
SED 347 Transcript

EPISODE 347

[INTRODUCTION]

[0:00:00.9] JM: Healthcare is a complex business. Oscar is a company that wanted to build a

new insurance provider but they realized that healthcare is so interconnected that in order to

build a new insurance provider they actually needed to build an entire healthcare business too,
complete with patient management and facilities.

Since Oscar is a modern technology company, they focus on customer service and engineering

and data management, and this company offers an optimistic view into what healthcare might
look like in the near future. Every time a patient interacts with the healthcare system their

insurance provider has an opportunity to collect data on that interaction.

Isaac Councill helped architect the infrastructure at Oscar that manages and analyzes this
patient data. In this episode we talk about the healthcare system; the data engineering of Oscar,

and Apache Mesos, which Oscar uses to manage its applications. We have an interesting
discussion of Apache Mesos versus Kubernetes, and I hope to do more shows about the

evolving healthcare technology space. It's really intriguing me right now.

[SPONSOR MESSAGE]

[0:01:23.9] JM: Artificial intelligence is dramatically evolving the way that our world works, and

to make AI easier and faster, we need new kinds of hardware and software, which is why Intel
acquired Nervana Systems and its platform for deep learning.

Intel Nervana is hiring engineers to help develop a full stack for AI from chip design to software

frameworks. Go to softwareengineeringdaily.com/intel to apply for an opening on the team. To
learn more about the company, check out the interviews that I’ve conducted with its engineers.

Those are also available at softwareengineeringdaily.com/intel. Come build the future with Intel
Nervana. Go to softwareengineeringdaily.com/intel to apply now.

[INTERVIEW]

© 2017 Software Engineering Daily �1

SED 347 Transcript

[0:02:19.4] JM: Isaac Council is the VP of engineering at Oscar. Isaac welcome to Software
Engineering Daily.

[0:02:24.5] IC: Thanks. It’s great to be here.

[0:02:25.7] JM: I want to begin by discussing health insurance and why this is a technology

problem, and then we will work our way towards the actual engineering. Let’s start with a naïve
question; what is health insurance?

[0:02:41.1] IC: Yeah, that'd be a great question. It’s absolutely not just a technology problem,

and technology is we think a part of the solution here. Health insurance is really — It’s an
interesting entity that is a really crucial player in healthcare. Just thinking about what we are as

a health insurance company, I think I have to discuss a little bit about the Affordable Care Act
and how that changed the setting. That’s really about why we’re here.

You can look at health insurance as being traditionally in America. It’s been a products that is

sold mostly to employers in order to cover the insurance fees, the medical costs of the
employees of a company. That’s been the traditional model in America. Companies get tax

[inaudible 0:03:35.5] they’re incentivized to provide these benefits and in face legally
responsible for providing these benefits.

Now, that insurer is responsible for taking claims from the medical care that is encouraged by

the employees of these companies and paying according to, usually, negotiated fee schedules
with the doctor networks, the doctors, the hospitals, or the pharmacist in the case of drugs.

We’re the payer, typically. When you hear the word single-payer, which has been a buzzword
that’s been going on for the last year. You heard a lot in the election cycle.

Right now, we’re one of the multiple payers because there’re multiple insurance companies.

We’re all competing with each other to get the best rates with the providers. We’re the payer in
the system. We have a relationship with traditionally health insurance, we’ll have a relationship

with an employer, so they’ll have the secondary relationship with the employees, the people that

© 2017 Software Engineering Daily �2

SED 347 Transcript

are actually are generating the bills. Also have a secondary relationship with the providers

because they’re the once who get paid. That’s it in a nutshell.

I should go on to talk about how that relationship has changed through the Affordable Care Act,
where the Affordable Care Act is really shaking things up so that’s we’re still the payer, but the

relationships are entirely different.

Now, because of the individual markets for the first time, you have a broad swaths of the public
who are able to engage directly with the insurer. Now, we’ve gone — The industry has gone for

selling basically enterprise insurance to the enterprise and so now we’re selling consumer
product, almost. We’re selling product directly to customers. That really changes things in a very

very fundamental way, and that’s where technology starts to creep in, in a very obvious way
because now we can talk about technology as the industry is currently thinking about mobile

applications, desktop dictations, portals for actual member experience, which was a really
secondary concern before.

We really benefit from having that deep relationship with members, which wasn't necessarily the

case before. It used to be a case, remember that the employers were the ones who — We want
to be cozy because they're actually paying us, and so the people who are engaging with

healthcare, they cost us every time we interact with them. Now, it’s completely changed with
Oscar, with all the other insurance on these individual markets. We’re engaging directly with the

members or the ones who are paying. They are also the ones who are receiving the benefits
from our service. We provide them a great benefit while they can just go and find another

insurer, which really should be the way that it works after all.

