service

or multi-service application, you might have service A talking to service B, talking to C, talking to
D. What the service mesh handles is things like retries, timeouts, deadlines, circuit breaking, the

kind of operational stuff, as well as providing instrumentation and things like distributed tracing,
and ideally control over the communication as well.

[0:03:45.8] JM: As an engineer, when I write a service call from my service to some other

service within my company, what is the interface that I want to have to that other service?

[0:03:59.6] WM: Ideally, what you want is a service doesn't know anything about the underlying
infrastructure. It doesn’t know anything about service mesh, it doesn’t know anything about

Linkerd. Ideally, it doesn't even know kind of anything about whether it’s running in Docker, in
Kubernetes, or any of that stuff. What you want the ideal situation is service A only knows that,

© 2017 Software Engineering Daily �2

SED 360 Transcript

A; there’s a service B, and to talk to it, I like say, “Connect to B.” Now, in practice, it’s not always

100% possible to totally decouple the application from that.

[0:04:33.4] JM: Aha. The architecture for a service mesh is that I've got all of these different
services that I'm running throughout my company and each of those services has some part of

itself dedicated to the service mesh functionality, and then you also have this other centralized
component of the service mesh that is aggregating and doing other things that serve a purpose

for the overall applications. Give us an architectural breakdown of the different components of
the service mesh.

[0:05:10.8] WM: Sure, and I’ll give you a little bit of historical context too, because I think,

usually, helpful for putting this in perspective. Maybe I’ll start with that actually, because the
service mesh idea is a new idea and it can feel like, “Oh, this is another thing that we have to

add to our stack. We’re already adding all these other things, and now there’s this whole thing
that I have to learn about and understand.” I think, in reality, what the service mesh is, it’s not

really a new thing. It’s a moving functionality that used to exist somewhere else into a separate
layer.

If you think of the way that applications evolved overtime, in 15 years ago, we had kind of this

idea of the three-tier application where you’d have some web serving layer, like nginx or
Apache, and then you’d have your application in the middle and you’d have a database at the

end, and you’d have a very limited form of communication between these things.

The web server would talk to the application, the application would talk to the database, and that
was kind of it. The web server Apache had very very sophisticated control over how it would

pass request to the application. The application would have a client-side library for talking to the
database that had very specific logic for how to manage the communication. That’s kind of the

state-of-the-art in circa 2000.

What happened overtime is you advance to forward a couple of years and you have bigger
companies, like Google and Facebook and Netflix, they start decomposing that monolithic

application. They break it down into lots of different things. Nowadays, we call it microservices.
At the time, we went through this at Twitter too. We didn't have the word microservices, so we

© 2017 Software Engineering Daily �3

SED 360 Transcript

called it SOA and kind of — We knew that wasn’t a great word for it, but that was the word that

we had.

What happened there was now you have much more service-to-service communication, and so
what we started doing and what all these companies is that they had these kind of fat client

libraries. Twitter had Finagle, Netflix had something called Hystrics, Google had Stubby, which
was a format protocol, but also a set of libraries around that.

This was kind of the very beginning sort of service mesh idea. We have this kind of consistent

model for managing communication between services. Does that make sense?

[0:07:21.6] JM: Yeah, absolutely. I used something like this when I was at Amazon, when I was
an engineer at Amazon, there was a service that did this. Back then, I didn’t know if it was a

service mesh or a service proxy, or I didn’t even know these terms, but the interaction you have
with it as an engineer at one of these big companies, whether it's Amazon or Twitter or Netflix, is

you don't interact with it kind of. It's a transparent thing that gives you some insights into how
your service is performing, and it handles things that every service would want, like failover, and

load balancing, and circuit-breaking.

[0:08:00.0] WM: Yeah, that’s right. The service mesh concept today is really the same thing,
except implementation-wise, rather than using these fat client libraries, we pulled that out

typically as a separate proxy layer. You’ll have these runtime proxies, and this is what Linkerd
is. It’s just a little proxy, and you’ll run those alongside application code rather than having

libraries attached to it. It’s the same functionality. The reason to do it as a proxy rather than
library is because it's easier for polyglot applications.

We have things like Kubernetes and Docker now that make it very easy to co-deploy stuff so

that the deployment cost of running additional runtime components is much less than before.
We have now the flexibility of building this later separate, totally decoupled from the application.

That’s really the service mesh. It’s not really a new thing that we’re introducing, it’s just a moving
of functionality from the application out to kind of the underlying infrastructure.

© 2017 Software Engineering Daily �4

SED 360 Transcript

[0:08:56.7] JM: To clarify the difference, the deployment process for these fat clients would be

you deploy your service on a server or on a VM somewhere and you include the library that is
necessary to have access to this service mesh functionality, whether you’re talking about

Hystrics or Twitter’s Finagle. That’s in the old days. But today, since everybody is deploying via
Docker containers, many people on Kubernetes, you'd much rather have this functionality in a

separate container because it gives you a devoted area that is partitioned, that is it's devoted to
the different things that you would want out of a service mesh or a service, or proxy. Whatever

you want to call it.

[0:09:46.1] WM: Right. That’s exactly right. It used to a compiled time binding where you’d use
a library, and this isn’t a bad idea. Many companies still work this way today and it makes a lot

of sense, but it does constrain the set of languages that you can use because every new in
language that you introduce, you’d have to port this library to, and that can become difficult

overtime.

By separating it out as a separate proxy, a separate runtime component, now you’ve totally
decoupled it from the application. If you have a nice polyglot system, that’s fine. You don't have

to maintain this across every possible language that you’re using.

