
SED 1512 Transcript

EPISODE 1512

[INTRODUCTION]

[00:00:00] ANNOUNCER: This episode is hosted by Sean Falconer. Sean has been an academic 
founder and Googler. He has published works covering a wide range of topics from information 
visualization to quantum computing. Currently, Sean is Head of Developer Relations and Product 
Marketing at Skyflow, and host of the podcast Partially Redacted, a podcast about privacy and security 
engineering.

Today, we spoke with Daniel Situnayake of Edge Impulse. We discussed cloud-based dev 
environments, cloud-based IDEs, infrastructure as code, dev containers and live collaboration.

[INTERVIEW]

[00:00:39] SF: Dan, welcome to the show.

[00:00:41] DS: Hey, thank you, Sean. It's great to see you.

[00:00:43] SF: Yes. I'm really excited to have you on. I was fortunate enough to work with you for a little 
while during our time at Google. But, I guess, before we dive too deep into this really fascinating field of 
machine learning on edge devices, can you start by introducing yourself, I guess, to the listeners and 
give a little bit of background on how you ended up where you are today?

[00:01:04] DS: Yeah, so I mean, I never know where to start with this. I've done such a bunch of 
random, weird stuff, and it's all sort of led me in this direction to working with machine learning on 
embedded devices. But what I do right now is I'm the head of ML at a company called Edge Impulse, 
and we build tools that make it possible for developers to work with machine learning for embedded 
devices. This is a field that hasn't been around very long. So, I was very fortunate to sort of be in the 
right place at the right time for all of this to come to fruition.

My previous role, I was working on the TensorFlow Lite team at Google, and helping launch a product 
called TensorFlow Lite for microcontrollers, which is basically a set of tools for taking deep learning 

© 2022 Software Engineering Daily 1



SED 1512 Transcript

models, and deploying them to the smallest types of embedded devices, which are microcontrollers, 
which basically processes, tiny little computers that you can write low level code for. And we're trying to 
figure out how do you let people take these deep learning models, which are typically pretty big and 
hefty, and shrink them down so they run on these little constrained devices. It turns out, it's really, really 
hard to do that, and since those early days, there's a bunch of tooling that's grown to try and make it 
easier to achieve this kind of thing. That’s the thing that I get really excited about. I think everybody has 
a moment in their career where they stumble onto working on something and they realize, “Oh, I found 
it. This is my thing.” And for me, that was it.

[00:02:38] SF: Your thing is taking machine learning and applying it to this tiny little edge devices, little 
IoT devices and stuff. It's a real niche, I think, you've carved out for yourself.

[00:02:49] DS: It's interesting, because, it's like a niche, but it's a big niche, right? If you think about 
what are embedded devices, these are the things that occupy our world, more than any other kind of 
computer, they're inside of all sorts of things from like your household appliances through to the insides 
of a car. The machinery in factories, pretty much everything we produce these days that uses electricity, 
has some kind of embedded device as a component. And so, what is kind of amazing is that it gives us 
this canvas of the entire world to start deploying machine learning to. So, rather than machine learning 
being this thing that lives on big servers or on notebooks that analysts are running, it becomes this tool 
that's directly in contact with the real world in a very fundamental way, and that's what is really exciting 
to me.

[00:03:47] SF: Yeah. So, you've been in this space for a number of years between TensorFlow Lite, 
and you've written about tiny ML, and you have an upcoming book, AI at the Edge. So, you're not like 
only an expert, but you're kind of an early believer of this, like, the future of this technology. How did 
you get interested in the space to begin with? And then what was sort of the key insight that made you I 
guess fall in love with it?