[0:06:40.2] JM: You discussed this difference between the model where I get health insurance
through my work place where my insurance is tightly coupled to my workplace versus the idea

of health insurance being provided or being purchased by me. I'm not precisely sure how Oscar
works, so I guess I didn't quite understand that aspect of your explanation. All the companies

that I’ve worked at in the past, I've gotten health insurance through the company and it set me
up with this tight coupling to the company where it might be hard to — If I switch jobs, then I

might not get to keep my doctor and it raises the question why is this healthcare plan even
being provided by my employer. Since then, since leaving the workplace and becoming

© 2017 Software Engineering Daily �3

SED 347 Transcript

employed by my own company, now I get individual health insurance that I purchase outside of

the company that I worked for. The health insurance quality is probably not as good, but at least
I am completely in control of it can.

Could you contrast those two models a little bit more and explain what Oscar does relative to

those models?

[0:07:57.3] IC: Sure. I don't understand why it wouldn't have to be as good. Hopefully it would
be at least as good. The model being fundamentally different, I think, is really the key. First off

with, with your employers, have you ever gotten to choose which company you want to be
insured with? Which doctors, doctors’ network, that sort of thing? It’s fairly unusual.

[0:08:19.3] JM: I don’t remember.

[0:08:20.3] IC: Yeah. Oftentimes, you get to choose the plan, the EPO, the PPO, all that stuff

but you don't necessarily fundamentally get a choice between Aetna or Cigna or all the various
options that are out there. All of that negotiations, all that choice was done by the employer, and

so the employer is basically trying to get the best policy that they can for the maximum or the
best considering the population of employees. That's not necessarily done with you individually

in mind trying to do the best they can on the budget that they have, but maybe there is a better
product for you. Maybe you're interested in something of a different offering that some of the

company or some other plan provides. That’s been that market for us which has been just
absolutely absent.

Really, opening up that individual choice is actually normalizing the insurance market or at least

that's the hope, that’s the promise, is normalizing the insurance market to be a fair and free
market in a much broader notion than what it has been before. You have individuals making a

choice for them, for themselves, rather than that choice being made on their behalves by the
employers.

[0:09:37.7] JM: When a company sells you health insurance, so when I buy health insurance

from a company, they are making a bet on how my health is relative to the price of care that I
may need to receive if I have a health incident. Can you explain how a health insurance

© 2017 Software Engineering Daily �4

SED 347 Transcript

company calculates the expected value of that bet and how they price insurance for a given

customer?

[0:10:07.0] IC: Sure. First off, we don't price for individual customers under the Affordable Care
Act. It’s actually one of the really nice things that's under heat right now. You might've seen if

you're following what's happening in DC right now, there's a lot of exciting talk about removing
some of those provisions from the Affordable Care Act. Right now, our plans have a fixed price,

and so that fixed prices is for everybody who wants to choose those plans. We don't price you
up based on some pre-existing condition, some pre-existing set of factors. That's one of the

things that the Affordable Care Act has actually removed.

Getting back to that in general, I’ve talked about the Affordable Care Act actually changing the
nature of the relationships in this industry and also removing individual pricing based on pre-

existing conditions. Those are really wonderful things that the Affordable Care Act has done.
There is I don't think anybody, you’ll find anybody who's really studied the Affordable Care Act

that doesn't come to the conclusion that it has some significant flaws and has some places
where it could benefit from improvement, but it’s fundamentally changed the expectations

around insurance, and that's really what a lot of the things that we’re here trying to fully realize,
to help realize those visions.

Getting back to your question, we price based on actuarial risk, the same as any other

insurance, auto insurance. Then there’s a lot of actuarial tables that can be used to calculate the
likelihood or what’s the statistical probability of getting in a crash and what's the distribution of

expenses for those crashes. It’s a really a statistical problem. The same goes for health
insurance. What’s the statistical likelihood steps? Are you going to need care, and what is that

care going to cost? The distribution of cost, it can go anywhere from just a routine checkup to
being diagnosed with some kind of horrible cancer which would be very costly.

We have to keep in mind all the probabilities and the cost distribution and at the end of the day

you have to be taking in more money than you pay out in terms of the medical expenses for
your membership base. That's basically the key metric for us as an insurance company. It’s

called the medical loss ratio. The medical loss ratios basically what we’re paying out to
providers, to pharmacies, medical spend, versus what we’re taking in revenue.

© 2017 Software Engineering Daily �5

SED 347 Transcript

The idea is to have that medical loss ratio be around 85%, something like is considered —
Anything under 90 is considered very very healthy. We have to fit all of our operations, a lot of

our operational expenses in the area of the MLR up to one. That’s basically what we have to
keep in mind with the pricing. We have to protect the overall medical expenses for the

membership if we’re trying to hit that target as precisely as we can, that our medical spend is
going to be right around those numbers, somewhere in 80 to 90 range is what we’re hoping for.

[0:13:39.7] JM: You could build a health insurance business that is better than the existing

competitors by just building a better UX, because I I've interacted with my own health insurance
provider’s website and it’s really frustrating experience. I wish I could just pay $10 more a month

to have a better UI.