I wouldn’t say this is like a moral, good thing to do. It’s not like, “Oh, this is what God intended.”
It’s more a reflection of the fact that not only are we now in a world where polyglot micro-

services systems are much easier to do, but we’re in a world where the deployment cost of
running kind of these co-process models is substantially lower than it’s ever been. We’ve got

those two factors that kind of shift the equation for the cost or the relative value of running
something as a sidecar.

[0:10:57.6] JM: In Kubernetes, if I'm correct about how the architectural model works, you’ve

got a pod for each instance of your service, and in each of those instances you've got the
container that is doing your application stuff, or maybe you’ve got multiple containers that are

doing your application stuff for a specific instance of your service, and then you've got other
containers that might be doing other stuff. One example might be a container for Linkerd. Is at

the right architectural model?

© 2017 Software Engineering Daily �5

SED 360 Transcript

[0:11:29.5] WM: Yeah, that’s exactly right. One of the nice things about Kubernetes is that the

pod model makes it very easy to deploy these sidecar processes. Linkerd is often deployed as a
sidecar in Kubernetes. There’s another deployment mechanism called the demon set in

Kubernetes that distribute to one per host. That’s also an option. Every Linkerd instance is
statelessness and is independent, so we don't actually — It doesn’t care. Where you choose to

deploy kind of depends on the specifics of your application.

[0:11:59.8] JM: I'm writing a service that does X and my application code is in a container and
some in the pod and then there's also alongside it the Linkerd container that is the proxy. What

is the communication pattern between my application code and the Linkerd proxy?

[0:12:22.1] WM: Yeah, really good question, because it kind of depends. At least today, it’s a
little protocol specific. What you want is every application, every instance of service A, rather

than talking to service B directly, rather than doing a DNS lookup and kind of relying on layer
three, layer four transport to open up a TCP connection, you want it to talk through its local

Linkerd instance and just pretend that's the destination. Linkerd acts as a little proxy.

if you're using HTTP, you can often set a HTTP proxy environment variable and just kind of have
magically things work without you having to do configure changes. If you’re doing something like

GRPC, then it's a little more difficult. You actually have to make a config change to point it to a
Linkerd instance.

I think, in the future, this will become much easier. If you look at the Istio project for example,

which is a really good example to service mesh, they have some layer three, layer four IP tables
magic effectively to do a lot of these automatically for you. I think, in the future, this integration

point will be much easier. Right now, it’s a little bit protocol specific.

[0:13:29.4] JM: The communication between different services goes through Linkerd. My
application instance is in a container and it’s talking to the Linkerd instance that's also in the

pod along with this container, and then that Linkerd communication point is going to reach out to
the Linkerd communication endpoint on the downstream service. Oftentimes, a service call is

going to have multiple services that it needs to hit in order to fully fulfill the request.

© 2017 Software Engineering Daily �6

SED 360 Transcript

Now that you’ve talked about how my application is going to talk to Linkerd, explain how Linkerd

brokers the communication between two different services.

[0:14:17.9] WM: You're exactly right. Service A, that instance will talk through its local Linkerd
instance, which will proxy the request to the destination Linkerd instance, which will then in turn

proxy it to the destination service. We’ve actually introduced Linkerd on both sides. We’re kind
of simulating not only the client but also the server side of that hub.

From an architecture diagram, suddenly that looks a little scary because you’ve introduced two

additional hops to every service-to-service call. What happens in practice is that the way that
Linkerd does things like load-balancing and circuit-breaking actually can improve your tail

latencies. Even though you’re introducing these two hops, you’ve actually made things faster. At
least you’ve made your tail latencies lower which are usually the things that you really care

about.

By doing that, by having Linkerd on both sides of both the client and the server side, that allows
us to really decouple the transport communication from what the application is speaking. A very

common use case for this is to have Linkerd initiate and terminate TLS on both sides of the
node. There’s many production users of Linkerd in an environment like Kuberntes who just want

to have TLS between nodes, but they don’t want the application to do it, so you can offload that
work to Linkerd.

One of the things we’re going to get to in the near term, which I’m really excited about, is

protocol upgrade. We will be able to take something like HTTP 1 one and translate that to HTTP
2 between the Linkerd instances, and there’s all sorts of nice reasons why you might want to do.

Basically, what happens is you’ve decoupled with Linkerd with a service mesh, you’ve

decoupled the transport from what the application really knows.

[SPONSOR MESSAGE]

[0:16:04.0] JM: For more than 30 years, DNS has been one of the fundamental protocols of the
internet. Yet, despite its accepted importance, it has never quite gotten the due that it deserves.

© 2017 Software Engineering Daily �7

SED 360 Transcript

Today’s dynamic applications, hybrid clouds and volatile internet, demand that you rethink the

strategic value and importance of your DNS choices.

Oracle Dyn provides DNS that is as dynamic and intelligent as your applications. Dyn DNS gets
your users to the right cloud service, the right CDN, or the right datacenter using intelligent

response to steer traffic based on business policies as well as real time internet conditions, like
the security and the performance of the network path.

Dyn maps all internet pathways every 24 seconds via more than 500 million traceroutes. This is

the equivalent of seven light years of distance, or 1.7 billion times around the circumference of
the earth. With over 10 years of experience supporting the likes of Netflix, Twitter, Zappos, Etsy,

and Salesforce, Dyn can scale to meet the demand of the largest web applications.

Get started with a free 30-day trial for your application by going to dyn.com/sedaily. After the
free trial, Dyn’s developer plans start at just $7 a month for world-class DNS. Rethink DNS, go

to dyn.com/sedaily to learn more and get your free trial of Dyn DNS.

