
SED 1540 Transcript

EPISODE 1540

[EPISODE]

[0:00:00] JH: Hi, everybody. This is Jocelyn Houle. Welcome to Software Engineering Daily. 
Today, we're going to interview Robert Cooke from 3Forge. Welcome, Robert.

[0:00:08] RC: Hi. Thanks for having me today.

[0:00:11] JH: Can we get started maybe with a little bit of personal background and your 
journey? How did you come to start 3Forge? What problem were you solving? That type of 
thing, just to get grounded in the context.

[0:00:21] RC: Sure. Absolutely. Thanks for asking. I started 3Forge in 2010, but I'll start at the 
beginning, or at least my beginning. Ever since I can remember, I've always been into 
computers, even before I really knew what computers did. Maybe it was watching Superman, or 
something back in the early 80s. I just knew there was something magical about these boxes, 
and I wasn't quite sure what they did, but I really wanted to learn more. I got my first computer 
when I was about six or seven-years-old, and really none of my friends, or anyone had any idea 
of anything to do with computers.

By just typing keystrokes and reading some books, I finally started to understand what these 
magical boxes did. Then started building software at a pretty young age. I think I did what a lot 
of kids wanted to do, which is I started building video games, platform games, things along 
those lines. Then as I got older, I built an accounting system in my early teens. Pretty much my 
whole life, I've been building software.

[0:01:21] JH: Which is like a game. This is like a game for adults; accounting.

[0:01:25] RC: Exactly.

[0:01:25] JH: For the business world.

© 2023 Software Engineering Daily 1



SED 1540 Transcript

[0:01:27] RC: Yeah. In fact, I mean, I remember when I was a kid, I would always bug my 
parents like, “What can I program? What can I program next?” It was very tough to come up 
with ideas. That's been my life story is looking for a problem to solve, something to really sink 
my teeth into. I have to admit, when I first graduated college in 2000, I went out to Silicon Valley, 
and I thought that would be very interesting. It was. There's a lot of interesting things going on. 

Then I got what I thought would be a very boring, stodgy job at Bear Stearns. It turned out that 
actually, fintech is quite interesting. You're challenged with a lot of unique problems, which I 
would say, in concert, makes I would call the lifelong pursuit to build great software. I call it the 
four Vs, which is velocity of data, the volume of data, the veracity of data, and the validity of 
data. Those four things in concert, again, the idea that data has to be valid and all these things, 
that really got me thinking, as soon as I joined my first tier one bank, how can we solve these 
problems? How can we build a platform for this?

I moved from company to company in fintech, always thinking about this problem and exploring 
and learning and trying to work in as many different departments as I could, front office, middle 
office, back office doing tax rebates. I spent a lot of time on high-frequency trading. All of this 
trying to learn everything I can. Really, again, going back to when I was bugging my parents, 
“Hey, give me something to program,” I'm really thinking about what is the problem? What is the 
problem that the industry is facing and how can I try to objectively define that?

Then I finally in around 2010, 2011 understood what it is that I felt was missing. I stepped 
outside. In fact, I could even say that I understood towards the end of I'm working in these 
banks, but it was very hard to, I would say, to pursue that when you're sitting at a financial 
company, because I felt it was actually very data agnostic. Once I understood what the problem 
was, I said, this is a data agnostic problem that we're looking at here. This has nothing to do 
with finance in particular. I stepped out, started 3Forge, and then that's really been the last 11 
years, it's been focusing on that, on the problem and coming up with this platform that we call 
AMI.

[0:03:54] JH: I was just thinking about what you're saying, Robert Smith of Vista Equity. Yeah, I 
think so said, all software products taste like chicken at some point. I feel like, that's what you're 
saying too, is that the problem statements converge at some point around fintech.

© 2023 Software Engineering Daily 2



SED 1540 Transcript

[0:04:10] RC: Yes. I would say that fintech – I look at fintech as the canary in the coal mine, 
because other than maybe for military purposes, I think computers have been used in finance 
for about as long as anything. I think as other industries mature, they're starting to see the same 
creaks and cracks that the fintech has seen, and the same challenges of fintech has seen. 
Again, I look at it as fintech has been doing it longer, and so I think looking at the problems that 
are faced in that industry, give us an indication of what other industries are going to face as they 
move forward. You're right. At the end of the day, or I guess, I think you said, Robert Smith. 
Everything does start to taste like chicken. I do like chicken, by the way.

[0:05:00] JH: Perfect.

[0:05:01] RC: It’s not a bad thing. But yes. At the end of the day, I think it's important to classify 
software based on the problem set, as opposed to the very specific thing you're trying to solve.

[0:05:16] JH: Let's talk about that problem statement for you, because I'd love to just talk a little 
bit of time to talk about what 3Forge does now and what problems it's focused on. To me, when 
I met you guys and I was looking at your materials, it's, I guess I'm into quoting people today, 
but it's like, it tastes great, less filling, because it's highly performant. This is what we always 
hear in business, when you're a product manager. We want something that's enterprise great, 
highly performant, works the same in sub-second performance worldwide. Then the next thing 
you hear is, “Well, we want to enable our end users. We want to make it easy.” You're constantly 
ping-ponging between these two things. That was something that stood out to me that you're 
really trying to conquer two seemingly opposed goals, but probably more goals than just those 
two. Tell us a little bit about what 3Forge is trying to solve and why.

[0:06:09] RC: Right. Well, I do look at it as, well, I guess going into the culture a little bit and 
how I think culture matters in terms of the type of software, or the quality of software you build. 
First off, I've always had this opinion that building software should be about saving the computer 
in the user's time, not the developers, the ones that are building the software. For the platform 
that we're building, if it takes us 10 times the amount of time to build a particular component, but 
that component can be 10% faster and 10% easier for the end users to use, I think that's well 
worth it.

© 2023 Software Engineering Daily 3



SED 1540 Transcript

Just like, why so much money is spent on a movie. Because someone at some point realized, 
wait a second, even if you spend 10X on the budget for this movie, the viewership is global. The 
number of people that are going to consume that movie is so huge that it justifies the cost for 
doing that. I think that's core to how we build software, or at least how I've always built software. 
Then I try to persuade that across the firm, I would say.