I haven't purchased through Oscar, but just from browsing the website and clicking through
things, I can understand that the UX of the product is much better. Let’s start to talk about the

engineering. Describe the basic architecture of the user facing application. If I'm a user who
wants to buy health insurance through Oscar, what is the application that I'm dealing with?

[0:14:26.3] IC: Sure. I’ve got to say, I’m really happy to hear what you're saying now, that's the

UX is such an important consideration. That’s a particularly entertaining thing because that was
one of the things that we heard a lot when we're just getting started around 2013 or early 2014

from these other insurance companies or from other academics in the field. It’s like, “Wow!
Oscar, that’s really cute.” What they don’t realize is that nobody in this industry cares about the

websites. They’re talking about single-digit engagements to websites of insurers out there that
they don't get excited about maybe five or six.

We saw early on that providing a really nice experience, really providing some very valuable

functionality drove engagement order of magnitude more than what folks were telling us we
could expect the in the best case. We started seeing numbers like 70% engagements month

over month. I think what you said really bears out.

To get back to your question about what that the tech stack actually is. Recently, we've gone
really all and in React. We just absolutely love React when we moved over to it. Just see that

© 2017 Software Engineering Daily �6

SED 347 Transcript

the unit test coverage skyrocket and the code base which makes me super happy. It's also just

enabled a ton of really interesting stuff which we could talk about if you're interested.

In the JavaScript layer, typically, all the new stuff that were moving to is in React. There might
be some legacy that isn't there that’s going away. It’s on a flask application. The flask application

is being launched. It depends on which product you're talking about. In general, we launch all of
our applications inside of Mesos. We have a particular zone in our Mesos cluster just for user

facing applications. We’re typically launching into that, these flask applications that serving out
rehab to clients. We’re using HAProxy to route these things. In a nutshell, that’s kind of what's

going. We’re using AWS right now, if that's of any interest.

I also want to emphasize this thing that you see, the websites and what a member is actually
going to engage with. It’s really just actually the tip of the iceberg when it comes to engineering

at Oscar. We’re doing a lot of exciting stuff on the front-end for members and I think we have a
very exciting program going forward. We also have a ton of application development for internal

use cases for our member service representatives. For example, our internal operations, and
then we have hundreds of applications that are just moving data around collecting data from the

outside. It’s actually a wonderfully complex space, and so that member website really is just the
tip what you can see.

[0:17:36.2] JM: Of course.

[SPONSOR MESSAGE]

[0:17:44.2] JM: Your application sits on layers of dynamic infrastructure and supporting

services. Datadog brings you visibility into every part of your infrastructure, plus, APM for
monitoring your application’s performance. Dashboarding, collaboration tools, and alerts let you

develop your own workflow for observability and incident response. Datadog integrates
seamlessly with all of your apps and systems; from Slack, to Amazon web services, so you can

get visibility in minutes.

© 2017 Software Engineering Daily �7

SED 347 Transcript

Go to softwareengineeringdaily.com/datadog to get started with Datadog and get a free t-shirt.

With observability, distributed tracing, and customizable visualizations, Datadog is loved and
trusted by thousands of enterprises including Salesforce, PagerDuty, and Zendesk.

If you haven’t tried Datadog at your company or on your side project, go to

softwareengineeringdaily.com/datadog to support Software Engineering Daily and get a free t-
shirt. Our deepest thanks to Datadog for being a new sponsor of Software Engineering Daily, it

is only with the help of sponsors like you that this show is successful. Thanks again.

[INTERVIEW CONTINUED]

[0:19:09.1] JM: I want to get into the customer service backend applications as well as the data
engineering applications, but let's talk real quick about Mesos and your infrastructure

orchestration layer. You said you're launching these flask applications on Mesos. Are these
being launched on VMs or in containers?

[0:19:31.6] IC: In VMs right now. The containerization thing is kind of a fun topic. We've been

avoiding Docker and a lot of the containerization out there for a few years now mostly because I
think a lot of us just didn’t feel like it was quite ready for prime time. Keeping the Docker one

point over these was built on dot releases. We have some substantial underlying parts and it’s
been really exciting to watch it. We’ve really set back for that.

We’re starting to go with containers now. I think that the space has matured quite a bit, so we’ve

got a lot of reliability going on. You see other options going on with using Docker images in other
ways, like the Mesos Containerizer for example is something that I'm very excited about where

we can get the benefits from containers but without necessarily extra services and extra
complexity going on. We’re going to be using Docker.

Basically, what we decided really early on as we’re going to keep it as absolutely simple as

possible and we’re going to be disciplined as developer. A lot of us were at Google before. I was
at Google before. It was helpful to be kind of brainwashed in the same space.