[INTERVIEW CONTINUED]

[0:18:04.5] JM: You talked about this term tail latency. Explain why that is such an important
concept, and reiterate why Linkerd has an impact on that tail latency.

[0:18:18.3] WM: Sure, when we measure the behavior of a system that's responding to

requests, if there’s any kind of variability, it’s very rare for us in this world of like multithreaded,
multi-hosted, multitenant software to have a system that performs — It takes the same amount

of time for every single request.

Typically, what happens is you have a distribution, you have a probability distribution, or a
histogram over the latencies. You can actually draw that out. Usually, there's kind of a peak in

the middle of like, “Here’s how much time it normally takes,” but then there’ll be this long tail at
the end. By talk latencies, we mean the request that took much much longer than most the

others. When we characterize a performance of a distributed system, we’ll often talk about the
P-95, or the P-99, or the P-39s, these are all talking about the percentiles if you measure how

© 2017 Software Engineering Daily �8

SED 360 Transcript

far out you are in the tail of that distribution, you’re talking about the percentile. These are like

the really bad requests.

I’ll give you an example, if you have a system that most of the time takes 50 milliseconds to
respond to a request, but every once in a while it will take 500 milliseconds, or 5 seconds to

responds to a request, then you really want to know about that. Those are your tail latencies,
and those are the latencies in a distributed system that you really want to control for and that

you want to monitor. Those are kind of the scary parts of the system. Those are where things
start breaking down where you have queues that are backing up, or where you have a garbage

collector that’s rearing its head, or where you have some kind of lock intention.

Monitoring the tail latencies is really one of the most critical parts kind of monitoring and
operating a distributed system. Okay, that’s tail latencies. So far so good?

[0:20:03.3] JM: Yes.

[0:20:04.7] WM: What Linkerd can do is because of the The way that we’re doing load-

balancing, the way that the service mesh operates is we’re doing stuff at the request level often.
That means that in contrast to like a TCP proxy where we’d be kind of sending bites, we’d open

up a TCP connection and send bites from here to there. We’re operating at the level request, so
we’ll proxy a request. As part of doing that, we’ll measure the latency of an individual instance.

We’ll say, “Okay, this instance is really fast. This instance is really slow.” It will start shifting
traffic towards the instances that we expect to be faster.

That's where we’re able to reduce the tail latencies. By being intelligent about which instances

get the request, we can reduce tail latencies even at the expense of introducing additional hops
to this process.

[0:20:53.1] JM: I can understand how when you've got two services, two service instances

communicating with each other, those two service instances, the communication pattern allows
you to measure the latency of each of those requests. In order to have insights about where are

the other places where you could send requests between, you need to have some information
that’s being propagated among the different Linkerd sidecars so that they can be smart about

© 2017 Software Engineering Daily �9

SED 360 Transcript

rerouting and doing the load-balancing. You need this centralized point of information that all of

the different little Linkerd sidecars are communicating with. Describe that point of centralization.

[0:21:43.6] WM: We actually don't have a point of centralization at all for this kind of behavior.
There’s kind of a philosophical, somewhat philosophical debate. In the interest of simplicity, we

decided that every Linkerd instance is going to be stateless and it’s going to be independent of
the other instances. They don’t communicate, they don’t share load-balancing information,

which is good and bad. It’s bad and that an instance can only observe, can only make decisions
based on traffic that is observed. When a new instance comes online, it kind of has a very naïve

view of the world. It doesn’t have a way of collecting information from the other more senior
instances.

The good thing, and the reason to this beyond simplicity, is the fact that different instances might

actually be exposed to very very different latencies. You might have something in a different
rack, or you might have something in a different datacenter, or you might just have some weird

situation on this one machine. It's very difficult to reliably share latency information between
instances that might be running in very different locations.

We made a decision early on to just say, “Okay, these things are going to be stateless, they’re

going to be independent, and there’s a little bit of non-suboptimal behavior associated with that,”
most of the time it actually results in a better situation and easier to reason about.

[0:23:03.8] JM: Certainly feels right from distributed systems standpoint. The centralization is

always the point where the headache centralizes. I guess I still don't quite understand how the
metrics and the optimal routing information gets aggregated so that you can make smart macro

decisions if you don't have this point centralization.

[0:23:32.6] WM: Oh, that’s a really good question. What we do, what every Linkerd instance
does is it measures the latencies and the success rates and everything else at the traffic that it

seems and it reports that. You can talk to an individual instance. You can say, “Hey, tell me
everything you've seen over the past minute.” That's good. Everything is highly instrumented.

You’re right, at that point, you actually want to aggravate some of that data.

© 2017 Software Engineering Daily �10

SED 360 Transcript

There’s a variety of options for doing this. We have a little project called Linkerd-vix, which is

just a prepackaged Grafana Dashboard and Prometheus that knows how to identify where all
the Linkerd instances are and kind of automatically extract metrics from them. Once you have

Linkerd running, for example, in your Kubernetes cluster, you can install Linkerd-viz and you can
get an automatic top level service metrics dashboard, which his really powerful because you

have things like success rates and latencies.

Those are the first order characteristics of service behavior that can be reported automatically
for you independent of your application. The application doesn’t know anything about this. The

services are written in different languages or whatever. As long as the traffic is going through
Linkerd, ou can actually get a top level view of everything that’s happening in your cluster.

That’s actually a very common use case for the service mesh.

[0:24:50.5] JM: Do the Linkerd instances need to know about everything that's going on the
cluster, or does every Linkerd instance just need to know about the services that are

downstream from this individual service that we’re talking about?

