
SED 1539 Transcript

EPISODE 1539

[EPISODE]

[0:00:01] JMC: Hi, Matt. Welcome to Software Engineering Daily.

[0:00:02] MB: Yeah, thanks for having me. I'm excited for today's conversation.

[0:00:06] JMC: We are here in Open Source Summit North America. Is it your first Open Source 
Summit?

[0:00:10] MB: Ah, no, I've been to a lot of them. This is one of my favorite conferences, 
because you get so many different – there’s so many different tracks here that you get so many 
different kinds of developers, and so many different open-source projects. It's the one 
conference I know of that you get the super broad cross-section of all the interesting stuff going 
on in open source. I rarely miss this one.

[0:00:31] JMC: It's funny, because I think I was complaining about that. Oh yeah, it's a double-
edged sword, right? It's either completely overwhelming, or you got a quarter inch deep and a 
whole bunch of different things. I think I was talking to, I think, it was Eric Brewer from Google 
about this. The same happens in KubeCon + CloudNativeCon, right? Even at a bigger scale 
than this one. It's bonkers how many people attend KubeCon. I’ll keep going. I think they're at 
about 5X. The number is ridiculous.

It's a very varied and diverse and even complicated to follow ecosystem. Yet, you've got this 
common thing that is Kubernetes, right? Everything will run in Kubernetes. Yet, Open Source 
Summit has this different tracks of open source, open SSF this morning, SPDX yesterday. I'm 
sure there's a track for WASM, or WASM related stuff, or not. Or maybe not.

[0:01:32] MB: If not yet, there will be. If I have my way, there will be.

© 2023 Software Engineering Daily 1



SED 1539 Transcript

[0:01:35] JMC: Security. I agree with you. It's beautiful. It's great. It's fun and varied. Yet, I think 
that it's maybe a bit too open in the sense that I wish it had a bit of more of a certain narratives 
going out there, right?

[0:01:52] MB: Yeah.

[0:01:53] JMC: It's not criticism.

[0:01:58] MB: Yeah, yeah. I think when you come into this one, you have to be coming in with a 
perspective that cross-pollination is the goal, right? For us to hear what other people are doing, 
that we normally would not run into in our regular day-to-day operations, right? That is a double-
edged sword, right? Because it means that in some ways, you're sitting on some of these 
sessions and I sat in on one yesterday on quantum computing and I walked out still having no 
idea what the session was.

It was a great session and everybody was really engaged and I'm like, I don't understand. This 
is a little too far afield for my comfort zone. Then on one hand, I wanted to dismiss that and say, 
okay, well there's some that you don't get anything out of. There's a part of it that's like, no, this 
is the thing where a seed is planted and a couple of years from now I'll go, “Oh, I remember that 
talk and I remember that guy.” I'm going to go look that up, because right now it's relevant. I 
hope that that's the thing that happens here. I heard somebody describe this conference also as 
the thing where this is the developers' conference, right? By that, I mean, it's really oriented 
toward the people who are.

[0:02:59] JMC: Exactly. You need to understand that in my complaint that I just – I come from 
the consumer part, so I'm a journalist and I'm trying to figure out everything. From that side, it 
feels a bit complicated. Now, if you have a technologist, or a developer yourself and you're here 
to precisely get pollinated with all these ideas, then you're in the right spot. Even if some of the 
conferences are too advanced, or too niche, or whatever, but you're absolutely right. This 
diversity that exists here and exposing yourself to these ideas that might not feel relevant now 
and so forth down the line will be is incredible. Is it not your first time as an entrepreneur here?

© 2023 Software Engineering Daily 2



SED 1539 Transcript

[0:03:42] MB: This is the second. We launched last year. Now I'm really, yeah. I am not a 
developer anymore, right? This year, it's really ringing true that I've become less and less 
attuned to the nuances of the conversations that I had been when I was a full-time engineer. We 
launched Fermyon last year at Open Source Summit in Austin, and I did one of the keynotes 
there. It was so exciting, because it was the first time that we came out of our stealth mode and 
articulated the vision and got to see people react, by anything from our silly cat game to this 
core proposition that WebAssembly is the next wave of cloud computing.

[0:04:16] JMC: Oh, that's bold.

[0:04:18] MB: Yeah, yeah. I only talk about that. Now it's the first year where we get to reflect 
and say, “So, how has this year gone for us?” Yeah.

[0:04:24] JMC: Okay, that's the next set of questions. Before we move on to that one, exactly, 
precisely, where does the name Fermyon come from?

