
SED 1519 Transcript

EPISODE 1519

[INTRODUCTION]

[00:00:00] ANNOUNCER: This episode is hosted by Sean Falconer. Sean's been an academic 
founder and Googler. He has published works covering a wide range of topics from information 
visualization to quantum computing. Currently, Sean is Head of Developer Relations and 
Product Marketing at Skyflow, and host of the podcast Partiality Redacted, a podcast about 
privacy and security engineering. 

[INTERVIEW]

[00:00:27] SF: Torsten, welcome to the show.

[00:00:29] TG: Thank you so much, Sean. Glad to be here.

[00:00:31] SF: Awesome. Yeah. I've been really looking forward to this conversation. You know, 
I have friends at Snowflake. It seems like a great company. I'm actually hosting a panel later this 
week with your community and developer relations lead. And even though it feels like it's been 
exploding for the last several years in terms of growth and brand recognition, it also, in a lot of 
ways – Being at Snowflake Summit back in June, in a lot of ways, feels like you're just getting 
started, which I'd love to hear your thoughts on. But before we get to all that, can you start off by 
introducing yourself and share a bit about your background for how you ended up where you 
are today? 

[00:01:06] TG: Yeah, happy too. First of all, thanks for having me on today. Appreciate it. My 
name is Torsten Grabs. I'm the product manager here on the Snowflake product team. I cover a 
couple of areas. They include Snowpark, among others, and data lake, data engineering, and 
data science and machine learning.

I've been with Snowflake for about five and a half years. And I started working on a project, my 
first project was to bring Snowflake to Microsoft Azure as our second cloud provider. And the 
reason I joined Snowflake was I brought a little bit of experience about Microsoft and Azure 

© 2022 Software Engineering Daily 1



SED 1519 Transcript

because I was working on one of the Azure teams. Prior to joining Snowflake, I've actually been 
with Microsoft in the broader kind of data platform business over at Microsoft for 10 plus years 
prior to joining Snowflake. 

[00:01:54] SF: Amazing. That's a quite a journey. It sounds like you're covering a lot of stuff at 
Snowflake. I think anyone that's kind of working in the data space is going to have probably 
some familiarity and understanding of what Snowflake does and is. But if you're a frontend 
engineer or maybe you're working on specific technologies outside of the data cloud world, 
maybe not. Can you perhaps just start with a description of what Snowflake is? What it does? 
Why and how people actually use it? 

[00:02:22] TG: Yeah. And maybe the best way to describe it these days is Snowflake is your 
data cloud. And it covers all your data types and all the workloads that you can think of. And 
maybe workloads is something that's the most approachable for folks here no matter whether 
you have a traditional data warehousing workload, whether you're a data engineer working on 
data pipelines, whether you want to bridge transactional with analytical workloads, whether 
you're in the data science or machine learning business, all of those are very data-intensive 
workloads. And that's what we are focusing on with Snowflake. And we're aiming to cover all of 
them really well.

[00:03:01] SF: Mm-hmm. Obviously, data storage processing is not a new idea, like ETL, 
extract, transform, load, has been around for a long time since like the 1970s. And various 
storage technologies have been around even longer. And the idea of moving data around, 
transforming it for analytics, reporting, isn't something new. What was it that made sort of 
Snowflake unique? And what product gap did it fulfill or a problem that it solved that one wasn't 
being satisfied by sort of the incumbent players in the market? 

[00:03:30] TG: I think what really changed the game here for everyone was the public clouds 
that started to emerge and become popular. And that really shifted a lot of the fundamental 
assumptions that folks in the data space have been making so far. One of them was – And that 
had a lot of architectural consequences then for the products that were available back then, that 
you always bought compute and storage together. 

© 2022 Software Engineering Daily 2



SED 1519 Transcript

And I think Snowflake was one of the first to do in a really disciplined way is to challenge that 
assumption and say, "Hey, in the public cloud, we can now actually buy, and provision, and 
scale compute independent of storage." And isn't that actually great because it allows us then to 
scale these two dimensions independently of each other? 

And one particular workload, coming back to the workloads that we just talked about, some 
workloads might be very, very compute-intensive. For instance, if you think about a data science 
machine learning workload, that may at times be really, really compute intensive. May still go 
over a lot of data but require tons of compute. And wouldn't it be great if you actually can buy all 
of that compute without having to pay for a bunch of spindles that you're never going to use, 
right? 