[0:25:07.8] WM: Every instance only knows about the traffic that it sees. It's fairly — I don’t want
to say naïve, but it’s a fairly regimented view.

[0:25:19.3] JM: Let’s talk about some of the different functionalities that we can get out of

having this service mesh. What are the canonical examples of functionality that we can get out
of this? You mentioned that this could really reduce tail latency. I know there's many other

features that we get out of having this robust communication layer. Talk about some of these.

[0:25:44.7] WM: Sure. The service mesh — I’d say the real goals of service mesh is we want to
give you a name and we want to give you a handle and we want to give you something you can

you can think about and reason about and control that’s reflect of the service-to-service
communication inside your application. The real goal is to make that a first-class citizen of your

environment. You can kind of — It's not just about putting — It’s not just about taking code out of
your application and moving it into a proxy. It’s about turning all this behavior, which is really

critical to the runtime performance of your system and turning it into something that you have a
name for and that you can visualize and that you can control.

© 2017 Software Engineering Daily �11

SED 360 Transcript

I’ll go through a couple of those examples. We just talked about really good one, which is the
top line service metrics. Once you have the service mesh installed, then you have traffic going

through Linkerd. You get success rates and you get latencies, and those are two things that you
want to alert on immediately. If the site is going down — If it’s 3 AM and your CPU usage is

increasing, do you want to wake up? I don't know. Maybe, maybe not, unclear. If it’s 3 AM and
your success rate is dropping. Oh, yes, you definitely want to wake up. Metrics is one thing.

In addition to metrics, there’d distributed tracking. Linkerd can automatically emit Zipkin traces,

so you get distributed tracing. We say distributed tracing for free, but the for free is kind of in
quotes because you actually have to do a little more work. You actually do have to pay a little bit

for that. That’s kind of on the visualization side.

There's the baseline reliability feature. Things we’ve talked about a little bit earlier on in the
podcast, retries, and timeouts, and deadlines, and circuit-breaking, that’s often the big driver for

running a service mesh, because getting that code write is actually quite difficult. There’s a big
interplay, complex interplay between the way the load-balancing works and the way the retries

work and the way that circuit-breaking works. You can kind of just rely on Linkerd for doing that
stuff. That’s reliability.

Then number four on the list is control. A big part of what the service mesh gives you is the

ability to change the way this traffic is working at runtime. You can do things like change routing
policy. We want to shift — I have service A talk to service B. What is service B? What does that

mean? Does it mean this mean this one that's running in staging, or does it mean this one that’s
running in production? Does it mean the one that’s running on this datacenter? Does it mean

the one that’s running on that datacenter? Does it mean this version or does it mean that
version?

When service A talks to service B, the meaning of that — What service B, it actually wants to

talk to is something that can be encoded in the service mesh and something that could be
modified on the fly, which gives us ways of doing things like cross-state or datacenter failover,

gives us ways of doing blue-green deploys, gives us ways of doing kind of ad hoc staging
environments, or canaring environments. That’s a type of control.

© 2017 Software Engineering Daily �12

SED 360 Transcript

Then coming up a little bit later this year, we’ll have things like security policy there as well,
where you can say, “Okay, service A is not allowed to talk to service C. It can only talk to service

B.” Those are all things that can be changed on the fly in the service mesh, and it's totally
decoupled from the application, which is I think what you really want.

[0:29:08.6] JM: Some of these things, it's very clear to me why we would want these —

Assuming we’re going to have a service mesh, it's clear to me we would want, for example, the
gathering of information about distributed tracing, we would want that information gathering to

take place in the service mesh. That makes complete sense to me.

Setting policies around how stuff gets routed, that's like a topic that's I've heard other people
say, like, “Oh, you want to do this in DNS,” for example. I think this gets at — Maybe it's

something I am confused about, but you talked about this in a Cloudcast episode that I listened
to where you were saying — Cloudcast is a great podcast, by the way, for anybody who doesn’t

listen to it. You mentioned the fact that the CNCF, the Cloud Native Computing Foundation,
which is the Linux Foundation of — It’s actually a subset of the Linux Foundation, where it’s

actually this place where it hosts discussions and oversight and governance for these different
open-source projects, but the CNCF does not bless a specific stack. What I mean there is in this

Kubernetes environment, this cloud native world, there is so much opportunity for different
infrastructure technologies because it's such a revolution in how we build our applications that

there are different services and technologies that have overlapping functionality.

You mentioned that you thought it was a really good way of doing business that the CNC — I
shouldn’t say business, doing nonprofit foundation governance that the CNCF doesn't bless a

certain stack. It doesn't say, “Oh, yeah. This is like the lamp stack of distributed systems. This is
the way things should be done.” It just says, “Here’s a bunch of stuff, and we are kind of like

keeping our eye on all of it, and we can talk to you about it, and we can help broker
relationships.”

Between the different technologies, Linkerd being one of them, Kubernetes is another,

Prometheus is another, those three have fairly, I think, disjoint sets of functionality, but there are
other things that have some overlapping functionality. Explain why you think — I think this is a

© 2017 Software Engineering Daily �13

SED 360 Transcript

really interesting area of discussion. I guess, first, talk about what it's like being in this kind of

market where there are so many different players with overlapping goals and it seems like it's
hard to isolate what your specific technology, what the bounds of it should be.

[0:31:52.7] WM: Yeah, that’s definitely true. This is one of the most — One of the VCs like to

call it frothy. This is one of the frothiest areas, which I think is a sign, means it’s a sign that
there's a lot of invitation happening in this space. The world of how do we run big distributed

systems in a way that’s scalable and safe and reliable and that doesn’t wake people up at 3 AM
for silly reasons, that's a very unsolved problem. The world is just starting to scratch the surface

of what that looks like.