Instead of me thinking of it as – instead of going back to that analogy with the movies and the 
viewers, I think of it as actually, first off, you've got the end users of our software, but then 
you've also got the computer itself. The computer can do billions, I mean, literally billions of 
executions per second. I think one of the tragedies is a lot of those calculations are spent 
needlessly executing code that is inefficient in most cases.

Billions is a lot. That's a pretty big number. We're talking executions per nanosecond. I just have 
always felt that if you really focus on each part and you break the problem down and you try to 
make it as efficient as possible, it's actually incredible how much you can eke out of a computer. 
Maybe this goes back to the 80s when I was trying to build platform video games, and you 
literally had a 23K, 23 Kilohertz machine and every single instruction, you had to make sure it's 
correct. I still take that philosophy with me today.

One thing I have learned being on both sides of the vendor relationship, purchasing vendor 
software and building vendor software, is that performance really is critical. No matter how 
performant the system is, and no matter what the capacity of the system is, as an end user, I 
would find a way to leverage that. As a vendor, I've definitely seen plenty of platforms that that 
becomes the limiting factor, is that you can't process the amount of data you want, or that 
ultimately becomes the limiting factor, how you can use it. I look at it as a vendor. Being able to 
build something that you can do more with less is always better. Going back, yes, I think we 
definitely strive to be, to taste great while be less filling. Yes.

[0:09:16] JH: Let's talk a little bit about that. Then I want to have a quick discussion. Well, 
maybe not quick, but then let's talk about architecture. I'm not going to overlook that, but if you 
think about these two quadrants, and I'm using shorthand here, highly performant, scalable, big 
shoulders, right? Processing. Then the other thing is enablement, making it easy to create the 

© 2023 Software Engineering Daily 4



SED 1540 Transcript

applications. Let's start with that first bucket. What's special about 3Forge that people should 
know technically? What technical decisions have you made to support that goal that’s unique to 
3Forge?

[0:09:52] RC: Well, I think when we talk about performance, it comes down to – I know there's 
this concept of premature optimization. I'm actually not a big believer in that concept, because I 
found once you build something that isn't optimized, it's actually quite difficult and quite scary to 
go back and optimize those things later. I think you're much better trying to focus on that 
upfront. That goes tenfold for scaling. It's extremely difficult to build a system that is not 
designed to scale and then make it scale later on.

I would say that almost in every case when I've seen someone take a product and make it scale 
that wasn't designed to scale from the beginning, it looks like a whole bunch of band aids on top 
of each other to try to get that to work. You end up actually having a lot of costs overhead just 
trying to do the scaling itself. When we built our platform, and I'll talk about the platform, its 
capabilities a little bit, but when we built the platform, scaling was what we spent probably the 
first three or four years on, was how do you focus on scaling? Really, how do you fundamentally 
get a piece of data from point A to point B as quickly as possible and as reliably as possible?

[0:11:10] JH: You have some contrarian philosophies around development processes. I guess, 
what some things that we hold is now is just common ideas in software development, or 
platform development. I really do like your point of view though on some things are hard to 
optimize after the fact. I think we do have a prevalent and sacrilege to say. For the most part, 
just doing things very quickly and editing and changing on the fly works. It works really well in 
the application world, for instance. But there are some really large-scale platform problems, 
where you should at least start out trying to optimize. Start out trying to hit the mark, because it 
is hard to change it later, or at a platform level, or doing something difficult, like moving data 
from one place to the next as fast as possible. I like your contrarian point of view on this. I 
encourage you to bring more of those to the rest of this conversation.

[0:12:06] RC: Okay, I'll do my best.

© 2023 Software Engineering Daily 5



SED 1540 Transcript

[0:12:09] JH: I can tell you're hard to draw out on this, but – Let's just think about then on the 
end user side. Maybe you could share some typical use cases. How do people use – people, 
regular people, consume 3Forge?

[0:12:25] RC: Right. Well, our users, what I was focused on is going back to when I was an 
employee at these large tier one companies and smaller firms was I felt like, I was wasting a 
huge chunk of my employer's money solving the same problem over and over again. It's as if I 
would be working on a, let's say, a back-office application. For some reason, the back-office 
ecosystem, they have a certain flavor of how they like to do things, and then you're working on 
HFT and they have a different flavor of how the tools they like to use in this and that.

Again, 90% of the problem is overlapping between them. What I was trying to focus on was how 
do we let our users build applications where the 90% of overlap can be handled by the platform 
and then they can instead focus on the intellectual property; the actual business intelligence that 
they need. Really, people use our platform to build applications, and these applications can be 
anything from a simple reporting tool to a real time monitoring application, to some sort of 
database aggregation solution, all sorts of different things.

Really this is, this is the struggle, I would say, with our product. By the way, we were used at 
many of the world's largest firms in very, very sophisticated use cases. We're also used at small 
organizations as well. The whole focus has been, how do we articulate this product? I would 
say, we came up, in the way I've looked at it now is we are a layer. If you think about the history 
of computing, it's come down to several layers. I think a few things about a layer is once, and I'll 
give some examples of layers first.

I would say, the first layer is if you go way back into computing, you've had hardware machines 
and anytime you wanted to program it, you're literally changing hardware. Then someone says, 
“Well, wait a second. We can use software, instead of just using memory to store the data itself, 
we could actually store the program and software itself, then you end up with compilers.” Each 
one of these becomes layers. Then at some point, you get operating systems and then you 
have databases. Then you get a graphical Windows-based operating systems, and so on and 
so forth.

© 2023 Software Engineering Daily 6



SED 1540 Transcript

Each one of these layers almost becomes ubiquitous. Once it's there and once it works, you 
forget about it. It's critical to actually moving, I would say, the computer civilization forward, if 
you will, right? Because imagine trying right now to build a product without using an operating 
system. It could be done. It actually could be done. You could also build a data warehouse 
without using a database. It would be insane to do that though. That's how I feel about how 
most software is being built today. Because again, it's as if every time we start a new greenfield 
project, it's sit down and solve the same problems over and over again.