[0:04:34] MB: Fermyon is one of the two kinds of particums, [inaudible 0:04:37] being the other. 
Fermy was the one who discovered all of this. The team with the exception of me is all end of 
physics. I'm a philosopher. I’m a formerly trained philosopher and PhD in philosophy, don't know 
a thing about physics. Yet, they come up with a name that I have to explain over and over again 
and my explanation gets worse every time I get it, because I really don't know. I know Fermy on 
sub spin, so when we created a project, we created a project called spin. I know that they're 
distinct from bosons and that we will never name a project boson, because that really just 
doesn't have that confidence building on a lot up here.

[0:05:11] JMC: Arch enemies. Bosons are arch enemies.

[0:05:15] MB: Yeah, I like it.

[0:05:17] JMC: Fermyon develops basically, not basically, at a very high level, WASM 
technologies. Would that be in –

[0:05:23] MB: Yeah.

© 2023 Software Engineering Daily 3



SED 1539 Transcript

[0:05:23] JMC: Okay. What is WASM? What is WebAssembly?

[0:05:25] MB: Yeah, that's a great place to start. WebAssembly, you can go online and you can 
read a number of different definitions of it, some of which are highly technical, and some of 
which are very –

[0:05:34] JMC: In contrast of it.

[0:05:36] MB: Yeah. I think really at the end of the day, the way to approach it is by looking at 
what came as a precursor to it and work our way from there into what this is. All right, at its core, 
WebAssembly is a bytecode format that you can compile languages to, okay. When we're 
thinking about it in the big landscape, this is not the first time we've seen a bytecode format. 
Java is the paradigmatic one with .NET also being another good example. Java, you take a 
particular language, the Java programming language, compile it to bytecode, which is a platform 
neutral intermediary binary representation, or a binary format that's not native –

[0:06:12] JMC: Which is not, by the way, as low level as assembly I presume. It’s a bit high 
level.

[0:06:18] MB: Yeah. It describes what the program needs to do in a fast, executable way, but 
not system specifically. Then you need the JVM to execute that bytecode and manage to do the 
plumbing through to the underlying operation system in the underlying architecture.

[0:06:31] JMC: What's the beauty? What was the benefits of introducing that intermediate 
bytecode for Java, at least, would you?

[0:06:38] MB: Yeah. For Java, that original mantra was write once, run anywhere.

[0:06:42] JMC: Okay. Portability.

[0:06:43] MB: Yeah. Keeping in mind, Java was actually a language that was designed initially 
in its first inception to be an embedded programming language. That value proposition is very 

© 2023 Software Engineering Daily 4



SED 1539 Transcript

big, because we know once we get to the embedded world, that's where you really start to hit a 
lot of exotic operating systems, a lot of exotic architecture.

[0:07:00] JMC: Hardware.

[0:07:02] MB: Yeah. The JVM made some – and .NET as well, right? Well, maybe I should 
pause here and say, so we've seen about 20 years of development on the idea of a top quality, 
bytecode-based virtual machine, language virtual machines, right? With two pioneers leading 
the way, Java on one hand, and then .NET on the other. Over time, they've done a lot of 
innovations. They've introduced JITs, and then they had JIT compilers, just in time compilers, 
and then they've managed to optimize those and begin to do some really – as they've gone 
back and forth in the performance race and feature race.

[0:07:40] JMC: Exactly. Because the existence of JITs precisely is like moving away from, not 
necessarily bytecode, but promoting performance, right? Okay.

[0:07:53] MB: Because once you're running it, then you know what the system architecture is.

[0:07:55] JMC: Exactly.

[0:07:56] MB: You know what the operating system is. You can start optimizing for the specific 
instance that you're running on. Java and .NET, they go back and forth, honing and retooling. 
Well, so at some point then, a group of engineers that were comprised of people from all the 
major browser vendors, right? We had some Microsoft people, some Mozilla people, some 
Google people from the Chrome team, the Safari team. They all get together and start talking in 
about 2015 about building a runtime for the browser. They would borrow, they would learn from 
a lot of the lessons from the Java and .NET ecosystem, as far as a bytecode, an intermediary 
bytecode format.

One that was really, at that point, targeted toward executing in the web browser. The use case 
for this, by the way, was, wouldn't it be cool if we could take that old legacy C library, compile it 
to this format, and then access it from JavaScript in the browser. That was the original idea. Or 
what if we wanted to write some really high-performance number crunching code? This is the 

© 2023 Software Engineering Daily 5



SED 1539 Transcript

way Figma uses it when they use C++ to write their code, compile it to WebAssembly, and then 
they execute it in the browser and use it.

[0:09:01] JMC: Oh, okay. Yeah.

[0:09:04] MB: You got a couple of these use cases that involve really taking advantage of 
languages, language features that are outside of Java, or bringing in legacy code that, sorry, 
JavaScript. Or bringing in legacy code that's outside of JavaScript, and making it accessible 
within the web browser.