© 2017 Software Engineering Daily �8

SED 347 Transcript

At Google, the mantra is sort of single statically links binary is really the key to beautiful

deployments. You build. You make sure that your image is common. Your build is done on a
machine that mimics the production environment and when it gets time to deploy, you just

downloaded thing and you dot slash around it, and it's great.

Then we have — With Mesos, we get nice things like C groups, so we can allocates just the
right amount of RAM, CPU, and disk and you hold your process to that. That means we

basically have all the containerization that we need that we have — We have far resource
isolation. We have our artifact isolation. We get the benefits of a straight up UNIX security that

way. It's very very simple.

The only time that we really get into trouble is when we need something weird, so like I
somebody who wants to use a LibreOffice, like PDF rendering engine just to pick on a recent

case. Then, yeah, it’s kind of annoying to build a few Mesos nodes that have just — That have
the special stuff on them so that we can use the shared libraries. A container would be lovely for

that to be able to still load up a Docker images with LibreOffice and just go to town. Really,
discipline first, and so Mesos really, I think, helped us develop some very very good habits early

on.

[0:22:18.7] JM: The reason that I've heard people move from virtualization to containerization,
at least one of the reasons, is that when you go to containers you can break up the VMs into

units that are more properly sized to the jobs that you are allocating to those units. If you do
everything in terms of VMs, a VM has a floor to how small you can make it and a lot of times

you’re going to spin up a VM, you’re going to use it for some kind application and that
application is not going to take advantage, take full advantage of the resources available in that

VM. Whereas if you sliced up into containers, the containers can fit more exactly to the size of
the jobs. Is the —

[0:23:09.9] IC: It makes sense. Mesos really is the way we get around to that, because with

Mesos — Mesos is lovely. It basically handles resource allocation by Mesos itself and the
scheduler puts your jobs where it sees fit.

© 2017 Software Engineering Daily �9

SED 347 Transcript

Just to talk about the Mesos model a bit, it really takes your virtual machines and turns them

into globs of CPU, disc, and RAM. Now, the VMs typically are going to be consistent. We don’t
really care about them. We don’t launch a VM with a particular role. We launch a VM with a

Mesos role and then we use a scheduler on top of Mesos. Right now we’re using Aurora which
was developed in Twitter. We love it. It’s been just amazingly reliable for us. The schedules

allows you to use the globs of resources that Mesos made for you and it just slices them off.

If you tell it your job, it’s .5 gigs of RAM and one CPU. It’s a hardcore, non-threaded sequential
process to run fast. So you tell your scheduler to launch this job with those resources, it asks

Mesos to basically carve that amount of resources out and then create a C group to container, if
you will, to launch your job end. You can get all those benefits of very high utilization. We

actually have a wonderful utilization with Mesos because we’re launching maybe a ton, maybe
100 jobs on a single VM, and because everybody built their jobs off of the same image which

that VM is running. We’re using Mesos or a scheduler in order to slice off little pieces of that VM
and launch the job within it. Actually, it’s wonderfully cost-effective and also just incredibly

convenient. Mesos and Aurora together give us beautiful orchestration that the same kind of
thing that Kubernetes is going to give you with these all stack underpinnings. Yeah, we’re

definitely abstracted away from the VM. We just didn’t need containers to get there.

[0:25:44.0] JM: What are the operational differences between somebody running a Kubernets
cluster with Docker containers and somebody running a big Mesos cluster, where Mesos itself is

just abstracting away the collection of VM's and allocating jobs that are across this uniform
address space of Mesos stuff?

[0:26:06.0] IC: Not much. Not much really. It’s the different way of getting the same thing.

Kubernetes will give you Docker. Mesos gives you the option of having Docker.

[0:26:15.5] JM: Okay. Interesting. All right. Now that we've kind of covered the orchestration
layer, let’s talk about data engineering and then maybe we can get into the customer service

stuff. The data engineering, it really starts to get interesting because you've got all these data
points that you can collect. If people are buying health insurance and then you can gather data

points along their entire health journey because every time they engage with a healthcare

© 2017 Software Engineering Daily �10

SED 347 Transcript

provider you're getting feedback about that. What are some of the data points that you’re able to

collect on the data platform?

[0:26:53.8] IC: Oh my goodness! Our general data space is made up at the very high level of —
Whether there’s members, or the people. Those people could be either members or they can

healthcare professionals, providers. There are plans which are descriptions of the plan
configuration that the people have signed up with. There’s eligibility, which turns out to be a

complex space because of regulation. That’s just determining records to determine who is
eligible to receive benefits under a plan at any given point in time.

Then there’s our claims, of course, and those come in the discreet records that describe care

that was those provided or received and there’s authorizations that people are requesting,
sending a pre-authorization to say, “Hey, this is going to be okay, or we’re going to cover these.”

All these things. We also have agreements, opt-in agreements that we can detect healthcare
events, like somebody gets checked in to an emergency room. We can actually get notified

about that so that we can do our best to help in some meaningful way if somebody needs it.