[0:15:52] JH: Yeah, let's double click on that, because I like this idea of the overlap, or solving 
the same problems. Can we break down what some of those problems are, because I'm not 
picturing, I don't think entirely. One thing that jumps to mind is pipelines and integrations, but 
there's probably a short list of things that isn't that overlap. Typically, what are those things?

[0:16:10] RC: Right. Well, I think one thing is integration with your underlying systems. Typically, 
our customers will have many different databases. We have adapters to all of the different 
databases, so we can just integrate with those directly. Then we focus a lot on how do you 
actually access multiple systems at the same time? That's an important thing that needs to be 
done, which is query system A, get the result back, use that result for query system B, get the 
result back, query system C. We call that a cascading query.

At the end of the day, that's a problem that is solvable, but ends up being solved over and over 
again. Because again, once you get to large organizations, they're not just sitting on one 
particular database, or sitting on multiple databases. That's one example. Another one is how do 
you handle the movement of real-time data and making that available to users? That's actually a 
very interesting challenge. It's thought of as a very expensive problem, because to develop it is 
typically takes a long time and it's fraught with air. If done right and done once and done to 
perfection, then everyone can just use it. That's another thing we focused on is we can connect 
into pretty much every type of real-time messaging system, and then you can build real-time 
dashboards on that. That's the second problem that I feel comes up all the time.

By the way, most times what happens is they say, “Well, it's too difficult to build something real 
time, where the website will actually react as data is changing. Instead, we'll do polling, or we'll 
hit a refresh button, or we'll just hope the user hits refresh themselves, or something like that.” 

© 2023 Software Engineering Daily 7



SED 1540 Transcript

By doing that, you're actually creating a lot more work and a lot more conditions. Well, what if 
they hit refresh and now the tickets have been sold out, blah, blah, blah? If you just do things in 
real time, it actually saves you a lot of these concurrency issues.

[0:18:10] JH: That's right.

[0:18:11] RC: That's a second problem that we've worked very hard at solving. The third one is 
how do you manage historical data, like large sets of archival data? Basically, take that data, 
store it, store it permanently and be able to retrieve that. Do we have a historical petabyte 
database, which basically addresses that?

Then I think the biggest thing is that now, let's say, you've made a decision, I'm going to use this 
for my database, I'm going to use this for my real time, I'm going to use this for my web server, 
so on and so forth, these components weren't all designed to work together perfectly. Again, the 
computer and the developers end up spending a lot of time integrating these components. I 
want to say, the computer spends a lot of time, you almost inevitably have lots of adapter and 
glue code between these things that slow things down, mapping, you get only the least common 
case value out of this multitude of products.

Instead, we've said, we're going to basically have a full stack platform. This gives you your data 
virtualization layer, this gives you your real-time dashboards. I haven't talked about workflows 
yet. This gives you your workflow solution. This also gives you your archival historical database, 
all in one installation. You install this one thing, you have it all, it's designed to scale, and now 
you can start focusing on the intellectual property.

How do I put this? Our customers have practically unlimited dollars when it comes to how much 
money they spend on technology. Some of our customers, the joke is some of our customers, 
their IT budgets are greater than several countries’ GDP, you know what I mean? We're talking 
billions of dollars being spent. So much of that money has been spent solving these problems 
over and over again. They are now turning to our solution to start to build and replace a lot of 
these things. Because at the end of the day, even for these companies with extremely deep 
pockets for building IT and building software, eventually, these budgets creep up.

© 2023 Software Engineering Daily 8



SED 1540 Transcript

[0:20:30] JH: Yeah, yeah, yeah. A couple million here, a couple 100 million here and there 
starts to add up after a while. You've got this overlap world. Things that people have typically 
have to resolve all the time, and this is things like integrations, connectors, access and 
permissions. It's the speed of transforms and queries, and it's getting that real time data and 
that analytical data teed up and ready. It's all of those tasks and probably more. Now, does that 
also include deployment scripts and making it very easy to push button, put install? Or is that 
something that you guys do with [inaudible 0:21:08]?

[0:21:10] RC: Right. Well, our thing is DevOps. Well, it's actually funny, because the original use 
case for our software was around DevOps. Again, DevOps, the funny thing is when you start 
thinking about what it means to deploy software and all this stuff, that's actually just a subset of 
the same problem. In fact, most DevOps tools – we use our platform for all of our DevOps. We 
use it for all of our deployments and all of our testing. It's actually great, because unlike most 
DevOps tools, everything is real time. As soon as someone does a deployment, we see it show 
up within milliseconds. If a build fails, we know milliseconds later, as opposed to screen 
refreshes and things like that. DevOps is a subset of it.

Now with that said, DevOps is a very – there's a lot of vendors focusing on that space. Really, 
the reason people turn to our platform is because they're looking for some bespoke solution. 
We're not necessarily saying, go and replace your typical deployment tool and build it on us. 
Although, you could probably build something a lot more customized and a lot more interesting. 
Again, there's a lot of vendors out there focusing on that.

Really, again, where people are choosing to use our software is because they are – the 
alternative is to hire a team of developers and build this bespoke solution from the ground up in 
turn. Instead, they can choose us, build it in a fraction of the time. It's much more stable, much 
more reliable, the amount of code they're building is a fraction of what it would be otherwise, 
etc., etc.

[0:22:51] JH: Okay, I think I'm a better understanding of this – for application development 
platform and data movement platform, right? It's interesting. I'd love to hear a little bit about just 
a little bit more about your origin story. You talked about your personal background. Just having 
been around this business a long time, what you're suggesting is, “Hey, I'm going to get in there, 

© 2023 Software Engineering Daily 9



SED 1540 Transcript

pay a large financial with a lot of sensitive data and IP. Why don't you put me in between 
everything and I'll show you what the software can do?” That seems like a tough for sale. How 
did you make your first – How did you target your first customer and start deploying this? It's a 
big idea.