[0:09:17] JMC: Oh, I see. I see. Who wants to touch that? Yeah, I see the motivation, okay.

[0:09:22] MB: Yeah. You end up with WebAssembly, this specification that's going to do 
something similar to what Java and .NET did, but in a different environment. It's got four key 
features, and we'll probably go back and forth on these. These key features are things that have 
enabled all kinds of interesting stuff. It's got to have a good security model, right? Because you 
essentially are saying, “I should be able to run an untrusted binary inside of the browser. Of 
course, I don't want that binary to be able to root my box, or even to be able to be used as an 
attack factor against the JavaScript sandbox.”

[0:09:54] JMC: Wait, let me interject, before we move on to this precisely. WASM is then a 
spec, which to which companies like Fermyon build against products, right? Or products that are 
conformant with that? Did you guys contribute to that spec? Is that a spec evolving, and so 
forth?

[0:10:12] MB: Oh, yeah. This is an excellent question, because it is a specification, and that's 
what makes WebAssembly impervious to some of the previous attempts to embed richer 
programming languages in the browser. The W3C is the standard body that oversees 
WebAssembly. That's the same body that does HTML and CSS. They run it just like they run all 
their other projects, so there's a broad consortium of people who work together on that, ranging 
from the big browser vendors to small companies, like Fermyon, to edge providers like Fastly. 
Just this big cross-segment of an industry that cares about this runtime programming, this 
performance.

© 2023 Software Engineering Daily 6



SED 1539 Transcript

[0:10:54] JMC: We've got that. WASI, apologies. I want to move on to WASI exactly, but that's 
what I was thinking. WASM is a spec that is hosted in the W3C, and then an ecosystem of tools 
is built around it, right? Well, we'll go into the benefits of that, or WASM in a minute. What is 
WASI, then? Let's describe the whole ecosystem if these are equal peers.

[0:11:19] MB: All right, so WASI stands for the WebAssembly System Interface. When we think 
about, what is the specification that W3 has done already? It's really the bytecode format and a 
way to execute it. When we're talking about that, we're talking about the core compute features. 
But we're not talking about how that compute feature interfaces with the world around it.

[0:11:40] JMC: Exactly.

[0:11:41] MB: The original idea, again, browser focused, was, well, you can just inject functions 
from JavaScript into the WebAssembly runtime, and it can call out, or you can – essentially, 
you're just describing an RPC model, but in JavaScript and the binary. Then as we started 
looking at cases outside of the web browser, it became evident to the group working on the 
WebAssembly standards that if you were going to move it out of the browser, you needed some 
common system interface kinds of things, opening and closing files, reading, writing files, that 
kind of thing. Reading environment variables, accessing the system clock, accessing a random 
number generator, and so on.

Distinct from WASM, the binary format, this is the second set of standards we get emerging. 
This is how WebAssembly can safely and securely interface with other kinds of features, so that 
from the developers’ perspective, they're opening and closing files when they write their code. 
But from the host perspective, the thing that's running it, maybe it's a real file system, maybe it's 
some in-memory representation of it, maybe, but that abstraction there makes it so that you can 
expose all the familiar idioms to the developers using it, while still reserving your ability to 
implement a security model that is much stricter than, or whenever much more elaborate than, 
or flexible than, merely passing system calls straight through to the underlying operating 
system.

© 2023 Software Engineering Daily 7



SED 1539 Transcript

Here again, we could actually contrast this with Java. This is one of the reasons why 
WebAssembly is distinct from Java. When you think about how Java's runtime works, there are 
a certain set of core assumptions. One of them is that by default, Java's security posture is that 
the code that the JVM executes is trusted. When JVM starts, when the JRE starts up and you 
give it a file, it says, “Okay, yeah. You’re asking for a file in the file system? Sure, knock yourself 
out. You want to start up a server? Knock yourself out.”

[0:13:39] JMC: No questions asked.

[0:13:40] MB: Yeah. Because that was the model that the developers were thinking of as a 
created Java. This is going to be a general-purpose language. The security posture of 
WebAssembly was the opposite in which by default, the guest code is untrusted. You assume, 
again, think about the browser model, right? You're assuming that you downloaded random 
code off the internet and you're running it, and you want to protect the environment from it. Then 
by default, the WebAssembly can't do anything, right? If it asks for a file by default, no, of course 
not, right? Or, we'll give you an empty file system and you can –

[0:14:12] JMC: Do nothing with it.

[0:14:12] MB: Do nothing with it. Yeah. Then WASI provides these ways of saying, “Okay, this is 
how I'm going to securely grant this binary access to these things and I'm going to present them 
as files.” But for the developer, it's like, your regular old POSIX-E system gowns and you're just 
like, open the file reading it, closing it, and then so on. WASI really is an enabling technology to 
allow WebAssembly to be run outside of the browser environment in a wide variety of different 
kinds of circumstances.