I think the fact that it's so early in that space and yet everyone has to do this, it means that
there's a lot of solutions and people are still figuring stuff out. I think a lot of the — There’s going

to be overlap. There’s going to be overlap. There’s going to be, I think, evolution of all these
things. What Linkerd looks like today, what the service mesh looks like today, I think will be quite

different from how it will look in two or three years ago.

Linkerd is a user space proxy right now. Is that really the end goal? I don't know. Maybe, maybe
not. Right now, we’re using containers and we’re running them in VMs and they’re running the

VMs on some hardware that someone else owns. Is that the end goal of all these stuff? I don't
know. I think the world is still figuring this out. I definitely don’t speak for the CNCF, but what I

like about the CNCF is that I think they recognize the fact that there's a certain amount of
editorial aspect to being a part of the CNCF. They don’t accept any old projects. There are

things that they care about, and there’s value to having the CNCF logo on your project, because
it means that you’ve past their editorial kind of criteria.

They also know, they also recognize that the surest way to kill a technology is to have a

foundation or to have a consortium or to have a standards body talk about it. That's the surest
way to slow down the pace of innovation and to make sure that nothing interesting or important

is actually going to happen in the project. I think we’ve seen — The software industry have seen
that happen again and again. If you look at things like enterprise, Service Bus and CORBA.

Probably going back, there’s even more examples. You just don’t want that. The CNCF is, I

© 2017 Software Engineering Daily �14

SED 360 Transcript

think, doing a pretty good job of balancing its role of being an editor, but not being a standards

body or a consortium of companies that making technical decisions by committee.

[SPONSOR MESSAGE]

[0:34:37.0] JM: Your application sits on layers of dynamic infrastructure and supporting
services. Datadog brings you visibility into every part of your infrastructure, plus, APM for

monitoring your application’s performance. Dashboarding, collaboration tools, and alerts let you
develop your own workflow for observability and incident response. Datadog integrates

seamlessly with all of your apps and systems; from Slack, to Amazon web services, so you can
get visibility in minutes.

Go to softwareengineeringdaily.com/datadog to get started with Datadog and get a free t-shirt.

With observability, distributed tracing, and customizable visualizations, Datadog is loved and
trusted by thousands of enterprises including Salesforce, PagerDuty, and Zendesk. If you

haven’t tried Datadog at your company or on your side project, go to
softwareengineeringdaily.com/datadog to support Software Engineering Daily and get a free t-

shirt.

Our deepest thanks to Datadog for being a new sponsor of Software Engineering Daily, it is only
with the help of sponsors like you that this show is successful. Thanks again.

[INTERVIEW CONTINUED]

[0:36:01.1] JM: It does seem important in this space to have some differentiation and to know

even if you don't know exactly what you are going to do, maybe you at least know what you are
not going to do. For example, Linkerd can say, “We are not a container orchestration system.”

Maybe you have intentions to laterally move into that. You do not. Okay. Do you have a good
idea for what the bounds of Linkerd are? Do you know what you don't want to do?

[0:36:34.0] WM: Yes. The bounds of Linkerd are services-to-service communication. Anything

around that is stuff that we want to tackle because we believe that not really a critical part to

© 2017 Software Engineering Daily �15

SED 360 Transcript

how modern applications perform at runtime, but it's a totally raw undiscovered area that really

is in need of some real innovation.

That stuff that we do want to do, stuff that is around, like deployments and orchestration and
talking to raw hardware, or even layer three, layer four stuff. It’s not really what we’re interested

in doing. It’s not core to the mission, and I think we all want to live in a world of like the Unix
philosophy where you have these tools that kind of have very isolated areas that are — Not

isolated, but well-defined areas of functionality.

[0:37:31.0] JM: It's been interesting to see Kubernetes up as this super popular project that
outstrips almost any — I think it outstrips any other open-source technology in terms of how fast

it's risen and how much velocity and acceleration it has behind it. When I talk to people about
the idea of this service- to-service communication problem, it’s not like everybody agrees this is

something that should be solved. There seems to be some convergence around the idea of
having a sidecar that sits next to your application.

Why doesn’t Kubernetes itself standardize on something? Where is the subjectivity in this

problem?

[0:38:20.1] WM: I think Kubernetes has done a pretty good job of drawing the line or drawing
the boundaries for, “This is the stuff that we care about and this is the stuff that we don’t care

about.” Kubernetes goes on the network level. They kind of go to the point where, “Okay, we
have layer three, layer four in place, and we have DNS,” because any kind of early-stage

bootstrapping, you should probably have DNS. That’s as far as they’ve wanted to go.

I think that's, to their credit, they haven’t wanted to make it into like a PAS, a platform as a
service, where you have everything in there, like “Here's how you do CICD,” all the way down

only down to, “Here's a runtime that — Here's how you deploy — Here’s how you write code.
Here’s the IDE.” They’ve wanted to tackle one very specific problem here, which is a scheduling

orchestration problem. I think that’s to their credit, and I think that attitude means that innovation
can take place in other parts of the stack too.

© 2017 Software Engineering Daily �16

SED 360 Transcript

[0:39:17.8] JM: Do we have a public understanding of how Google does service proxying

internally?

[0:39:23.6] WM: That's an interesting question. I don't know. I believe I've heard that the
majority of traffic at Google is run through a service proxy. I don’t believe it's one that’s been

open-sourced, but I may have misheard that. I would ask someone from Google. I don't know. I
understand Twitter pretty well, which did not move into the proxy world or even into the

container world. Yeah, I don't know what happened at Google. I’m sure it’s something amazing
though.