[0:23:32] RC: Yeah. Well, so first off, my opinion was, I think just like premature optimization, 
which I don't really believe in, I also don't believe in going after the low hanging. Because if you 
go after the low hanging fruit, it's actually much easier to go after the low hanging fruit. That's 
why it's the low hanging fruit. The problem is, if you build a solution that only lets you get to the 
low hanging fruit, then what do you do once you've gotten the low hanging fruit, right? I felt that I 
needed to prove our solution could solve for the fruit at the very top of the tree, the hardest to 
get to. That really is, we're talking the top tier one banks. Those are the firms we went after.

In fact, our first customer was the number one largest investment bank in the world and they 
were using us to manage all of their orders and executions. Around 350 million per day. That's in 
just a 390-minute trading session. This is many, many executions, many transactions per 
second that we're monitoring, managing in real time. Once we knew that our software could 
handle that in scale and handle that use case, it made it much easier for us to now in 
confidence, go to the small organization and say, “Look, this platform can easily solve what it is 
you're looking for.”

Now, how did we get into the largest organizations? It is very difficult to build. I would say, it 
takes a lot of patience and a lot of time and a lot of understanding to build a real-time dashboard 
that can handle hundreds of millions of transactions and display that. That's what we do. This is 
something that even the largest firms with very, very deep pockets have not really been able to 
solve in a generic way, and we have.

[0:25:35] JH: Do you have a moat around that – that's a moat that you can build right around 
this technical capability. I think a lot of listeners would really be interested, too. I think I know the 
answer, but let me ask you this. Right now, times are tough for a lot of software companies, 
especially younger software companies. It always creates a flight to enterprise sales. 
Everyone's like, “I'm going to shoot to the top of the enterprise.” They've got the big budgets. 
Everybody's clustering around like, “Hey, let's talk to those guys.” For you, I mean, you had a lot 

© 2023 Software Engineering Daily 10



SED 1540 Transcript

of product completed, though, when you closed that first deal, so that you could go for the 
highest fruit. Is that right?

[0:26:12] RC: Yeah, absolutely. That's what made it, I think – that's what I think made the 
3Forge story fairly unique. I think, to sit back and say, and by the way, when I was at these 
firms, I would talk to them when I was employees, I would talk to them about putting together 
budgets and putting together team and building this out. I usually could get the budget. Not 
usually. I'd be able to get the budget and I get the team and we'd start building it out. The 
problem is that you'd have these business cycles. Every two to three years, managers change 
around. I think the average employment time in a particular position for a manager in fintech is 
around 30 months.

It would be very hard to actually build a piece of software that would take half a decade. That 
was very difficult to do. The software that's changed the world, that's really changed the world, 
most of that software has taken half a decade or more. I have an appreciation for that. Whether 
we're talking about the game engines, or we're talking about the operating systems we use 
today, or the databases, all these things, they take time to build, to really build well and build 
them reliably and fast. I knew this is what would be needed.

Yes, we had to spend a lot of time and a lot of resources internally building this out before we 
could really go to market, which I think is unusual. I think most firms, instead, are looking to try 
to get product out the door in 12 months, and they turn to open source and just try to get 
something out the door. For me, I really do look at this as this is my – I hate to say YOLO. You 
got one life to live. I really believe that there's a chance to make a change for the better in this 
world and produce a new layer that allows people to build applications much faster. That's what 
we focused on. Took five years, five years. Takes 10 years, 10 years, 20 years, whatever. It's 
just, this is what needs to be done to move us forward.

[0:28:15] JH: Let's talk a little bit about that idea of the layer that you're building. This is a fun 
game I like to play, in which we have no diagram, but we just talk through the architecture. Let's 
just talk through the flow, so that we understand what this proposed layer is, what's happening. 
If you think about your marchitecture type of diagram, on the left-hand side, we've got a whole 
bunch of data resources. Things are happening. You've got all your files and your data sources 

© 2023 Software Engineering Daily 11



SED 1540 Transcript

and your scripts and your messaging. Then walk me through from left to right, how the AMI 
relays, centers and web servers work. What are those process steps that are happening in 
between those data sources and then you've got your end users.

[0:29:01] RC: Right. Studying and looking at – what I did is I looked at as many different 
architectural diagrams, how systems were built. Tried to consume that and map those to logical 
ideas. I think one of the fascinating things, by the way, is when you talk to most architecture 
teams, they – I feel a bit condescending saying it, but they feel like they're solving a unique 
problem that no one solved before. Funny thing is then you go to the competitor across the 
street and they're solving the same exact thing and they're solving it at almost the same thing. I 
think that's what happens when you start to get high level and you look at this –

[0:29:40] JH: I’m looking at you microservices. I’m looking at you.

[0:29:45] RC: Right. After a while, I distilled it down to a few logical components that you need 
and then you need to make these logical components work together. For me, you need the 
ability to do the transfer of data in real time, which means being able to ingest streams of data. 
You need to be able to ask a question to a system and get an answer back. That's request 
response. There's some correlation that needs to take place there. You ask a question, that is a 
correlation ID. It might be some period of time. You get a response back. You need to correlate 
that so you can answer it. I'm not going to get too much into the currency part of this, but that's 
an important thing.

Then you have workflows, where people need to be able to enter data and then have that travel 
through some decision tree and then ultimately, go into a system. In fact, if you really focus on 
those three things, the ability to ask a question about your data, the ability to stream data and 
look at it in real time, and the ability to enter data and manage workflows across users, that's 
actually just about everything there is when you're talking about enterprise software.

The analogy I often make is just to make this clear is think about email as an example. There's 
really a few things you can do. You can sit there, you can open up your email and you can 
search for a particular email. Ask a question to the email server and it comes back and it says, 
“Here's the emails that have that keyword in it.” That's a question, response. You can also sit 

© 2023 Software Engineering Daily 12



SED 1540 Transcript

there and stare at your screen. When a new email comes up, it shows up. That's the ability to 
manage streaming data. You can also write an email. That's the ability to submit data. That's just 
one. I don't want to get caught up. Sometimes I feel like, when I give an analogy, it sticks almost 
too well. That's just an example of these three components.