[0:14:40] JMC: Does any example come to mind that describes the use of WASI specifically, 
or?

[0:14:46] MB: Yeah. I think there are kind of – well, so the first version of WASI, WASI is an 
evolving spec. Their preview release one just added files and environment variables and system 
clocking, those kinds of things. Preview release two will add networking. Preview release three 

© 2023 Software Engineering Daily 8



SED 1539 Transcript

adds concurrency. But what that enabled us to do was start writing standalone programs that 
could be run through an interpreter, like WASM Time.

When one of the things that we at Fermyon got started with was saying, well we see a lot of 
potential for WebAssembly running serverless workloads, and we can get into that in a little bit, 
but I'll just describe very quickly right here why WASI was germane to that one, right? We 
wanted to say, okay, if we wanted to just expose a minimal surface that we could build a thing in, 
could we reimplement CGI, the common gateway to interface revenue, the late 90s, the first 
way we all did web development, could we reimplement that with WASI and basically provide 
people with a very interesting idea, “Oh, I see. You can take WebAssembly, you can use this old 
standard and you can write applications the way we used to.”

It was a fun starting game, because it was went through [inaudible 0:15:58], but it opened up 
people to this idea that now we could run CGI, which was notoriously insecure as the way it 
originally worked was it just, the web server shelled out to the operating system and ran 
something. No guardrails, whatsoever. But here, we can run it in a secure and sequestered 
runtime and make a very secure version of CGI. It was a fun first experiment. Actually, got us 
inspired to what we built later on. But that's a good example of how WASM has to do something 
outside of the browser.

[0:16:25] JMC: Because security is probably the – I was hesitant to say, the main driver. But if 
not the main driver, one of the main ones. What is it connatural to WASM? Should we use, by 
the way, WASM to call the overarching technology, to include WASI and WASM? I think it's fair 
to.

[0:16:45] MB: It's point to do that. There's no real distinguishing the technology and a particular 
specification.

[0:16:51] JMC: Then, would you agree? If so, or if you disagree, what are the reasons for 
security being the driver behind the adoption of, in just at least, in WASM?

[0:17:03] MB: Yeah, and I think in the browser model, it made sense, right? Security needed to 
be a core feature of this, if you were going to run untrusted user code. When you think about the 

© 2023 Software Engineering Daily 9



SED 1539 Transcript

number of environments, particularly now with the rise of cloud over the last decade or so, a 
core principle that we think of, when we think about the way we architect things is, being able to 
rent somebody else's server and execute my workload there.

Now, take the server providers. We’re going to take AWS's perspective, or Azure's perspective, 
right? They're running gobs and gobs of code that they didn’t audit, that they didn't write, that 
they've never looked into. Of course, they're not going to trust that, right? They want to keep 
one customer from attacking another customer. They want to protect anybody from, keep 
anybody from attacking Amazon itself. That security model suddenly becomes very important.

You can also think about plugins in the way plugin architecture or two, where you want to be 
able to allow somebody to extend your application, but you don't necessarily want that to 
become a vehicle for a security, for an attack against your system. That core security posture, it 
was the distinguishing factor of WebAssembly in the browser over against Java and .NET. That 
has a broad set of applications, where a number of others of us were looking at that model and 
going, “Yes, that's what I want. That solves a problem for me.”

[0:18:23] JMC: Okay. Another, I was hesitant before to say that security was the main one, 
because then, another contestant to this is portability, the ability to run everywhere. Could you 
explain why is it so portable? I mean, you've already explained it, but – yeah, and elaborate a bit 
more.

[0:18:40] MB: Yeah, the portability story is really important. Again, we can talk about why it was 
important in the web browser and how that ripples out, right? Think about the web browser in 
back in the 90s. It was not uncommon, unfortunately, to load a web page and have it say, “Oh, 
you can't run this website, because it's IE only. It has to run on Windows, or it's Linux only and 
Netscape.” That’s the word I was looking for. Netscape only. For a while, that was tolerated, but 
we all didn't like it, right?

As the web matured, that story became untenable. Everybody had to say, it's got to run 
anywhere. Operating system can't be a determining factor as ARM arose again as a prominent 
desktop and system architecture. Of course, then we wanted to make sure it was cross 

© 2023 Software Engineering Daily 10



SED 1539 Transcript

architecture, as well a cross processor. That became a necessary feature for the world of the 
browser.

When you think about the way that we're doing a lot of cloud services, the rise of ARM in the 
data center, when I was at Microsoft, you can imagine there, two dimensions to this, right? First 
of all, Microsoft created Windows. Of course, it's important for Azure to be able to support 
Windows workloads. Also, Linux is the standard platform for the cloud. They had two operating 
systems they need to make sure has excellent coverage. Then they had Intel architectures and 
then ARM in the data center starts showing up.