[0:39:53.3] JM: I'm sure it's amazing too. A quote from an article that I’ll put in the show notes

about; service meshes. This is a really good read that you wrote that’s on the Linkerd, or on the
Buoyant I/O websites, sorry, “The service mesh must be designed to safeguard against the

many opportunities for small localized failures to scale into system-wide catastrophic failures.”

Now, this is kind of the idea of cascading failures where like, “Oops! This minor exception that
was thrown cascaded into a fail whale.”

What are the catastrophes that a Linkerd or some other service proxy or service mesh can help

prevent?

[0:40:41.6] WM: This is one of the funny things about distributed systems is we’ve done all
these work to have these like super decoupled, decentralized things, and yet if the

communication between services is done naïvely, we’ve actually made an incredibly fragile
system. The reason I know this is because we went through this process that Twitter where we

failed in every possible way that there was to fail and kind of slowly worked our way out of that
swamp.

One of the most common ways for something to fail in a distributed system is if one component

start slowing down, and they could slow down for any number of reasons. Maybe the garbage
collector is going on, or maybe someone’s running the vacuum cleaner nearby, and that’s

interfering with the electrons. I don’t know. That’s not a real example. There's are any number of
ways for an individual system to slow down.

© 2017 Software Engineering Daily �17

SED 360 Transcript

If the service you're talking to is slowing down, it will start hitting a timeout. The caller, I’m
service A talking to service B, if B doesn’t respond in 500 milliseconds, well, I’m going to retry,

because maybe I hit some crappy instance, so I’m going to retry. Still taking 500 milliseconds,
so I’m going to retry again. What am I doing? I’m actually adding load into the system, and the

more load I add, the slower it's going to get. What happens? B starts slowing down. Am I A?
Yeah, I’m A talking to B. I should have started with B talking to C.

Let’s say C is slowing down, and so B is adding more load on to C, which is compounding the

problem. Furthermore, B is starting to slowdown too because it’s just waiting. It’s got this
incoming request from A, and it’s saying, “Hey, I got to talk to C, but C is not responding. I’m still

retrying. Hold. Hold on. I’m going to retry. I’m going to get it this time guys.” B starts slowing
down, and then A starts slowing down. Pretty soon, this one isolated little failure here cascades

to the extent where you have a side-wide outage.

I think the core problem is that load and latency are kind of really intertwined in a distributed
system, and most of the naïve approaches to managing this ad more load in the case of latency,

and so you end up with this horrible situations.

[0:42:57.2] JM: That just knows we’re almost up against time. Do you have an extra 10
minutes, 10 or 15 minutes?

[0:43:00.5] WM: I sure do.

[0:43:01.6] JM: Okay, great. You mentioned like the vacuum cleaner thing. I did a show recently

with somebody who was at Google for like 10 or 11 years. This guy; John Looney, and he
worked on work on Google infrastructure and he talked about this incident where the

postmortem was basically that cosmic rays had flipped some bits somewhere and it caused a
cascading failure and which is like down for the system, it’s like cosmic ray.

That is a tail event, but if you’re Google, you hit the tails. You hit every tail.

[0:43:40.5] WM: Right. I’m impressed they were able to trace that to cosmic rays.

© 2017 Software Engineering Daily �18

SED 360 Transcript

[0:43:46.6] JM: Yeah. It could be something. I’ve heard — I hear when they’re building satellite
systems, they really need to watch out for those cosmic rays, because they don’t have the

atmosphere, I guess.

[0:43:57.9] WM: Yes, but satellites are in space. Like the Google datacenter, it’s not — I
suspect it was a programmer somewhere who wrote a bug and then decided to blame to a

cosmic ray. That’s the true story of what happened.

[0:44:16.5] JM: I don’t know.

[0:44:17.7] WM: No, I have no idea.

[0:44:18.8] JM: That is probably the true story. Yeah.

[0:44:20.5] WM: I have no idea.

[0:44:20.9] JM: Yeah, who knows. Yeah. We talked — You mentioned Prometheus earlier, and
that's this monitoring system for distributed systems. We talked kind of about where Linkerd

ends, and it's for service-to-service communication, but it helps with these insights about how
the overall system is working. It can help with distribute tracing or monitoring. What is the

interaction between Linkerd and whatever the monitoring system is? Is it like the monitoring
system is pinging the different Linkerd instances and aggregating information? How exactly that

does that work?

[0:45:01.1] WM: We have a whole plug-in models where you can kind of do whatever you want
to do. Most of the plugins like the Prometheus plugin will pull the Linkerd instances, so

Prometheus will go around and it will talk to each Linkerd instance and it will say, “Hey, what are
you seeing? Okay, what are you seeing? What are you seeing?” It will aggregate all that stuff

together.

We have a Statsd plugin, which I think is a push model. We’ll support whatever. The basic kind
of division of labor is at Linkerd will instrument everything and will report it, but we don't do

© 2017 Software Engineering Daily �19

SED 360 Transcript

anything with aggregation. What you do with that data is kind of up to you. If you don't get it fast

enough, sorry, it’s disappeared. It’s stored in memory in Linkerd and you need to read it once a
minute otherwise it goes bye-bye.

[0:45:46.0] JM: I've done a couple shows recently with people who are working on serverless

on top of Kubernetes applications. These are Cubeless and Fission. What’s clear whether it's —
Whether people are going to be doing serverless on top of Kubernetes or they’re going to use

AWS Lambda or whatever, it seems to be a pretty good opportunity, and people talk about
serverless — When I’ve talked to these serverless on Kubernetes guys, the way they say is

serverless is really useful for these glue code sort of things where you just have a very — Well, I
don’t want to put words in their mouth. You can listen to that those episodes if you’re interested.