All that gives you kind of a rough overview. There’s tons more, but there’s always so much to
talk about in that space because there’s so many problems inherent within it to solve. It’s

wonderful, like a provider data is a wonderful examples with the projects that at first glance
might seem easy if you haven’t had to deal with it before. It’s like, “What’s the problem?” You get

a bunch of data about providers. You stick in a Solar elastic search or something like that and
you search it. It’s great.

The problem is that all of these data sources that are coming in, there’s the classic problems of

missing data, incorrect data, just bad formats, and there’s duplicate, conflicting information. It’s
all just wonderful classic data pipeline stuff where you have to have a really big kind of

interesting pipeline to not only do the records aggregation but to do entity reconciliation
deduping, splitting different providers with the same name, that sort of thing. It’s really

interesting. It’s really tough. We’re going to have, as our membership, we’re going to have
exactly the same issues with incoming member signups. We’re looking forward to that. The

claims coming in need to be sometimes corrected, there’s typos. You have to match the
incoming provider information to providers that are networked, because if they’re not in our

© 2017 Software Engineering Daily �11

SED 347 Transcript

network, then we don’t have a negotiated fee schedule. We don’t know what to pay, or we don’t

know whether we should accept or deny the claim. It has to be this fuzzy matching process. The
same thing with member information. These stuff that people are just typing in and all that stuff

has to be handled correctly by our systems.

Oftentimes in the insurance industry, that’s actually handled partially through technology but with
people, with human actually entering that. We’re just trying to get the accuracy up to as much as

possible. All of these data is highly highly relational. It’s sometimes hard to decouple and to
figure out when member information is more clinical, more operational. It’s really wonderfully

interpretive at times. Anyway, lots of really interesting data pipelining issues. I’m not sure which
part of that you’d like to dive into more.

[0:30:49.2] JM: Let’s start at the beginning. Your first two years at Oscar you were focused on

this full- time. What was involved in setting up the data pipeline early on?

[0:31:01.5] IC: It’s not much except just parsing CSVs and trying to do fairly coherently. It’s a
wonderful thing coming into to healthcare is as fairly seasoned software engineer and previous

research scientist research scientists came. into this space with a bunch of wide-eyed ambitious
people and started staring at the problem and wondering what we should start typing into our

terminals. It’s just a wonderfully humbling experience because none of us really knew what we
were doing. We were all learning for the first time.

I guess we know how to build data pipelines. We know how to setup databases, but we’re all

learning what this data meant, what the problems were going to be and how it all relates to each
other. More so, how can we lavage this to actually let our customers have a good experience at

the least and not contribute to a bad experience, which is always just a horrible thing if you see
it.

Really a lot of the first couple of years which is really trying to get our heads around it and trying

to get as many of these feeds hooked up as quickly as possible because there are tons of them.
They’re like 70 or 80 just in the first half year that had to get models fit in. we have to set up the

connectivity with various places. There wasn’t a whole lot of thinking about how we’re going to

© 2017 Software Engineering Daily �12

SED 347 Transcript

make some beautiful elegant system. It was just get that data in and get it somewhere where it’s

going to be useful as quick as possible.

Nowadays, we have that luxury of thinking about, “This would benefit from our graph databases,
or this would benefit from JSON-B storage and PostgreS. Now, we can be sophisticated. Back

then, that was a scramble. Not only were we ingesting all of those data, but we are doing
everything else that was involved with making an actual insurance company that works, which is

a fairly complex thing. Yeah, go ahead.

[0:33:04.1] JM: That has stabilized. The product itself has stabilized. What has happened with
the data pipeline?

[0:33:10.8] IC: Oh! Now, you see wonderful things starting to happen. Right now, we were

thinking in terms of what are the characteristics that you want to —

[0:33:20.6] JM: Could you maybe give me an idea of data — You’ve got lots of different streams
that could potentially come in. Are they all hitting Kafka and getting fanned out to some different

places? Maybe could you walk me through the life cycle of that data?

[0:33:34.9] IC: Yeah. I’ll talk to you about some of the properties of the storage engines that
we’re doing as well. Yeah, there’s a pattern that’s starting to emerge where you have to set up

the perimeter connectivity in some way. Oftentimes it’s FSTP. FSTP is often like the
replacement for our PC or Rest in this industry. We really like sending files to each other. Those

files are in lots of various formats and so we have to —

[0:34:02.8] JM: Sorry. Not to interrupt you, but is that because a hospital is sending you this
FSTP stuff?

[0:34:08.4] IC: It could be a hospital. It could be a provider network that’s sending us a roster of

people who are currently in the network every week and we have to figure out the differences,
that sort of thing. Pretty much everybody, it’s the de facto way of sending information unless

there’s some very compelling reason that this has to be a synchronous process.