In fact, the military has this concept, OOGA. Observe, orient yourself. OODA. I'm sorry, OODA. 
Observe, orient, decide and act. They spent probably billions of dollars coming up with this. 
Really, that's also how the military works. You observe something, and then you orient yourself 
and then you make a decision, you act. That actually falls into those three buckets as well.

In any case, the architecture really, when once we understood these different flows, we could 
think about the architecture, and the architecture came down to three things. One, you need to 
read what we call the relay layer, which is ability to interact with the existing systems. That's kind 
of, I almost call it the immune system. That's actually what connects to the outside world to – the 
when I say the outside world, I mean, the electronic, the existing systems. Again, that has the 
ability to submit data into the systems, ask questions of your data and consume real-time data.

[0:32:40] JH: Let's take that example. Yeah, just to work through a live example. Let's take the 
example of transactions that you just mentioned. A lot of transactions will run on thesis, or 
fidelity way down in the guts of the system, right? Those transactions are hitting thesis, let's say. 
This relay is able to talk to thesis and pull that out, or work with it?

[0:33:02] RC: Yes.

[0:33:03] JH: Okay, thanks. I just want to make sure I understand what the piece parts are.

[0:33:06] RC: Right. This is where the architectural question comes in. There's two ways to set 
this up. It could either connect to it and consume that data in real time, basically get a drop copy 
of that data. Or, it could instead passively ask when the user's interested, right?

[0:33:21] JH: Right. Okay. Thank you.

© 2023 Software Engineering Daily 13



SED 1540 Transcript

[0:33:21] RC: The users, just I want to know about this transaction, ask about it. That's what the 
relay layer is responsible for. Each one of these layer scales, etc. That's the relay layer. The 
next layer is the – what we call the center. That has the ability to do caching and all of those 
things you need, so you're not necessarily going back to the underlying system every time, so 
you can cache if you need to. Again, these architectural decisions that need to be made, they’re 
use case specific. But this is another important building block. Have to have the concept of 
caching. That's really what the center is about. It also manages what I call the HDB, which is our 
petabyte historical database. That's the ability to take this cache at the end of the day, store that 
and then be able to retrieve that.

Because a lot of times what happens is our caching system will sit somewhere. It's pulling in all 
this real-time data for many different systems. At the end of the day, you just want to take that 
data and store it. Now, we take that data, push it into our HDB. Then you can retrieve that. It's 
basically there for posterity sake.

Then the third thing is what we call the web layer. The web layer is actually composed of three 
components itself, if we really get into it. Ultimately, the web layer is what's responsible for 
allowing people to interact with this data. This is actually managing the building of dashboards 
and the viewing of data and managing workflows and all of that stuff. That's what's actually 
managing the GUI itself.

[0:34:44] JH: Let me ask you this about caching, and some of the guts of the system. When 
you think about the largest multinational financials, and if I had this deployed worldwide, even if 
it's all on-prem, you've still got pods in every continent will be running a pod. I would assume 
with an implementation of 3Forge, or what happens? I've got Hong Kong and I've got Detroit 
trying to process transactions, and they want to see it in one view. Is there special goodness 
inside of your architecture that's supporting that type of, I guess, the problem of time? It's the 
problem of time.

[0:35:28] RC: The one thing you can't buy. Well –

[0:35:32] JH: But you know what I mean. Just like in a game, in a multi-massively multiplayer 
game, if you knock me in the head with a mallet in Hong Kong and I'm playing in Detroit, it has 

© 2023 Software Engineering Daily 14



SED 1540 Transcript

to all keep happening seamlessly in what feels like real-time to both players. I think, the same 
thing is true in these financial transactions. You want it to be as close as possible to real 
transactions.

[0:35:55] RC: Yeah. Oh, yeah. I mean, this is a pretty common use case for us is that global 
interaction. Without getting too deep into the architecture, now there's a few different ways you 
could solve this. You could have a single caching point where everywhere – and by the way, 
that's one of the important things about the relays is you can put these relays in different 
locations. They collect data locally. Then they're responsible for distributing this across the 
pond. We focus on never being a slow consumer. What I mean by slow consumer is if your 
cache is hooked up directly to your system and that cache can't keep up, you don't want that to 
have trickle down effects where now your external systems with perspective to 3Forge are 
basically backing up, trying to push data.

Basically, the relays make sure that we can always keep up. They're consuming data locally. 
Once those relays have the data, you can now configure it to distribute that data however you 
like. Distribute to a single center, and then everyone views that center. A lot of times what you 
do is you have multiple centers located around the world, so that they can view data for their 
center locally, will be very fast. Then if they're interested in viewing data from a different region, 
then basically, they're viewing that other center and then they're going to see that latency, but 
only when they're looking at that data.

[0:37:12] JH: Okay. All right. That helps. That's interesting. I think it's an interesting problem. 
The problem of time across these systems.

[0:37:19] RC: It is. That problem is, it's an interesting problem, but it's a solved problem. Again, 
going back to this layer concept is that to be solving these problems over and over again and 
having teams sitting down and thinking about and reconfiguring and redesigning and redoing 
this over and over again, that's just a waste of employer’s money. This is a solved problem. 
That's what we focused on is taking that solved problem, buttoning it up and making it easy to 
deploy and for people to use.

[0:37:57] JH: As its own layer. That's the layer, right?

© 2023 Software Engineering Daily 15



SED 1540 Transcript

[0:37:59] RC: As its own layer. Exactly. Set it and forget it. Focus on the intellectual property. 
Right. Because if you think about what we're really talking about here, this has nothing to do 
with intellectual property. If you said, what firm would identify themselves and say, “Yes, this is 
what we do that makes us special, the ability to concurrently manage data across different 
regions.” That's not the definition of really, a bank. A bank is to manage finances. That's not the 
definition of insurance. That's not the definition of health care. That's not what they do. That's 
not what makes them different.

The idea that that people are spending a lot of time thinking and solving that problem inside 
these organizations is a bit of an identity crisis there, right? It makes sense for a vendor to solve 
this and then for other people to just use that solved solution.