Suddenly, you're telling your developers, you need to write a version of your Docker container 
that runs on each of these permutations, right? I need a Windows ARM, I need a Windows Intel, 
I need a Linux ARM, and developers do not like spending time doing this thing.

[0:20:19] JMC: Don't mention risk five. Don’t bring that.

[0:20:22] MB: Yeah. That is an excellent point. This is not a problem that's going away.

[0:20:26] JMC: Oh, no.

[0:20:27] MB: This is a problem that we're going to see a richer set of complexities that we start 
to be able to do things in better and better ways.

[0:20:33] JMC: Exactly. We would be optimizing for sustainability, for performance and the 
variety of architectures for that is it's not going away.

[0:20:40] MB: Yeah. When the Fermyon team, we're looking at WebAssembly as a candidate to 
provide us an ultra-lightweight runtime for the cloud. To give a little context, right? When we 
think about cloud computing, we think right now of two big categories. There are virtual 
machines, which go from operating in system and drivers, all the way up, with all the bells and 
whistles up to the application you're running. They're the powerhouse of the cloud, right? 
They're never going away, because they are so powerful. But they're also slow, difficult to move 

© 2023 Software Engineering Daily 11



SED 1539 Transcript

the images around, difficult to build the images, slow to start up and it takes minutes to start one 
up.

We needed a second compute and Docker containers came on the scene and we were like, 
“Oh, look at this. We don't have to ship the kernel and the drivers anymore. We can just take 
one application and its dependencies and the supporting tools we needed and we could build a 
long running process that ran inside of a Docker container and we could run our servers that 
way.” That was the landscape we were looking at when we started hearing from developers, 
“You know what we really like? We this whole Lambda E-like thing. We like these serverless 
functions, because all I have to do is write a very small program that takes a request, processes 
it, returns a response and shuts down.”

[0:21:52] JMC: No packaging. No dependency.

[0:21:54] MB: Yeah. We're suddenly talking about a thing whose lifetime is milliseconds to 
maybe a few minutes, compared to a container that's designed to be run for days, or months, or 
so on. And virtual machines which are designed to run basically, indefinitely, right? We're 
looking at that and the limitations that the current serverless models have had. These limitations 
are based on the fact that that style of startup, run, shut down in seconds was being executed 
on platforms that were built either to run from kernel, the virtual machine, from kernel to top of 
the stack, and that's inefficient. Or run long-running processes, like servers and that's inefficient.

We said, what if there's a third kind of computing runtime that would be really secure and would 
be cross-platform and cross-architecture? But could really be optimized for this super-fast 
startup, execute, run to completion, shut down. That's what got us interested in WebAssembly, 
because all of those characteristics that were good in the web browser, the security model, the 
execution model, the cross-platform, cross-architecture story, those were exactly the set of 
features we were looking for.

Fermyon built a couple of tools around this, a spin, a developer tool. That was a bit source, 
developer tool. Spin basically helps you get from the blinking cursor to the scaffolded 
application, to the compiled web assembly binary and then to the locally running instance. Then 
you need a place to deploy your application, and so you can push it up into Fermyon Cloud, 

© 2023 Software Engineering Daily 12



SED 1539 Transcript

which is our hosted version, or you can set up your own Fermyon platform and run it on your 
own infrastructure, or you can use Azure's AKS offering, they have spin support. Docker desktop 
has spin support. There's all these different places you can deploy these kinds of applications. 
But it's really optimized for that millisecond to seconds, maybe minutes timeframe for executing 
this application.

[0:23:42] JMC: Apologies for the ignorant question. But then orchestrating these processes, 
functions, whatever they are, does require a Kubernetes-like orchestration scheduler?

[0:23:55] MB: I think in most cases you really want one. Fermyon Cloud, we run Nomad for our 
orchestration scheduler, which works great for us for the use case we want. We're really trying 
to optimize for very quick scalability. Also, Kubernetes is another environment in which you can 
run these. The container deep project has a a sub-project called Run WASI, and that is basically 
the little shim layer that allows you to plug in something like spin, or something like WASM Time 
and even these kinds of WASI, WebAssembly WASI run times and be able to execute those 
kinds of workloads inside of Kubernetes as if they were containers. Use the same pod manifest 
and describe your applications in the same way you can use deployments and replica sets and 
all of these kinds of things.

The binaries, instead of being container images are WebAssembly and they get scheduled 
down to the WebAssembly. But you're right. Your intuition there is 100% correct. You still want to 
get the most out of this, in most use cases, you still want to be able to schedule this out to run 
across a cluster, and so you want and orchestrate.