© 2017 Software Engineering Daily �13

SED 347 Transcript

That would be, say, a synchronous process might occur when you’re connecting with a remote

EHR, like a electronic health system. Then maybe you’re doing — You’re trying to let your
member schedule a doctor’s visit, so that sort of thing has to be done fairly synchronously.

With the de fact way of communicating is over FSTP. The whole industry is kind of cultured into

a calendar-day information cycle. That’s sort of way. It’s easy. It’s robust. We know how to do it.
Yeah, it’s great.

We’re kind of used to that. They’ll send us things in various formats. I can talk about this for

probably too long because I love this stuff, but there’s thing, EDI, electronic data interchange.
Wonderful, wonderful thing. If you read the Wikipedia entry about this, you’ll find out after

following a couple of links that it got its start during the Berlin airdrop after World War II. There’s
this amazing logistical problem getting supplies into West Berlin for the allies and they were

using these old modems to actually communicate. They need a compressed format to send it,
and this thing has evolved over the decades and really took hold in the health insurance

industry, the healthcare industry I should say.

We have EDI. There’s U.S. dialect. There’ European dialect of it. Of course, we pretty much deal
with the U.S. thing. It’s this wonderful, wonderful protocol which it can you can look at it — It’s

just a way of transmitting structured data but it’s actually — You need a stack to understand it.
It’s a context sensitive parameter. When you look at it, it’s really just amazing, then developing a

parser which we’ve done because we didn’t just love all the ones that we found out there.
Developing a parser is one of the most fun things I’ve done in the last — I don’t even know how

long I can remember. Great, great stuff.

There’s these old formats. There’s like HL7 is another one which is less interesting than HTML.
We get lots of CS fee, like stuff in various formats. We have to convert that into raw data, upload

it to S3, stick an event on Kafka. We have a thing that this subscriber might be interested in,
then you might download the file, transform it in some way, stick it in a database, use MySQL.

We’re kind of moving more towards PostgreS.

As time goes on, we can talk about why in just a little bit. Yeah, that’s sort of how this stuff goes.
In the opposite direction, it’s pretty much exactly the same. We have to communicate with

© 2017 Software Engineering Daily �14

SED 347 Transcript

people by dropping things down in whatever format they need in outgoing FSTP drop, or they

could actually get it. Maybe we’re going to send it to them over Rest or Soap. We just have to
be prepared for just about anything.

[SPONSOR MESSAGE]

[0:37:47.2] JM: Spring is a season of growth and change. Have you been thinking you’d be

happier at a new job? If you’re dreaming about a new job and have been waiting for the right
time to make a move, go to hire.com/sedaily today.

Hired makes finding work enjoyable. Hired uses an algorithmic job-matching tool in combination

with a talent advocate who will walk you through the process of finding a better job. Maybe you
want more flexible hours, or more money, or remote work. Maybe you work at Zillow, or

Squarespace, or Postmates, or some of the other top technology companies that are
desperately looking for engineers on Hired. You and your skills are in high demand. You listen to

a software engineering podcast in your spare time, so you’re clearly passionate about
technology.

Check out hired.com/sedaily to get a special offer for Software Engineering Daily listeners. A

$600 signing bonus from Hired when you find that great job that gives you the respect and the
salary that you deserve as a talented engineer. I love Hired because it puts you in charge. Go to

hired.com/sedaily, and thanks to Hired for being a continued long-running sponsor of Software
Engineering Daily.

[INTERVIEW CONTINUED]

[0:39:18.2] JM: You’re talking about a lot of ways that data can come in. Once it’s in to this,

system what are you doing to extract value from it? You could deliver it to data scientists, you
could somehow integrated back into the customer service platform, you could integrated into the

customer facing application. What are the different things you can do with that massive data
once it is ingested and indexed and normalized?

© 2017 Software Engineering Daily �15

SED 347 Transcript

[0:39:43.3] IC: Just unifying it and presenting a cohesive view that [inaudible 0:39:47.1] is really

kind of the dream just so that you — Developing a truth is actually quite challenging. You got
missing information or like incorrect information that are coming in. Also when you have — We

can transform things in such a way that business decisions are made based on data that was
buggy. What do we do about that? Actually constructing a storage layer that lets us have that

kind of unification, the kind of flexibility, but also lets us really have a very tight understanding of
data overtime is really kind of the first step.

We could look at this as being a nascent effort at Oscar, but you see a lot more of our stuff

ending up what we call — It’s a standard term, bi-temporal storage. What we mean by that is
that we store things, generally as relational. It doesn’t have to be, but we store it with two

different dimensions of time. There’s the valid time which is just when was a particular assertion
true. If it’s in unbounded, maybe it was true from today till the end of time, or maybe it was just

true. Maybe we’re talking about a membership, or a member’s eligibility stand. Then it has an
end date. This was true from January 15th to March 1st when they called in and canceled. I don’t

know.

We have those validity periods which can’t be overlapping for a single assertion because that
would be a conflict. But then we also have the second dimension of time, is the transaction time.