[0:38:49] JH: That's interesting. Yeah, there's a pendulum swing that goes every few years 
between, it's all about subject matter expertise. It’s subject matter supported by software and 
then it goes the other way. It's really software supported by a subject matter expertise. I think 
what you're saying is, let's separate those two. There's the domain and then there's this set of 
problems that have a solution that you want to make repeatable. That's, I think, I'm saying it to 
make sure I understand it myself. I think that's what you're saying.

[0:39:17] RC: Yes.

[0:39:18] JH: Along with this, is you have a concept of a consortium. Is that right?

[0:39:22] RC: Mm-hmm.

[0:39:23] JH: What is that?

[0:39:26] RC: This concept is that I basically look to the customers and the problem set of the 
customers drive the architecture and how we build and how we improve the product. In fact, 
when I was proposing it – and by the way, if you go to just about every large organization, any 
organization, let's say over 10,000 employees, at some point, they created an architectural team 

© 2023 Software Engineering Daily 16



SED 1540 Transcript

that was supposed to build a platform similar to what we have, take input from all the different 
groups, build this platform, and then use this internally across the organization.

I don't know of a single organization that actually succeeded at that, but that is something that 
almost all large companies endeavored on at one point. Actually, it makes a lot of sense. The 
issue is, though, that for none of these companies, did it really make sense for just that 
company to focus on it. Again, I was at several of these companies, and I would be on these 
committees and exploring these ideas of how do you build this? Because let me step back. 
You're a manager, and you've got a few hundred people working for you, and you've got 15 
different teams.

At some point you realize, well, this team over here is trying to build a PDF report, and this team 
over here is trying to build a PDF report. This team here is trying to figure out how to scale data 
globally. That team over there is trying to figure out how to scale data globally. Can we have 
them work together? In fact, can we just take the best and brightest from all these teams, have 
them work together, solve this problem once, and then everyone can use that? It's a logical 
step. It makes sense for management to think that way.

The problem is, again, the ecosystem inside these companies, because they're not technology, 
they're not software companies, it's hard to solve that. Because at the end of the day, what 
drives their bottom line is their intellectual property, not these architectural platform. I believe 
that that concept is correct, but I believe where it was being implemented was incorrect. That's 
why I said, I need to step outside, start an organization, and then once I've got this platform in 
place, go back to these organizations, find these managers that get that concept, talk to them, 
and then bring this platform in, and then pretty much follow the same concept. Once the 
platform's installed, then we can start to listen to the feedback from all of our users, and take 
that, look for what's common, what are the common requests, and build that in and improve the 
product. In a way, it's just the logical evolution of software. It's just this simple concept of write 
once, use many times.

[0:42:12] JH: Interesting. Let me ask you this. When I first checked out your website, and I saw 
some of the dashboards, I thought, “Oh, this is one of these high-end finance plays.” I'll tell you 
why I thought that, because finance loves these extremely dense dashboards. So many people 

© 2023 Software Engineering Daily 17



SED 1540 Transcript

want less information in a dashboard, but others want more. What are you hearing from 
customers in terms of the types of dashboarding they're looking for?

[0:42:43] RC: You have to break it down into two categories. I think this is a missed concept a 
lot. But when I at least took my UX classes back in the 90s, you have to ask yourself, is this 
user interface designed for ease of access and for casual users, AKA just simple consumers? 
Or is it part of their livelihood and part of their jobs, and do they make money using this? Based 
on the answer to that question, you go down two very different paths.

Again, I think this has missed a lot. Spend a lot of time studying UX and GUIs. I think 
organizations, or when you're building dashboards, that's the first thing you have to ask yourself, 
and we can do both. Now, we focus on the dashboards where the end users are using that as 
part of their daily lives, or their daily jobs to make money. In that case, getting more information 
on the screen is better.

I'll give a simple example. I don't know if you've ever been to an airport. I travel all the time now 
for work. I don't know if you've ever been to the airport where at some point, you're like, can you 
choose your seat and then they just flip the screen around. They just turn the screen around 
and say, “Here, choose your seat.” Now, if you look at your app, it's a very simple, very clean 
interface. You can only see a few seats on the screen. They've got nice little icons, this and that. 
Then you see what the employee sees, and they have a special icon for the emergency seats. 
They can see which seats can have pets in them. They can see all the information. This is by 
design, right? The same information is being presented in a much simpler, cleaner, less 
cluttered way for the casual end user.

[0:44:48] JH: It's edited.

[0:44:49] RC: Then it is for the employees. Neither is right or wrong. It's just depending on 
who's consuming it. Now, the thing is traders, and yes, we had traders. I'll never forget, when we 
first shipped our product, we actually had a minimum font size of eight. You would go. It’s very 
customizable in terms of what you could do. Our minimum font size was eight. The traders were 
like, “I want six.” Now, I don't know how often you've tried using a font six, but that's tiny, 
however –

© 2023 Software Engineering Daily 18



SED 1540 Transcript

[0:45:15] JH: That's not quite right.

[0:45:17] RC: You can get more information on the screen and you can do more work. You can 
manage a larger plane, to make the analogy. I think that's why maybe the website is to be 
added, maybe our website's too focused on those use cases. That is a majority of our users are 
really using it to look at large amounts of data. Yeah.

[0:45:39] JH: It's definitely appropriate. It's something that it's just unique to this particular 
world, where most of your customers are. I just wanted to ask a little bit about it. You're thinking, 
I'm interested on the – well, first of all, let me – I want to ask a little bit about the business side 
of the company. Before I do, let's talk about some of the technical choices that you made. You 
have a particular point of view, right? I can prompt you with one thing, but you probably have 
more, of this is a technical point of view that really shapes the product and the product roadmap 
forever.

There are some choices that you make that then become an internal philosophy, a point of view. 
One for you is you're not using open-source software. That's one. What are some other choices, 
or decisions you've made?