I should just ask, what is the interaction pattern that you see evolving between the serverless

technologies, like AWS Lambda and Kubernetes, and how might that impact with the direction
that Linkerd goes in?

[0:46:45.9] WM: I think in a lot of ways, serverless is a pretty natural evolution for both

Kubernetes and for Linkerd. As the cost of deployment goes down, it becomes easier and
easier, and this is what Kubernetes has given us, is now when you deploy something, there’s a

set of APIs and we have a container for kind of managing the runtime stuff, so you just like type
some commands and, poof, it’s deployed. That’s a huge difference from where we were 5 or 10

years ago.

As a cost of that deployment goes down, it’s easier and easier to move into a world where —
Think of it as it’s almost like auto-scaling where the base state, rather than always having the

service running, the base state is zero and you just spin it up on demand and then you shut it
down. All the same problems that you have around service, service communication exist in the

serverless world, you actually haven’t — If anything, you have it more. A service will spin up —
Sorry. A function will spin up, and then it needs to talk to another function, which needs to talk to

another function.

© 2017 Software Engineering Daily �20

SED 360 Transcript

Not only is the deployment aspect, or the instantiation aspect, there’s also the communication

aspect. I think it’s a pretty natural extension of the work that’s happening in Kubernetes and also
in Linkerd.

[0:48:01.5] JM: As long as I’m using a homegrown open-source serverless on Kubernetes

technology, like Fission or Cubeless, I think I can specify what sorts of sidecars are going to be
spun up along with the serverless function that I’ve deployed. That might not be so easy if I’m

using one of these opaque things, like AWS Lambda or Google cloud functions.

[0:48:31.2] WM: Yeah, that’s probably right. That’s probably right. This is a really interesting
area for us, so I think we’ll be investing in it pretty heavily coming in the next couple of months

and years even.

[0:48:43.6] JM: Man, talk about frothiness. That’s going to get frothy and quite interesting.

[0:48:48.2] WM: Yeah, if you thought that Kubernetes an service mesh and all that stuff was
confusing enough, yeah, it’s going to be worse. That’s going to get worse before it gets better,

but it will get better in the end. I think the pattern that we’re seeing, and I just compare it back to
where we were — Again, I refer to my Twitter experience because that’s kind of the big fixed

point in my mental landscape.

Man, when we started doing this stuff in 2010, nothing — There was nothing there. We built a
whole — What I would argue is the first cloud native architecture at Twitter, even though it

wasn’t in the cloud, without containers, without an orchestrator until we introduced one later.
Without even the word microservices. It was really painful, and if we did that today, we’d have

so much tooling and we’d have so many thing we could rely on. It would have been so much
easier to do that.

The world is improving. Well, the world of software is improving. The rest of the world is going to

help.

[0:49:43.9] JM: Right. Yeah. We need the Kubernetes of presidential candidates or something.
Kubernetes 2020.

© 2017 Software Engineering Daily �21

SED 360 Transcript

[0:49:56.2] WM: I wonder. Can you run Kubernetes in your nuclear bunker? Maybe that’s the
next startup fad.

[0:50:04.0] JM: You talked about the trauma of Twitter early days, probably it was the same at

Netflix or Amazon or any of these giant companies that grew up in the growing pains between
pre-cloud native and post-cloud native. That’s probably growing up in the depression where

these people who grew up during the depression and they are forever grateful for — I guess —
No, I guess the people — You know what they say about the children of the depression is

they’re just forever traumatized, but they’re probably also grateful.

[0:50:34.1] WM: Right. You always have to eat everything on your plate, because if you don’t,
you’re wasting food. Maybe I’m going to end up like that, where you have to use 100% of your

CPU at all times. Otherwise, it’s like a moral failing on your part. You’ve like wasted CPU. In my
day, we barely had any CPU at all. We had one for the whole family and we just had to share it.

[0:50:56.2] JM: Yes. I want to come back to these different overlapping projects in the CNCF

area, because it’s this interesting thing where you’ve got to do — The Diplomacy here must be
so interesting, because you’ve got all these different projects and some of them kind of maybe

have dependencies on each other, or there’s coopetition or you don’t want to make some
breaking change against an update that’s coming. Do you have any — Can you give some

perspective on what the diplomacy is like in this space?

[0:51:30.2] WM: It’s not that bad. It’s not that bad, because it’s not a zero-sum game. Every
month, every year, there’s more cool stuff to do and there’s more opportunity. You’re always

rubbing elbows with someone. Is that good or bad? You’re rubbing shoulders. There’s always a
little bit of overlap in what you’re doing. Of course, you think your thing is better than theirs or

maybe it’s not. I don’t know. There’s so much opportunity and it’s increasing from day to day,
that there really is not a lot of infighting. At least there hasn’t been in my experience.

[0:52:05.5] JM: That’s great to hear.

© 2017 Software Engineering Daily �22

SED 360 Transcript

[0:52:07.0] WM: Then, again, I’m small fry. I’m not like Docker versus Kubernetes versus Mesos

versus whatever. I’m just little old me over here. Maybe I don’t get exposed to that.

[0:52:17.9] JM: Yeah. What was it like seeing that brouhaha among — I don’t know about — I
don’t know about the Mesos side, I think, but certainly the Docker versus Kubernetes stuff.

Really, that conflict boiled over for a little bit.