[0:24:54] JMC: The last question I had about this and we can move on to success stories. 
You've mentioned before we started recording, the BBC. I play a bit happy. You mentioned 
another one in a way, but you had one bullet point yesterday in your talk that says, literally, 
ideally can support any language.

[0:25:13] MB: Oh, yeah.

[0:25:14] JMC: What does that ideally mean? Why did you preface it with that word?

© 2023 Software Engineering Daily 13



SED 1539 Transcript

[0:25:20] MB: Let's imagine what the biggest risk of WebAssembly is going to be. You defined a 
really cool bytecode format that has all these great security features and all of these, but it's any 
language – the language there, right? Any language should be able to compile to the 
WebAssembly binary format. Who has to do the work of making sure languages compile to 
these formats? That's an open-ended question, right? The technology itself cannot succeed, 
unless languages start supporting it.

When I was looking back on what the big things were that caused fear and anxiety in me a 
couple of years ago was what if C and Rust are the only two languages, the two proof of 
concept languages that ever get big support in WebAssembly? That's not a compelling use 
case, if it only got those two languages. What you really need, and then we keyed into the red 
monk top 20 languages, but you could pick any of those kinds of big language rankings, you 
really want that top 20 to be supported, or as many of them as possible. Yeah.

What the big risk was, was that those communities wouldn't move. What's happened really, over 
the last two years more than anything, we started to see .NET moving. By Microsoft, Microsoft 
started investing. Swift started moving. The community built a Swift to WASM compiler and is 
working on upstreaming it into the mainline Swift. Then we saw Python go, and Ruby, and 
JavaScript and TypeScript. And suddenly, now as of 2023, of the top 20 languages, about 17 of 
them are now at least in progress toward adding WebAssembly as one of the compile targets, 
or one of the runtime targets.

[0:27:01] JMC: Of course, C++ probably did not –

[0:27:05] MB: Actually, C++, each one of them largely, because if you can compile C and you 
can pre-process something, you can get C++. 

[0:27:11] JMC: Yeah, exactly.

[0:27:13] MB: That's how Figma writes most of them.

[0:27:14] JMC: Well, yeah. Exactly.

© 2023 Software Engineering Daily 14



SED 1539 Transcript

[0:27:15] MB: In C++. It's been interesting to see this bigtime momentum moving. In some 
language communities, like C Python and C Ruby are both core projects for Python and Ruby. 
That's where the development happened, right? The core teams worked on this as core part of 
the language ecosystem.

[0:27:34] JMC: Wow.

[0:27:35] MB: Swift in contrast, the community built it and now is working with Apple to mainline 
that into the Swift language.

[0:27:41] JMC: Oh, I didn't know that about the model of Swift. Apple came to approve any 
upstream merger? Is it not an open-source project, Swift?

[0:27:51] MB: Oh, it is open source. They basically, the community wanted to fork it, build the 
WebAssembly compiler and then have that upstream back in.

[0:28:00] JMC: Does it need Apple's approval in a way?

[0:28:03] MB: I imagine so. I got to say, that's not a community I know the mechanics, but I 
imagine –

[0:28:07] JMC: It needs to see.

[0:28:08] MB: It does speak to the richness of the dilemma here.

[0:28:11] JMC: Yeah, yeah, indeed.

[0:28:12] MB: Even you have some, like Java, where Oracle is not particularly fast moving on 
things like this. But there are all kinds of alternate Java virtual machines out there like TVM and 
GraalVM and all of those. A lot of those are moving very quickly toward WebAssembly. It'll be 
interesting to see how a really big rich language ecosystem like Java can move along, even if 
the central player isn't necessarily going to be the leader in this case.

© 2023 Software Engineering Daily 15



SED 1539 Transcript

[0:28:39] JMC: Because on the other end is, well, success, I guess. Several examples. I mean, 
I mentioned the BBC player, because you mentioned it and it sound fascinated. You've 
mentioned those with Figma. Do you want to describe any of those in particular, or any other 
that you know well that applies Fermyon technology to take the most out of WASM?

[0:29:00] MB: Yeah, and we talked about Figma a little bit, which was a really good browser 
case. Another funny browser case. This could be mythical, right? Even though I heard this story 
at Microsoft.

[0:29:09] JMC: I know a company in Spain called Graphics that does it very well. Is it that one 
the one that you’re thinking of?

[0:29:15] MB: No, this one's about Microsoft itself. There is a myth and possibly true, but I don't 
know. That in Office 365, the web browser version, there was some particularly finicky code that 
had been in Excel for since the dawn of the universe, right? Nobody touched this code. It was 
necessary to have this library's behavior in the spreadsheets, so that the Office 365 version is a 
100% compatible with the desktop version.