That’s basically what did the system think was true at a given point in time, which you can get a
very different answer from what was true at a given time. That would be, say, for a bug. Let’s

say we improperly cancelled somebody’s membership on March 1st then retroactively a week
later we instated that we instated the plan. The validity period was at one point, say, January 1st

to unbound it. Then it got truncated to January 1st to March 1st, and then it got retroactively
corrected to January 1st unbounded again.

There’s that week of time where we might have made business decisions and it’s incredibly

helpful to be able to go back to that week and say, “Hey, what did the system think was true on
March 2nd, and what happens?”

Going back to trying to understand some of the decisions that were made. Some of the payment

decisions, the care decisions. We can now go back and understand, “Ah! That’s because we
have the wrong data. Now we can rerun these events using the validity period rather than the

© 2017 Software Engineering Daily �16

SED 347 Transcript

transaction period. Wonderfully useful. We developed that first just for thinking about new claims

engine, which is actually a wonderful thing to talk about but I don’t know if we’ll have time.

This idea that we’re going to need these two different dimensions kept on popping up. Once we
started talking about it with the claims, like, “We talk to other teams now, like, “Yeah, that’s

totally makes sense for a member data and for plans, signs ups, like all these—” Now, we’re
like, “All right. Let’s just make everything in general by temporal.” That’s kind of this layer of

integrated truth that we’re trying to where getting really nicely transformed data, really nice
approach to time and that data and make sure all their relationships are covered.

That’s sort of the goal with the data engineering piece right now is developing that foundation.

On top of that foundation, many many things could be built. That’s next. You can see some of
the predictive learning, statistical learning coming out of all of these relationships. Right now,

just building that really solid foundation, getting our operations tight is really the focus of our
data engineering work.

[0:44:04.1] JM: Let’s start to move towards that conversation. What are the moonshot goals

that Oscar could accomplish in the next five or 10 years once this data is closely integrated with
customer facing products?

[0:44:18.7] IC: Sure. You could just imagine, say, making an appointment through the Oscar

web app with a doctor and then you walk into a doctor’s office geo-fencing and so you get
automatically signed in. Transfer your personal, your demographic information, fill out all those

forms. Automatically, you can look over them, sign them manually, but you’ll have to do that
work, so yeah, it’s still a matter of convenience, and we could make it your electronic health

records with your consent available to the doctors so they understand what you’re coming in
with, your context.

Doctor could — The receptionist, even, before you see the doctor, just a quick check to make

sure that you’re eligible, nothing new there. That’s great. See how you’re coming in for a
particular reason. We might need to do these tests. Let’s see. Are those things going to be

covered? We should be able to not only tell you this thing is covered, but we should be able to
tell you exactly what your copay is going to be and how this is going to work towards your

© 2017 Software Engineering Daily �17

SED 347 Transcript

deductible. Is your deductible already been met? What’s going to be the exact payment

situation?

Hopefully you could be able to make a decision before you actually get the service. Exposing
those costs upfront very precisely would be really amazing. Then, say, you get the care and

you’re walking out the office. Why not at that point just have the doctor submit the claim right
there and then? If they can do that, we’ve taken a couple of hops of extra inefficiency out of the

system. Also, we could, if we’re going to owe the provider, why not just pay them right then? If
you want the money in your bank account tomorrow, then submit your claim today.

That whole integrated experience got so much confusion out of the process, so much

inefficiency out of the process. You see it’s not just then we’re providing a convenient case,
convenient experience for the member, we’re also providing convenient experience for the

provider. We want to be mindful of both of those relationships being very important and doing
what we can to broker not only those individual relationships with us but the relationship

between the member and the provider.

Just as a member experience, that would be kind of a moonshot, the kind of technology that we
need to build all that doesn’t really exist in this space right now. That’s what we’re creating.

We’re expecting some really exciting stuff to come out once we’ve finally done the work of
building all of the basic infrastructure and applications that we need to construct an insurance

company.

We’ve had to outsource certain parts of it just because it’s not possible to build a fully running
insurance company in just a few months or even a couple of years. We keep on insourcing, in-

housing more and more of it as time goes on. We’re looking at replacing some pretty major
pieces, like our internal claims engine, our billing and payment systems have already been

done, our eligibility engine. All these are the stuff — On top of the integrated data platform, the
integrated logic platform, to make some of these really beautiful customer experiences become

reality. That’s what we’re shooting for.

[0:47:57.4] JM: That’s one thing that’s cool about the opportunities in what I sometimes hear
being called digital health rather than when people — Because when people think about,

© 2017 Software Engineering Daily �18

SED 347 Transcript

“What’s the intersection of healthcare and technology?” People think about like a new robotics

that’s going to do surgery on you. You don’t even need that necessarily, you just need
computers doing what they do well and you can get a vastly more efficient system.