And I think Snowflake was one of the first to really explore that separation in a disciplined way. 
And it led to a number of architectural choices that the founders made, which then also are now 
paving the way for benefits for all of these other workloads as well, right? That you benefit from 
scaling this independently. And some other principles that we're closing out on the founders as 
well are on ease of use, simplicity, and avoiding knobs, removing limits wherever possible. I 
mean, those shine to the product experience in all various places. 

[00:05:40] SF: That's amazing. Like, it in a lot of ways, this idea of separating compute and 
storage, like, retroactively seems like such a simple idea. But for a very long time, no one was 
really challenging that assumption. And it sounds like, in many ways, Snowflake, or the 
founders, took the sort of first principles approach. Maybe you can speak to where the idea 
originated from. But I imagine they had a lot of experience in the space and kind of recognize 
that the industry had this false assumption about kind of pairing those things together. 

[00:06:09] TG: I don't necessarily think it was a false assumption up to the point when actually 
the public cloud emerged, when they started offering this as separate resources that you could 
buy separately, right? I, myself, worked on data warehousing appliances prior to joining 
Snowflake in my career. And it was, literally, the best that you could do is you buy off the shelf 
computer boxes and you just put one next to the other. You wire them up with a reasonably 
powerful network connection. And then you had scale out. But since you were buying individual 

© 2022 Software Engineering Daily 3



SED 1519 Transcript

boxes that had a certain amount of compute and storage, you were always buying these 
together. It was state of the art. 

And I think that also then heard a number of the incumbents, because the hardware that you ran 
on then reflected in some of the choices that you also made in your software. And those were 
not necessarily always beneficial. I think that was one of the key advantages for us with 
Snowflake, is that based on that separation, we also started to think about the software stack on 
top of storage in a very, very different way. And that created a lot of latitude for us, right? 

For instance, the whole idea about workload isolation that you can actually bring up a separate 
compute cluster for, let's say, data ingestion separate from the analytics and reporting workload 
in a separate compute environment, but pointing to the same data in a shared storage place. 
That was very novel. And it was made possible, again, by the separation of compute and 
storage. And it had tremendous benefits because you were now able to scale on provision these 
independently.

If, for instance, people were coming in on Monday morning, you could actually provide 
additional capacity for your reporting cluster because everybody was pulling up their reports at 
9am Monday morning, right? And you could cater to that, right? And also, you were avoiding 
noisy neighbor problems. If at some point you had a larger than usual amount of data to load 
into your warehouse, you could independently scale your data ingestion compute cluster and 
bring all that into the shared data space without having any impact whatsoever onto your BI 
reporting workloads, right? Those are just some examples here on how this actually changed 
the game and led to completely new and better customer experiences. 

[00:08:44] SF: Right. It's almost like the idea of breaking apart the monolith, where you're 
creating this like separation of concerns. So, you can independently scale specific workloads or 
specific use cases based on the requirements of the service at a given time of day even. 

One of the products that you mentioned that you oversee is Snowpark, which I believe was first 
introduced in 2021. Can you explain a little bit about what Snowpark is? And why is Snowpark 
exciting to the data engineering and machine learning communities? 

© 2022 Software Engineering Daily 4



SED 1519 Transcript

[00:09:14] TG: Yeah, great question. The more we have started to embrace workloads, such as 
the ones that you mentioned; data engineering, data science, but also working more closely with 
developers actually building applications on top of Snowflake or with Snowflake, we very soon 
came to realize that just having SQL as the only language that Snowflake supports is not viable, 
it's not tenable. Because a lot of what happens in the industry in these workloads actually has 
different language preferences. And maybe data science is the prime example here where most 
of the community today is actually working in the Python ecosystem. And that's where a lot of 
the Innovation happens. And that's the language of choice for data science and machine 
learning practitioners, right? 

In order to support these folks with their data processing needs, we had to think about adding 
additional languages to Snowflake and support them equally well as we have been running SQL 
as our first programming language. And that really led us to start thinking about extensibility 
more holistically. And that is really what Snowpark is about. It is about extensibility on two levels, 
if you want.