[0:29:41] JMC: Yes.

[0:29:41] MB: The story goes that they actually compiled that library, that C library to 
WebAssembly, so that they could get this one-to-one behavior. I would love, if any of you ever 
know whether this is true, I mean, I heard this story at Microsoft. But fables do have a way of 
being more attractive than reality. I like those kinds of stories that say, look, sometimes you've 
got this code that needs new life, but nobody's going to actually go in and edit the code. This is 
a way to do that.

You mentioned BBC, and BBC is a really cool edge. BBC, Amazon Prime's player, and 
supposedly, also Disney Plus's player, all use WebAssembly. The reasoning behind this is really 
cool. It is in BBC’s and Amazon Prime's best interest, they have their players on as many of the 
devices and TVs and sticks and game-playing things as they can.

[0:30:33] JMC: Maybe in the Tesla.

© 2023 Software Engineering Daily 16



SED 1539 Transcript

[0:30:35] MB: Yeah, yeah. Well, yeah. Depending on your driving style. Yeah. Think about the 
typical language for IoT is C. Writing C, that's multi-platform across. BBC said, they support 
9,000 devices, right? I mean, it boggles my mind on what that would look like. It would be really 
cool if you could write a really small hardware-specific shim that had a WebAssembly interpreter 
in it, and then put the bulk of the shared code in the WebAssembly level. That's basically the 
approach to these players.

[0:31:06] JMC: Oh, fantastic.

[0:31:07] MB: That's really cool. I think that is such a cool way of showing the value of a 
technology built for the browser in an environment that is very different from the browser.

[0:31:15] JMC: Indeed.

[0:31:17] MB: The IoT, again, being this one where every byte counts when you're there. You 
end up dealing with some very exotic hardware configurations. That's a really cool application.

[0:31:27] JMC: It’s all compute.

[0:31:29] MB: Yeah. Then, because I can't help plug Fermyon, right? I mean, what we've really 
looked at trying to tackle is serverless environment, and how can we build a better serverless 
functions? When we went into it, we said, okay, now we think that at looking at the data, a lot of 
people really want to be able to write very simple web applications, or multi-function web 
applications that just live in that Lambda-E world, but Lambda is too slow to execute those. 
Takes a couple hundred milliseconds to half a second just to close out.

[0:31:59] JMC: The problem that you reckon has stalled a bit, the momentum that, okay.

[0:32:04] MB: Yeah, that and the developer experience. Two things that we've heard that about. 
We went, okay, well, WebAssembly’s start up time, we could get it all the way down with using 
basically, JIT and ahead of time compiling techniques. We could get a cold start of a 
WebAssembly application down to one millisecond. 199 to 499 milliseconds faster than what we 

© 2023 Software Engineering Daily 17



SED 1539 Transcript

were seeing with AWS Lambda. That's a really compelling thing. You could tell a good developer 
story on top of that, which is something we have worked diligently to do. Then suddenly, we can 
offer a really compelling case and say, “Look, you can write web application backends, 
microservice style things in WebAssembly. You're in the language of your choice.” Because the 
WebAssembly part isn't even a part that's necessarily visible to the developer. Write it in Rust, 
write it in JavaScript, whatever. It gets compiled, pushed up somewhere and executed blazingly 
fast.

[0:32:55] JMC: Is spin providing that developer experience?

[0:32:57] MB: Yeah.

[0:32:57] JMC: Okay. Any design decisions that you feel particularly proud of? Any constraints 
that actually help in that sense to make functions as a service, or service as more easily 
consumable and delightful?

[0:33:13] MB: I mean, our core user story for the entire 2022 year, we use user stories to make 
sure we're guiding our feature roadmap to actually meet the needs of the user. Our core one, 
the one we just absolutely were inflexible on was as a developer, I can go from a blinking cursor 
to a deployed application in two minutes, or less.

[0:33:34] JMC: Wow.

[0:33:35] MB: We went, okay, that's ambitious. Yeah. But it should reflect. This is going to be 
the hello world style application, right? The idea is, it can't be the thing that's going to be 
cumbersome for the developer to pick up. You really want this – for us, it was like, imagine 
yourself on a Friday afternoon, you're winding down on your last hour of a day, you can't leave 
early, you don't – you just want something to try and get you excited about your job again. How 
can they come to Fermyon and try this thing out, experience success, and go away for the 
weekend going, “That was fun. Maybe next week I'll try something bigger with it.” That was the 
story we told ourselves, that we really would love to be able to satisfy a developer there. We've 
worked really hard to tell that story.