[0:46:34] RC: Well, I would say it starts with that. That's a very big decision that I made was to 
not use open-source software. That really stemmed from the, again, going back to performance 
and being able to have full control over the customizations we make. Building our own web 
server, we didn't do just because we felt like it. We knew we needed to, because we wanted to 
have then – 

[0:47:02] JH: Let me ask you this, though, about the – sorry to interrupt you, but the open 
source, I'm just curious. I'm trying to picture you and you're like, as you're designing your 
architecture, did you wring your hands about this at all? Or were you like, “No, we're just 
definitely going to go down a more proprietary path”?

[0:47:15] RC: No. Well, we started off in the beginning using some open-source software. Then 
once you started going through the performance benchmarking and things along those lines, we 

© 2023 Software Engineering Daily 19



SED 1540 Transcript

quickly realized the optimizations we needed to make, pretty much precluded us from using 
most of the open-source software that we wanted. I can, without getting into too many details, 
it's just we found that open-source software is generally just trying to solve the problem, not 
solve the problem ideally. We want to solve the problem ideally. Again, we think of this as 
something where our code gets executed trillions of times a second across the globe. We want 
to make sure we're not wasting our customers’ electric bills.

[0:47:59] JH: Yeah. One way you keep it quick is by keeping all this – a lot of times, there's just 
an efficient code. People are using open-source libraries, and it's not as distinct as it should be. 
Are there other ways that you're focused on making sure that the proprietary advantage turns 
into advantage for your customers?

[0:48:20] RC: Well, the other thing you mean around, what other advantages do we get by not 
using open source?

[0:48:26] JH: Yeah, yeah. Especially around speed, I think, is one area.

[0:48:30] RC: Right. Well, I think one of the things that slows a computer down is, and I can get 
very technical very quickly.

[0:48:37] JH: Let's do it. This is the place.

[0:48:41] RC: I think at a high level, one of the greatest wastes of computing resources is the 
copying of data. The copying of data is how you can build a library that you have no idea how 
other people are going to use it. That's something you can protect yourself when you write code. 
If I'm writing code, if I'm building an open-source component, and I have no idea how people are 
going to use these things, and I want to basically share some internal piece of data, copy it and 
give it to the consumer. When I say the consumer, I mean the developer that's using my open 
source. That ends up being very expensive.

If you really start to break it down and look at it in a profiler, that's a huge cost. This is just a 
bullet point one of many bullet points that I can go through where you take that cost. Then on 
top of that, like I said, you now suffer from the worst-case scenario, where you have all these 

© 2023 Software Engineering Daily 20



SED 1540 Transcript

different libraries, and you can only get the minimum functionality based on what's shared 
across all of them. You know what I mean? If you're trying to do –

[0:49:51] JH: To race to the middle. It's a race to the middle?

[0:49:53] RC: Right. Exactly. If you're trying to support a new type of data structure, but this 
library doesn't support it, now you're in trouble, or you end up building all these different plugins 
and things around that. On top of that, I've also found that if you use a particular open-source 
library, that library is probably also using other open-source libraries, which makes sense. It's 
part of the open-source community. The problem is, now you run it to again, this gets technical, 
you run into two issues. You either get library version conflicts as you've got two different 
libraries that are trying to use the same library, or the other thing is maybe they're using two 
different versions of open source to solve the same thing.

Let's take something simple, like we just want to do, I don't know, string manipulation. You've got 
one open-source library that decides to use a particular library for string manipulation. You've 
got another open-source library that's using a different one for string manipulation. Now, one’s 
going to perform better than the other. But then on top of that, now you've got two sets of 
libraries floating around that ultimately, are doing the same thing, but they're necessary. It 
actually ends up being a very inefficient solution.

Everything I've talked about, the real-time database, the messaging solution, the customized 
web server, the reporting solution, the historical database, everything is under 10 meg. That 
entire package is under 10 megs. Most apps I download on my phone, something as trivial as 
like, finding – plugging in my electric car.

[0:51:36] JH: Your quality index, for instance.

[0:51:37] RC: Your quality check, exactly. Yes. That’s very germane. Yeah, something along 
those lines. That can be a 50 meg app. It makes no sense. The reason it is 50 megs is because 
there's tons and tons of libraries sitting behind there.

© 2023 Software Engineering Daily 21



SED 1540 Transcript

[0:51:51] JH: Yeah, interesting. Yeah, let’s talk a little bit about the business. You've got 
customers, anybody would be super excited to have in the software world. You've got those 
customers. They're reasonably happy. What do you see as – I have some other questions along 
this vein, but what's next for 3Forge?

[0:52:09] RC: We focused mostly on the tier one banks. What's been interesting is that as 
employees from these tier one banks have moved to other industries, like hedge funds, buy 
side, things along those lines, RAAs, they've reached out to us and now they've become 
customers as well, part of the consortium, if you will. We've been able to expand in other 
industries. But really, we've been very heads down building out the platform, making sure we 
have a viable product, or I'd say, a complete product that can be used.

By the way, I don't believe in MVPs either. I don't like the concept of a minimum viable product, 
because then, that ends up limiting what – You end up going out with a minimum viable product 
and then it's hard to expand on that later. I think you really almost have – unless the M stands 
for maximum. Because really, we've focused on –

[0:53:11] JH: Maximum viable product. That's the name of your speaking tour.

[0:53:16] RC: I like that. MVP. Yeah. Yeah. I think, we've focused a lot on having a complete 
solution that solves what, I would say, the most demanding customers in the world need. Then 
really, we looked at later this year in 2024 is really going out and starting to explore other 
industries. Because again, the platform itself is completely data agnostic. We've just been 
focusing on the most challenging use cases up till now.

[0:53:45] JH: How is it licensed and is there any concern around – how does it work with the 
cloud data?

[0:53:52] RC: Yeah. Well, the licensing is basically, a SaaS model. Again, we look at it as a 
consortium. It's a subscription model. The idea is as we add new features, those get included. 
All of our customers are on the same version of the product. Whether you are managing 360 
million transactions a day, or 30,000 transactions a day, or you're using us to replace an Excel 

© 2023 Software Engineering Daily 22



SED 1540 Transcript

use case, it's all on the same platform. We basically have “one branch of code,” that all of our 
customers are running on. Whenever we add a feature, all of our customers get it.