The first level is more kind of traditional database extensibility, if you want, by adding additional 
language runtimes to the core database engine to essentially take the compute engine for 
Snowflake. And that's kind of the first major infrastructure investment that we have made for 
Snowpark, is to build out an infrastructure on the server-side that allows us to hold most 
additional language runtimes in sandboxes which are highly secure so that you cannot do 
anything nefarious. Because you might be processing mission-critical data in there.

And now, this infrastructure then has allowed us to first slot in Java virtual machines as the first 
language extension that we provided there. And more recently, the Python runtime as well. But 
the infrastructure is general enough so that we could actually, in the future, if customers asked 
us to do that, we could add additional language runtimes into the mix here. That is kind of the 
bottom layer, the server layer, if you want. 

On top of that, we have also started to think about more modern, more fluent developer 
experiences that resonate concepts and abstractions that resonate with modern software 
development. And something that has become state of the art is very popular particularly in the 
context of data processing is what people call data frames. And they've become popular through 

© 2022 Software Engineering Daily 5



SED 1519 Transcript

the likes of Pandas or Spark. And particularly for large-scale data processing, they are a very 
familiar programming concept for data engineers or for data scientists. 

In addition to the server-side extensions that I just explained, we also started investing into 
client-side SDK experiences to provide language integration into these host languages and offer 
the familiar data frame abstraction for developers. Now, what is neat is those two layers, they 
don't act in isolation. They're actually tightly connected. And what happens is that you can write 
a piece of custom code on the client side, invoke it within one of the data frame transformations 
that you're working on. And when you execute this, we will do the heavy lifting of figuring out 
what's the piece of custom code that you've written on the client side? Pushing that down to the 
server-side, registering that as a piece of custom code in the server-side language extensions. 
And then, essentially, composing that with the overall data flow program that's executing on the 
server side. And that is actually leaning on the same operators that we're also using for SQL 
processing. 

But then in those places where it needs to invoke the custom code, it will escape into your piece 
of custom code in the language runtime in those sandboxes and then do whatever you've told 
your custom code to do. That's really important, because for all those operations in the data 
frame program that you've written on the client side, everything that translates into the regular 
Snowflake operators, that will actually execute and process at regular Snowflake speed. 
Although, you're using a very, very different programming surface with the data frame APIs. 

And that, in a nutshell, is what Snowpark is about. And it has allowed us now to add support for 
languages such as Java and Scala, which are based on the Java virtual machine. And then, 
also, Python, with the Python runtime both with data frame extractions on the client side in 
addition to the server set extensions. 

[00:14:14] SF: Yeah. It sounds like, essentially, someone is writing custom code and then 
running it directly within Snowflake within the sandbox environments. I guess, how does that 
differ from a traditional data engineering process and the tooling that they would be used to 
using? And what is the advantage that working with Snowpark essentially running those loads 
directly within Snowflake provide the data engineers of the world? 

© 2022 Software Engineering Daily 6



SED 1519 Transcript

[00:14:42] TG: Yeah. I think one of the immediate benefits is that you don't have to worry about 
loading your data into a separate processing environment. Everything stays in the same familiar 
place, which is Snowflake, right? You don't have to extract your data into, let's say, a VM that 
hosts your data integration or ETL tool and does the processing there. And then you have to 
worry about pushing the results of the transformation back in. And how do you make sure that 
there's no data left on the virtual machine that hosts your tools, right? 

All of this just happens within Snowflake in exactly the same compute infrastructure, the same 
compute clusters with the same governance and security concepts and primitives that you're 
already familiar with. And I think that's a big advantage, first of all. 

In addition to that, it's much easier to scale and even scale elastically, because you are not in 
the business of managing individual VMS and managing individual capacity for your data 
pipeline. You can lean on familiar Snowflake scaling and performance concepts, right? Our 
virtual warehouse concept is where Snowpark programs run, right? 

It's the same compute infrastructure, the same t-shirt sizes for your virtual warehouse that you 
can also use to speed up your data pipeline if you're a data engineer, or your data science work 
if you are a malpractician. 

[00:16:15] SF: Mm-hmm. With the support now of Python within Snowpark, I'm sure that is a big 
win for the data scientists of the world that are looking to do machine learning models and so on 
with Snowflake. But let's say that I have data in Snowflake and then I had built a machine 
learning model through some traditional methods. How do I actually go about moving that model 
over to using Snowpark so I can take advantage of some of these things? 

[00:16:40] TG: The simplest way to think about this is if you have already a readily trained 
machine learning model, you probably know which function you invoke on that model to invoke 
inference or prediction on that machine learning model. 