© 2023 Software Engineering Daily 18



SED 1539 Transcript

Originally, again, the big risk for us was, what if languages don't move, right? We've seen 
languages start moving, in fact, faster than we can integrate them with and that's been, and 
that's awesome. But it's been this environment where we're just really excited, because we hear 
from developers, “Yeah. Yeah, this is the experience I want.” Now they're saying, “Hey, you 
know what would be great? If I didn't have to manage a database when I needed a database.” 
WebAssembly is uniquely suited to be able to abstract away from that network layer thing.

When we were at KubeCon in Amsterdam a couple of weeks ago, our big announcement was 
we announced key value storage that is built in to the platform, so that you don't have to 
manage the service at all. That's ops work, right? When I'm building an application locally, I 
should be able to call just as if it were an API level call, hey, get store, or whatever. I shouldn't 
manage connections. I should never even see a username, password connection string, or 
anything like that. Locally, that should be just some local storage. We actually use SQL, SQLite 
to do that locally.

Then when you deploy it, you want that same set of features, but you want a real database 
behind it, right? I don't mean that pejoratively, it does SQLite, right? I mean, it's [inaudible 
0:35:26]. It's going to be up all the time and it's going to get automatically backed up. But the 
developer doesn't want to manage the ops for that. We said, all right, well, in Fermyon Cloud, 
we can build it in. Because again, this is outside of the guest code, the developer’s writing. It's in 
the runtime itself.

We made it so that when you deploy, if you need the key value storage, it's just there, right? 
Again, no connection management, no username and password. We were surprised to see that 
Dino and Vercelle both released similar things for their JavaScript platforms within a couple of 
weeks of us and out –

[0:35:57] JMC: Which I guess is validation of it.

[0:35:59] MB: Yeah. This is something developers really crave, because it's an easier story. 
We've been pushing them with Kubernetes closer and closer to having to know more and more 
about the ops layer. Here, we're swinging the pendulum the other way and saying, “You know 
what? We know you need key value storage, but we know you're going to need relational 

© 2023 Software Engineering Daily 19



SED 1539 Transcript

database and we're going to add that thing next, right? How can we remove every single speed 
bump along the way?”

[0:36:21] JMC: Wow. This is the last question that I have for you, actually. What is next for 
WASM, for the existing – What is next for Fermyon? Yeah, what's the next stage for adoption?

[0:36:35] MB: On WebAssembly, the core, we got a couple of specifications that are moving 
through that are really important. There's a memory management one that'll help bring along 
several different languages like Kotlin and Dart. We've got the remainder of the WASI work, 
preview two, preview three, and then the final release. Then we've got this thing called the 
component model. This is super cool. This is the thing I am actually really – the worst name for 
a technology.

[0:37:01] JMC: It sounds very dull. I will say that.

[0:37:04] MB: Yeah. Any time I have to say it's super cool after saying the name, that the name 
was undersell, the name undersells it, right? Here you got a neutral bytecode format. Inherent in 
it is this ability to call in and out of the environment outside of it. What would be really cool is if 
we could say, “Hey, this WebAssembly library was built in Rust, this one in Java, this one in 
Python.” I'm writing a piece of JavaScript. I can just import all of those as if they were JavaScript 
libraries. Or another way to say it is, I should be able to link to them without carrying in all one 
language they were written in. What we really need as a specification that says, these are the 
functions I export, these are the functions I import. This is the library I export, this is the library I 
import. The component model is a way to do that.

You can think of it as taking a lot of those ideas that were latent in technologies like RPC, and 
then GRPC, and even rewinding the clock way back to Dcom, and Corba. But bringing them into 
relevance in this new and fascinating environment. If that works out, then finally, we will get to 
that point where we don't have to write a YAML parser in every language under the sun, and a 
network library, a database driver in every language under the sun, and we'll be able to share 
those. That's coming along, too. That's coming along this year.

© 2023 Software Engineering Daily 20



SED 1539 Transcript

We've been prototyping some of it in spin, and it is fun. I mean, it's just such a jolt of adrenaline 
to go. It doesn't matter what language this host library came from. I can just start calling 
functions. We've been playing around with that a little bit. The specification is still in flight, but 
should come out later on this year. That's the exciting stuff on the standard side.

On Fermyon outside, we're just excited to continue telling this great story about how easy it is to 
develop serverless applications that are going to be super-fast, that can run anywhere from 
Fermyon cloud to Docker, to you run on Kubernetes cluster, to a Nomad cluster. That, I think, to 
us is really exciting. We'll keep rolling out these data services and keep rolling out language 
support.

[0:38:58] JMC: Well, that was a fabulous conversation. Thanks so much, Matt, and –

[0:39:02] MB: Yeah. Thanks for having me. This was fun.

[0:39:03] JMC: My pleasure. I wish you all the best.

[0:39:05] MB: Thank you. Thank you very much.

[END]

© 2023 Software Engineering Daily 21