[0:54:30] JH: And they’re consuming. Okay.

[0:54:33] RC: They all get that. Yeah. That is why we call it a consortium. Because if after we 
decide, or look at what all of our customer base is interested in, we add that to the platform, that 
then gets rolled out to all the customers. We always make sure it's backwards compatible.

[0:54:47] JH: Okay. The SaaS model though is you'd like credits I'm consuming, or what am I 
paying for in this? Processing?

[0:54:54] RC: Oh, I see. Yeah, that would depend on the type of customer. I mean, it is different 
if it's a firm with 10 employees, versus a quarter million employees. We'll structure it differently 
accordingly. Yeah.

[0:55:08] JH: Okay. Okay. That can be deployed inside an environment, or you'll support it?

[0:55:15] RC: Yeah. Yeah. The software can either be hosted by 3Forge, or it can basically be 
hosted by the customer itself. A lot of our use cases, they wanted to be internal inside their four 
walls. There's huge security concerns. By the way, that's another, I think has turned out to be a 
huge blessing for us about not using open source, because going through the vendor 
onboarding process at these large firms, I'm actually curious how most software vendors are 
getting through, because they literally make us now, we get this form where you fill in every 
open-source library that you're using, how you're supporting and monitoring that library, what 
checks you have in place, da, da, da, da, da, all of these things. It becomes this huge process to 
bring that through. We get to skip by that, because we have no open source. We have no –

[0:56:05] JH: You’re like, “Nope. Nope. Nope. Nope.” That's good. I like that. This is one thing I 
wanted to ask you, which is, all right, so let's say there's somebody out there at a top 10 bank 
who owns all the data platforms, or maybe a line of business, right? They're like, “Hey, I want to 
do something like this. I want to buy something like this for my company.” What should buyers of 
this type of – not just your product, but if you've got this problem, what are four or five things you 

© 2023 Software Engineering Daily 23



SED 1540 Transcript

should be thinking of? What's the framework for understanding how to buy this? What kind of 
problems should I be thinking about?

[0:56:45] RC: Right. Well, I think flexibility is an important thing to focus on. That's a tough thing 
to do during a POC. I think, it's about asking other people in other use cases what they're 
interested in. I think, one of the things that we hear over and over again is one of the things they 
find very valuable about our platform is we actually decrease the number of vendors they need, 
not increase. I can say again, being on the other side of the fence when I was getting vendor 
products, it's very annoying having to deal with more and more vendors that solve one niche 
thing.

For me, I think when it comes to evaluating a piece of software is to see how many use cases 
can it solve? How many different ways can it be used? Really, look at what the roadmap has 
been. Is the product on an incline, or a decline in terms of what's the history and what's the 
trajectory of where that product is going? Again, these are hard things to do, because you can 
do a POC, and usually, you can find a very specific problem that will – product that will solve 
that POC. Then the problem is, ultimately, you're now constrained by what that particular 
implementation can do, you know what I mean? Looking for flexibility, I think, is a critical piece.

[0:58:10] JH: Yeah, I think that's right in the POCs, people forget to ask that. They only ask the 
question, does it do the thing it said it was going to do? That's one problem. The other problem 
is, can it live in your environment and meet all the other non-visible requirements, right? POCs 
don't shed enough light on that second topic often, unless you’re really just focused on really 
specific about it. How long does it take to deploy something? Let's say, I have five or six sources 
of data. I've got two different lines of business who want dashboards and want to be able to 
query historical data, streaming data. For that package we described starting cold start. How 
long does it take on average to deploy?

[0:58:58] RC: We've had POCs done in a few days, where they've basically gotten the product 
implemented. Depending on the use case, could be a few days, could be a few weeks. I would 
say, it is safe to say that the alternative, usually when someone chooses our platform is to 
instead, go and build a bespoke solution. We look to cut that down by at least 95%. Whatever it 

© 2023 Software Engineering Daily 24



SED 1540 Transcript

would take to build something, regularly it's about a 20th of that. If it took you a year, maybe take 
one or two weeks to build it on our solution. That's what we focus on.

I know that sounds like a crazy number to say we can save 95% – we can cut down 95%. 
What's funny when I actually look at the platform itself for us and where we spend our time, we 
spend a vast majority of our time on actually making tools so people can build solutions faster. 
The actual features and functionality for the end product, we're actually, we're more or less done 
years ago. We had most of that in place of what's being used today.

What we focus on is paying attention to what helps our customers develop solutions faster, 
pinpoint problems faster. We have use cases where our users might have a 1,000 panels or 
more, and literally a dashboard with up to a 1,000 panels. Once you start to get to a 1,000 
panels, you have 20 or 30 different subsystems that you're hitting, that becomes a complicated 
thing. How do we build tools around and optimizing that problem? By focusing on that and 
streamlining that development process, that's how we've been able to continuously reduce and 
reduce and reduce the amount of time it takes for people to build a solution.

[1:00:50] JH: Okay, interesting. Well, it's been really great talking with you. I understand your 
strategy is like, you started with the top-hanging fruit. Now, you're expanding to the mediums of 
the other organizations. I know you've done some speaking in the past. What would you 
recommend for fans and potential buyers? Should they follow you on – they go speak 
anywhere, anything you want to plug right now in terms of where to get more in touch with you?

[1:01:19] RC: Yeah. I think following on LinkedIn makes sense. 3Forge LinkedIn is definitely our 
– that's where we do our, most of our social media notifications, things like that whenever we 
have new databases, adapters and new features and new releases, stuff like that. Yeah.

[1:01:34] JH: Okay, great. I'll put that in the show notes. Thanks for spending some time talking 
to us. You've already been very successful with your product. You've got a particular point of 
view that really seems to be serving the customers very, very well.

[1:01:48] RC: Okay, thank you very much. Thanks for having me.

© 2023 Software Engineering Daily 25



SED 1540 Transcript

[1:01:50] JH: Thanks.

[END]

© 2023 Software Engineering Daily 26