The easiest probably is to just refer to that function, invoke that function, from a Snowpark data 
frame program and just inject that somewhere wherever appropriate into your data frame API 
calls that you could, for instance, be – that you have a protection list that you apply to the 

© 2022 Software Engineering Daily 7



SED 1519 Transcript

underlying raw data that you want to score or apply the predictions to. All that is readily done 
through a data frame API call or a set of API calls. 

And then one of these API calls you just call out into the inference function of your machine 
learning model. Obviously, you will have that imported into your Snowpark client-side code. And 
once that data frame program that then executes and gets compiled down into the compute that 
runs on Snowflake, we'll then push the machine learning model into Snowflake on the server-
side and then host the model in Snowpark in the server-side extensions and wherever we need 
to escape into that and treat it as a piece of custom code.

[00:18:01] SF: I see. And then Snowflake also now supports the native application framework, 
which allows one to build essentially an application on Snowflake's data cloud and then 
distribute it in the Snowflake marketplace. And it, again, sounds like it's another sort of system 
for bringing the application closer to the data rather than sort of the other way around. 

As a developer, what can I do with these applications? From the marketplace, as well as like 
developing things for the marketplace? 

[00:18:29] TG: What I would call out first there is that we started the marketplace as a data 
marketplace. But we soon came to realize that most of the value that you get out of your data 
actually comes out of it when you apply a piece of code to the data. And oftentimes, the data 
and the corresponding code go hand in hand. And we wanted to help our customers with that 
juxtaposition, if you want, between data and code by giving customers and developers the 
ability to publish, and distribute, and eventually monetize their code through our marketplace. 
It's no longer just a data-only marketplace. It's a marketplace for data and the code that knows 
how to derive value from your data. 

And that I think is making it easier now for developers on Snowflake to actually bring their code 
to prospects, to customers. Give them the ability to easily try out the code, deploy that into the 
customers', the consumers' Snowflake account. And then if the customer is happy, just have 
them bill and monetize the code and the application through the same infrastructure that we've 
built out for the data marketplace.

© 2022 Software Engineering Daily 8



SED 1519 Transcript

[00:19:46] SF: Yeah. I imagine, historically, for someone building sort of data-intensive 
applications for customers, the process of actually sharing that application with the customer is 
probably quite a headache. You're going to run into the, "But it works on my machine," type of 
problems. And it sounds like by leveraging the marketplace, you are eliminating that issue. 
Because, essentially, you have cloud development, cloud deployment, an easy way of sharing 
the code and having someone install it directly against their own data. Is that right? 

[00:20:14] TG: That is correct. Right. And we're currently running on the three major cloud 
providers across a number of different regions on each of them. And that already helps us 
getting the application code for a Snowflake native application distributed across the globe into 
your Snowflake cloud provider and your Snowflake cloud provider region, right? The code will 
be readily available there. You don't have to worry about like where do I download this from? 
You can actually trust the download location that I've been given, right? It will help also with 
upgrades and version management. 

I think, really, the inspiration here comes from the mobile phone marketplaces and app stores, if 
you want, and provide a similarly seamless experience now for a completely different domain, 
which is data processing and data applications.

[00:21:05] SF: Are you seeing people, I guess in the data engineering, data science, space that 
are essentially solving problems using this method that were maybe not possible to solve before 
or just difficult to do?

[00:21:18] TG: I mean, one example, that comes to mind is, for example, Capital One, one of 
our really large customers. And they've built a number of tools that originally came from their 
own work with the Snowflake internally. But they found them valuable. And others have also 
shared that sentiment and said, "Hey, I would actually love to use that for my Snowflake account 
and for myself Snowflake work. Can you provide me the code for that?" And that essentially let 
them down the native application's path, where their slingshot project now is using Snowflake 
native applications to distribute something that started as an in-house project at Capital One, 
but now is essentially distributing that into the data cloud to all the Snowflake's customers. And 
gives them the ability to benefit from the same capabilities that Capital One is using in-house to 
manage their Snowflake so that those customers can also use the same tools and techniques.