[0:48:26.3] IC: That’s right. You can see that happening. Just stepping back from Oscar a little

bit. It’s wonderful to see the kind of focus that I’m perceiving now in venture capital and also just
what entrepreneurs are really interested in and tackling right now.

[0:48:45.1] JM: Is it getting easier? Is it getting easier for an entrepreneur that wants to build a

business in healthcare?

[0:48:50.5] IC: In healthcare? Yeah, it’s still pretty tough. It depends on what you’re talking
about. A health insurance company is not going to be easy, period. It’s just really hard, because

not only because of how much work you need to do and how much competency you need to
acquire from very early on, but the regulatory engagement that you need before getting out the

door. The kind of cash that you have to have in the bank to cover thing and figure out in the
sideways. It’s a huge moat to cross. We’re the first new insurer in New York in 15, 17 years,

something like that. It’s just not something that happens very often because it’s super hard.

[0:49:30.1] JM: Why was Oscar able to do that when nobody else could do it for 15 or 17
years?

[0:49:34.3] IC: We have some pretty awesome cofounders. They’re well connected. They’re

smart. They’re experienced. That they were able to pull a lot of these together, and really
ambitious. They’re kind of crazy to pull this stuff.

[0:49:48.6] JM: There was no one weird trick to build an insurance company. They just worked

really hard.

[0:49:54.9] IC: Yeah. We also benefited from the Affordable Care Act. We have that wonderful
configuration of having a promise of a really shake up, or at least the indication that there might

be a disruptive legal legislative happening. If we could position a company to take advantage of
that, well that gets venture capitalists interested.

© 2017 Software Engineering Daily �19

SED 347 Transcript

Then we had to have a bunch of crazy cofounders to think that — It’s like, “Wow! Let’s make a
health insurance company and let’s try to fix something that is ingrained and difficult as the

United States Health Insurance or just healthcare industry. To find people who are crazy enough
to think that it was a good idea to help them. It’s tough and the Affordable Care Act really did get

us the investment interests, but then the ambition and the competency of the people who really
got this place started. It’s something that I find pretty impressive.

[0:50:56.4] JM: Okay. Last question in the remaining five minutes or so we have. Why is it that

the United States Healthcare System is so much more expensive and less efficient than the
other developed nations like Singapore, or Israel?

[0:51:12.5] IC: I’m going to have to just put my opinion head on here, but I think it’s an opinion

that’s shared by many of us here. I think getting back to the set of relationships that I was talking
about just the very beginning, that really is the source of a lot of these expense because we

have absolutely the wrong relationships to create a liable market and to put healthy market
pressure on the right players and the right ways.

Just getting back to the initial customer relationship with the healthcare, with the health insurer

is selling to the employer. The employer is now the source of money. They’re the customer.
They’re your friends. They are the person who’s engaging with healthcare as a cost driver. You

got to try to minimize the amount of costs that they develop in the old model.

Also, probably even more diabolical, you have the people who are actually engaging with
healthcare are completely cut out of the pricing of it. Basically, in America, you just want your

health insurance to cover your expenses. You don’t have to look at it. Have you ever looked at
one of those explanation of benefits letters after you’ve been to the hospital? They’re crazy. You

see things like you have to have these incomprehensible services done to you, build 5,000. The
insurance company approved $400, paid 300, you owe 100, something like that. It’s like, “Well,

okay. Cool.”

Why this? Never did I get to shop around. It’s like, “No. Even if you have the luxury of choosing
which hospital you’re about to go to, you’re not going to be able to easily get the prices upfront.”

© 2017 Software Engineering Daily �20

SED 347 Transcript

Now, if you’re actually paying, you might start thinking about that a little bit more. Then it’s like,

“This hospital,” hospital A versus hospital B in the old world, it’s like, “Well, I have this vague
idea that hospital A is kind of higher quality than hospital B,” which may or may not be the case,

but you don’t know. It’s completely abstracted away from you. Hospital A is actually four times
the cost of hospital B and it’s not four times the quality.

You actually have to pay out from your own pocket. You might go to hospital B. That whole

decision, that whole market pressure is absolutely cut out of the equation. That’s one of the
things that we’re hoping to really take advantage of those new relationships to help basically put

the right kind of market pressures back on and get the actual customer as much back into the
conversation in the way that they should be as market participants.

[0:54:03.9] JM: Isaac, I want to thank you for coming on Software Engineering Daily. It’s been a

great conversation.

[0:54:06.9] IC: Thank you so much for having me. It’s been a lot of fun.

[END OF INTERVIEW]

[0:54:12.7] JM: Thanks to Symphono for sponsoring Software Engineering Daily. Symphono is
a custom engineering shop where senior engineers tackle big tech challenges while learning

from each other. Check it out at symphono.com/sedaily. That’s symphono.com/sedaily.

Thanks again to Symphono for being a sponsor of Software Engineering Daily for almost a year
now. Your continued support allows us to deliver this content to the listeners on a regular basis.

[END]

© 2017 Software Engineering Daily �21