[0:52:33.7] WM: Yeah, that’s right. Maybe that’s a counter example to my fairly optimistic view
in the world. I was not involved in that. I was just a bystander watching. I really don’t have a lot

to say.

[0:52:46.5] JM: You didn’t take any lessons away from that or anything? Maybe don’t fight or —
Don’t get caught in a conflict.

[0:52:53.8] WM: No, I think the only lesson I really took away from that is that in the open

source world, having a community that really believes in you and that feels like you’re a good
citizen is an incredibly powerful thing. I think if the moment you start isolating your community —

Now, I’m speaking with my CEO hat on rather than my open-source maintainer project hat, or
open source project maintainer hat, I think it’s always — Finding the line for an open source

company like Buoyant, there’s a line that you have to walk between — Obviously, you are a
company and you have to make money at some point, otherwise why are you doing this at all.

You have to — At the same time, you want to have an open source, a thriving open source

community that trust you, and that feels like you’re doing the right thing for the project. I think
the moment that you lose that, that’s when things start turning south. When your community

abandons you or the community doesn’t trust you or it doesn’t believe you or doesn’t think that
you’ve being honest about stuff, things that you’re being overly commercial where you’re doing

something that’s not that their benefit because it’s going to make you rich, that’s when things
could start going south. That’s maybe the one lesson I took away from that.

[0:54:10.3] JM: Yeah. It was all about the optics, because Docker bundled this thing that made

it look like they were really trying to push their container orchestrator in the face of the growing

© 2017 Software Engineering Daily �23

SED 360 Transcript

Kubernetes popularity, and all these people who are adopting Kubernetes were saying, “Why

are you giving us bloatware in our Docker containers?”

Whether or not they were doing it because — I think what Docker, and this kind of makes sense,
is like we want to have an all-in-one solution that’s really simple. In order to get that, we need to

bundle this thing in, and that’s our vision. The perception from the community was that you’re
trying to force us to use Docker Swarm.

[0:54:53.2] WM: Right. I think that’s right. This is now getting quite philosophical. It’s not like

Google is this totally altruistic company [inaudible 0:55:02.6]. They’re doing Kubernetes for a
reason.

[0:55:04.7] JM: Exactly!

[0:55:08.4] WM: I have a friend, Ben Sigelman who’s the CEO of this company, Lightstep, and

he has a really a good quote that I like, which is that Kubernetes is a ship and it’s a ship that’s
built just big enough to take all the money that you’re spending to Amazon and to kind of sail off

with it, going somewhere else.

Every company here has a profit motive including my own, has a profit motive. No one is doing
this out of charity. On the other hand, I am quite optimistic in general that I think there are ways

of making very successful businesses on top of open source and keeping the community happy.
I think if you have the right line between the commercial features and the open source features,

I think you can accomplish that, and I think the world of open source, anyways, it’s becoming
more comfortable with the fact that, “Gosh! Sometimes there are open source projects that are

driven by companies and it’s still okay.”

I think if you look at open source — My first exposure to open source in the 90s, believe it or
not, with Linux. This is a sign of how I’m old I am. When I was in high school, we would pass

around a Linux distribution as a stack of floppies in a lunch bag, and that was a stack of 50
floppy disks, 3-1/2 inch floppy disks that was running slackware version 0.00 whatever. In that

world, open source was kind of the antithesis. It was the opponent of a commercial venture. You

© 2017 Software Engineering Daily �24

SED 360 Transcript

did open source because you didn’t want to be like Microsoft. Now, the world is much more

receptive to the idea that, gosh, you can kind of do both. You can have a project.

I think Kafka is a really good example of this. You can have Kafka, which is an amazing open
source project. You have a company like Confluent behind it, and it’s okay. In both cases, you

got a good company and you got a good project. A really good company and a really good
project.

[0:57:00.4] JM: Yeah.

[0:57:01.2] WM: That makes me quite optimistic.

[0:57:03.8] JM: From the whole rise of Kubernetes, just from a business case study point of

view, it’s like beautiful jiu-jitsu of, “Yeah, we’re going to release this thing that lets you lift and
shift your technology from Amazon to Google.” It’s like pretty incredible to watch. It’s also pretty

incredible to see how the world gets to reap the rewards of this battle of the Titans.

[0:57:29.6] WM: Right. Yeah, the result of all these is pretty good for the world as a whole.

[0:57:36.1] JM: Yeah. William, I want to thank you for coming back on the show. It’s been a real
pleasure both time, both episodes we’ve had, it’s been really entertaining. I look forward to

seeing how Buoyant evolves and how Linkerd evolves.

[0:57:49.6] WM: Great. Thank you very much for having me, Jeff. It’s always a real pleasure to
be on here. You don’t mind me saying at the end that Buoyant is hiring actively. If you want to

come work on cool open source infrastructure stuff, send me an email, william@buoyant.io

[0:58:04.5] JM: There you go.

[0:58:06.0] WM: Yeah. All right.

[0:58:07.0] JM: William@buoyant.io. Okay, great. We’ll put that in the show notes.

© 2017 Software Engineering Daily �25

SED 360 Transcript

[0:58:09.9] WM: Thank you, Jeff.

[END OF INTERVIEW]

[0:58:13.0] JM: Thanks to Symphono for sponsoring Software Engineering Daily. Symphono is

a custom engineering shop where senior engineers tackle big tech challenges while learning
from each other. Check it out at symphono.com/sedaily. That’s symphono.com/sedaily.

Thanks again to Symphono for being a sponsor of Software Engineering Daily for almost a year

now. Your continued support allows us to deliver this content to the listeners on a regular basis.

[END]

© 2017 Software Engineering Daily �26