© 2022 Software Engineering Daily 9



SED 1519 Transcript

[00:22:14] SF: Okay. Yeah, that's very cool. I think it makes a lot of sense to move applications 
closer to the data. I think computer scientists have kind of been moving stuff closer together to 
optimize for speed for a long time. But in terms of data space, where maybe people have 
always thought about sort of pulling data into their applications, have you encountered like an 
educational hurdle that needs to be overcome to teach the market that this is possible. And that 
this paradigm of moving applications closer to data is like the right model? 

[00:22:45] TG: I think that the industry is starting to understand this better. And I think a key 
driver there is that people are realizing that the mental overhead of managing a large fractured 
stack with a lot of very different components that all deal with certain slices of the data 
processing problem can quickly become a nightmare if you don't manage it really, really well. 
And there's obviously just concept count, because every slice, if you have a convoluted data 
stack like that, will trade pieces differently. So, you'll have different teams with different skills and 
expertise that you need to build around that. 

And then the other big driver these days is around security and governance, right? If your data 
moves literally across these different places in your stack, you need to make sure that you 
understand all them well. And you know at any point in time where a certain piece of data sits. 
Just mention things like GDPR, which just have "additional pressure" on this where you need to 
make sure that you understand where all your copies of a certain piece of data are. And that 
becomes more tricky if you have more components that interact in interesting ways, right? 
Simplicity helps big time on this run.

[00:24:05] SF: Right. Yeah, the centralization of information is going to help a lot with 
essentially the PII sprawl that a lot of companies are facing today, where their data is in like 56 
different locations and they have no idea where and sort of what they're storing. 

I want to talk a little bit about UniStore. UniStore allows organizations to store and use 
transactional and analytical data together in a single platform. First, what's the difference 
between these two forms of data? 

© 2022 Software Engineering Daily 10



SED 1519 Transcript

[00:24:33] TG: The data is not necessarily that different. You'll often have situations where the 
transactional data is actually the origin, the source, of data that later ends up in, let's say, your 
analytics systems. Think about like sales reports that you do. The sales report is probably a 
piece of analytics that you want to run. But the actual sales are tracked somewhere in a 
transactional system. The traditional way how these connected were through a data pipeline 
through an ETL process that essentially extracted the data out of your transactional system and 
then dumped it into your analytics system.

And the storage organization, the physical layout, of the storage was typically quite different 
between them. Transactional systems usually prefer a role-oriented representation of the data at 
the storage layer. And the reason for that was that the workload pattern was typically such that 
only a few rows need to be accessed at a point in time. A transaction was typically just touching 
a couple handful of rows. And a row-oriented storage layout made that very, very efficient. So, 
response times, latencies were low because of that.

Now, conversely, on the analytical side, for your sales report, you typically want to touch a large 
number of rows, right? Your data set that you want to process for a single report or in a single 
transaction is dramatically larger than what you would process in a transactional system. 

And oftentimes, you didn't need all of the values that you had present in a row. You were maybe 
just interested in the customer IDs, maybe the customer region and the actual sales numbers, 
but a lot of the other data was not relevant. And that then led to the columnar representation 
from a storage representation that allowed us to exclude those columns that were not relevant 
for the particular report and focus on those that were really needed to answer the reporting 
question. And that layout then led to large speedups for reporting workloads that were plowing 
through a very, very large number of rows but only needed slices of the columns that you had 
present in in your transactional table. 

And it's that difference in storage layout and optimizations that were applied to cater to these 
different workloads, which led this to be broken apart into historically separate systems. But we 
were just talking about the complexity in your data stack and how easy it is to end up with 
redundant copies where the same data sits in multiple places and maybe sometimes you not 
being aware of that. This is an example of exactly that situation. Because you'll have the same 

© 2022 Software Engineering Daily 11



SED 1519 Transcript

customer data likely sitting in your transactional system and maybe a slightly different 
representation, but in essence, the same data sitting in your analytics system and just with 
different storage layouts to cater to the different needs of the different workloads, right? 

And obviously, there's a lot to be gained, and folks have worked on this for many years, is can 
you bring these two closer? And can you eventually actually eliminate them being separate 
systems? And can you fold them into one single system that works equally well for your 
transactional workloads and for your analytical workloads? And that's really what UniStore or 
and hybrid tables are about, is, essentially, you bring these two together and creatively bridging 
between different storage layouts based on the workloads that we observe, right? 

And again, we started with independence of compute and storage. Again, this helps us here, is 
that we can actually work on that compute layer and then point to different physical storage 
representations, which logically just looks like the same table. And by virtue of doing that, 
literally bring these two, the transactional and the analytically side together in a single place.

[00:28:34] SF: Is that how, essentially, you're bringing the two worlds of like OLTP and OLAP 
together, is that you have kind of one common interface as a developer to interact with these? 
But behind the scenes, there's sort of these two maybe somewhat complementary ways of 
representing data? 

[00:28:50] TG: That's exactly right. And we're trying to be smart and mindful about what storage 
representation we apply to which thesis of your data at what point in time. 

[00:29:00] SF: Right. So then, I guess using UniStore then, is a developer essentially able to 
build both a transactional application on top of Snowflake as well as using it for traditional sort of 
analytics workloads? 

[00:29:15] TG: That is correct, right? And maybe even in the limit, you could run those on the 
same table. And if you're, for whatever reason, choosing to still keep transactional data in one 
table and analytics data in a separate table, they're all regular Snowflake tables. And if at some 
point you need to run a SQL statement across both of these tables, you can totally do that. It's in 
the same system and it supports the same SQL language on top. You don't have to first stitch 

© 2022 Software Engineering Daily 12



SED 1519 Transcript

together two completely separate independent systems like that to do in the past if you had a 
requirement. 

[00:29:49] SF: Mm-hmm. And then how does this technology sort of differ from something like 
Oracle's Converge database or MySQL's HeatWave database cloud service?

[00:29:58] TG: Yeah, I think to a large extent, we're just driven by our customers here. And 
some of the kind of core Snowflake advantages is probably what I would call out here. The 
cloud native architecture is probably something that differentiates us here in this space, and that 
should give us better elasticity and better scalability. 

And also, I think the ease of use is another key design point for us that we're going to continue 
to pay great attention to even going forward as we're embracing more of the transactional 
workloads. 

And then last but not least, I would maybe call out also the Snowflake consumption model, 
which is the billing model that we use. And it's utilization-based. So, you don't actually have to 
worry about licenses. It's essentially what compute are you using for your workload? And that's 
what you're paying in the end. 

[00:30:48] SF: Okay. Yeah. I want to talk a little bit about sort of your past six years, almost six 
years, at Snowflake. And also, kind of looking towards the future in the next five to ten years in 
this space. You've been there. Obviously, Snowflake's probably changed a lot in the time that 
you've been there. When you look back on your journey there, what are some of the things that 
kind of stand out in terms of how the company and product has changed throughout your 
journey there? 

[00:31:14] TG: I mean, first of all, it has been an amazing journey. When I joined the company, 
we were around 200 people. And right, we're somewhere around 5000 people, a couple 
thousand people, right? And the number of customers, I mean, has grown dramatically during 
that time. So, that has been awesome to experience firsthand. 

© 2022 Software Engineering Daily 13



SED 1519 Transcript

What was also great to see is the different ways how customers have used our product for new 
problems, and we're able to creatively solve these problems that has been amazing to see 
again and again. And it keeps happening, right? 

As we are wrapping our heads around new workloads, and we have just added UniStore and 
Security to the mix of workloads that they support, right? Those are just examples of the leg 
room that we have with some of the core fundamentals of Snowflake's architecture that are still 
playing out. 

And I'm very excited to see us continue on that Journey and see what additional new workloads 
we're going to add over time. I'm very much looking forward to that. And I personally just think 
about some of the workloads that I work on. Think about some of the opportunities that we have 
to really change things dramatically. I think that's just amazing. That thinking about, for instance, 
the machine learning space, data science, one very common problem there is to actually help 
machine learning models getting productized and rolled out to the end user. That has been 
historically a tough problem, and it continues to be challenging. 

Now one of the recent acquisitions that we make with the Streamlit and in the context of native 
applications, I believe, is actually going to help move the needle quite a bit on this front. If you 
think about a machine learning model getting prepared by a data scientist and then wrapped as 
a native application, Snowflake native application, that uses Streamlit as the way how that 
machine learning model interacts with the end user, that is much more meaningful, much more 
powerful than being stuck with, let's say, a Jupyter Notebook in a Docker container that the 
machine learning learning practitioner has to somehow hand off to the end user. 

In many organizations, the end users will not know how to work with a Docker container in a 
Jupyter Notebook in order to leverage the machine learning model, which might be 
phenomenal, right? But it might be much more approachable to have an actual user interface 
with visualizations, which is exactly what Streamlit can provide, right? And just seeing that, bring 
machine learning and machine learning models to the marketplace and to the end users, is 
something that I'm really looking forward to. And that's one of the areas I'm personally very 
close to and also very, very excited about, as you can see.

© 2022 Software Engineering Daily 14



SED 1519 Transcript

[00:34:12] SF: Yeah. There's a lot of development, I think, in sort of the data engineering and 
data science like tooling world. But it seems like there's still probably a lot of work that needs to 
go into productionizing a lot of stuff to get it to the maturity level of, say, traditional application 
development. Do you think that we still have a long way to go in terms of supporting things in 
the data engineering space? Like, testing, and observability, and logging, and rollbacks and so 
on?

[00:34:41] TG: Absolutely. Yes, there's a whole wealth of uncharted territory. And we are aware 
of that as well. And that's also part of the excitement, because we're not going to run out of work 
anytime soon.

[00:34:51] SF: Yeah, that's great. Along the line, there's also been this tremendous growth, I 
think, in the fields of data science, data engineering, data analytics. You hear data is the new oil. 
There was data science is the job of the 21st century. And you see a lot of these roles start in 
sort of the big tech companies. And now you're seeing startups like hiring people in these roles 
much, much earlier. Why do you think there's been so much growth and investment here? And 
where do you see these roles sort of evolving and going in the next five to ten years? 

[00:35:25] TG: I think that, actually, we're going to see just writing code and developing become 
a core skill across all of these roles. I mean, both data engineering and data science will require 
you to write Scala, Java or Python code. And that is not going to change anytime soon. I think 
that's actually going to get amplified. 

For any of these roles, you need to start embracing software development and best practices for 
developers as part of your profession as well. Things like CI/CD, source code version, GIT, all of 
those are essential tools of your trade as well. And they're not just limited to the more traditional 
software developer or programmer.

[00:36:13] SF: Right. And then what do you think – looking ahead, it sounds like you're still 
really excited about what you're doing, which is great to see after spending five to six years at a 
startup that's really exploded. But what do you see is the future of sort of the data cloud in the 
next five to ten years? Are there specific things that you're really excited about? 

© 2022 Software Engineering Daily 15



SED 1519 Transcript

[00:36:32] TG: I think it's really seeing customers and our partners build these collaborative 
end-to-end data value chains across the data cloud I think is it's kind of my mental model. And I 
think we're just at the very beginning of exploring the possibilities of that. Some of the basic 
infrastructure is what we've just started to work on with native applications, with the 
marketplace, with data sharing across cloud providers and regions. We're just a few years into 
that. And I think we haven't really tested out the waters and seen all of the possibilities, right? 
And that's really what I think is going to change how companies, how businesses, how 
organizations, and maybe even individuals at some point are going to interact. It's going to 
change substantially. And data is going to be in the middle of all of it together with the code that 
allows people to actually derive meaning and value from the data that they interact with. And 
providing the foundation for that, being the platform for that, is what we're all about here at 
Snowflake.

[00:37:41] SF: Yeah. This kind of goes back to what I was saying in the beginning, where I think 
it sounds like there's been incredible success, obviously, with Snowflake, and also just the 
whole space of data engineering, data science and so on. But a lot of the investments that 
you're now sort of in a privileged position to make, you're still early days. And you're just kind of 
scratching the surface of what can actually be done with this massive amount of information that 
people are sort of collecting and starting to analyze.

[00:38:08] TG: Exactly. Yeah. 

[00:38:08] SF: Is there anything else you'd like our audience to know? 

[00:38:11] TG: No. I think we covered lots of ground. I'm really thankful for the conversation. I 
really appreciate it. And yeah, looking forward to the next five to ten years. And I'm very curious 
to see what's going to happen and what customers are going to come up with and build.

[00:38:25] SF: Yeah, that's fantastic. Thank you, Torsten, for joining the show and spending so 
much time with us. It's great to hear about your journey going from, essentially, 200 people at 
Snowflake, to now thousands of people. And it sounds like you still have a lot of passion and 
excitement for what you're doing. I'm sure people will find a lot of value in this conversation. So, 
thank you again for joining us.

© 2022 Software Engineering Daily 16



SED 1519 Transcript

[00:38:44] TG: Thanks for having me on. I appreciate it.

© 2022 Software Engineering Daily 17