[00:04:15] DS: Yeah, it's kind of been a long journey. So, I started out, I did a degree in computer 
networks and security back in many years ago in the United Kingdom, a University called BCU. And 
that was sort of a real hodgepodge of loads of different topics. And one of the topics I was working on 
was around auto ID technologies. So, these are technologies that are used to keep track of things in 
the physical world with a computer. Everything from barcoding, and RFID, which was like a hot new 

© 2022 Software Engineering Daily 2



SED 1512 Transcript

thing back then, through to computer vision, which was very primitive back then compared to what we 
have now with deep learning, where we've got these like mobile phone apps that can transform your 
faced into a dog or whatever. Back then, it was like, “Oh, we can just about recognize where 
somebody's eyes are in a photo.”

So, I always found that stuff really interesting. And then, over the course of my career, the technology 
that has enabled the type of stuff that we're doing today, with deep learning models that can do really 
amazing things with vision has just gradually matured, right? It's sort of went through these research 
stages and got into production, and we got to the point that we've got these big server-side models that 
can do really incredible things with vision and trying to understand real world images, for example, or 
processing other kinds of data and figuring out what's going on.

As that technology has grown and become easier to use, so has embedded. And so, embedded tooling 
used to be very, very difficult to work with, used to be super niche. And over time, the tooling has 
evolved to make it easier and easier for any engineer to work with. What that's allowed to happen is 
that the dots have sort of been connected between these two disparate worlds, of machine learning and 
embedded engineering.

So, there was this moment where I was working on a startup that I founded years ago, where we were 
basically developing technology for farming insects as a source of protein. I don't want to go into that, 
because I could spend the whole podcast talking about all that crazy stuff. But one of the things we had 
to do is understand. We've got these sensors in an insect farm that are telling us what's going on. And 
we need to be able to interpret this information to give us actual understanding of what's happening on 
the farm. We've got raw sensor data, and we need to transform that into something that we can use in 
some if statements so that we know, if this is happening, we need to wake up the team, and they need 
to come into the farm and fix this problem. Because otherwise, we're going to have a lot of unhappy 
insects.

Working on that stuff, it kind of brought together these two veins and allowed me to see that there's 
some potential there. And then when I was working at Google, I was just very fortunate like Google, one 
of the cool things about working there is there are all these different teams working on crazy things, and 
you can get exposed to stuff that you just happen to walk by in a corridor, and I came across the team 

© 2022 Software Engineering Daily 3



SED 1512 Transcript

that was working on this union of machine learning and embedded and immediately realized, “Wow, 
this is my thing.” So, kind of like there.

[00:07:36] SF: Yeah, it's amazing. I relate to what you're saying about how I think historically, this idea 
of like building on embedded systems is something that's like procedure is very hard, is niche, is 
something that even going back to when I did my computer science education many years ago at this 
point, I wasn't really exposed to that. I remember I had a professor approached me about the idea of 
doing my master's degree working on embedded systems. I was like, “God, no, thank you.” But I think 
the industry has progressed a lot since then. There's been a lot of development that makes it I think, 
more accessible and seem more sort of tangible to actually creating things that people are actually 
going to utilize versus what I was experiencing back then that felt highly niche or very theoretical.

[00:08:21] DS: Yeah, it's interesting. It's always been really important, embedded engineering, but it's 
gradually gotten more accessible. I wouldn't call myself an embedded engineer. I'm not a real 
embedded engineer. I've been working with embedded systems on and off throughout my career, and I 
sort of know my way around. But the types of skill sets, that people who are spending every day in the 
trenches with embedded engineering have, are just mind blowing, really, really cool, fascinating stuff. 
But it's typically been a little bit more difficult for the average engineer who today, I guess, the average 
engineer is probably someone who works with web application development, I would say, or like back 
end for web applications. Now, we've got to a point where it kind of is a bridgeable gap.

But actually, what we do at Edge Impulse is more about enabling embedded engineers, of whom there 
are millions of people, enabling those people to access machine learning, which is an even more fringe 
thing than embedded engineering ever was, right? This is something that's come out of research labs in 
the last decade. The type of deep learning that is widespread in production use now is something that 
almost didn't exist a short while ago. So, it's even more of a tricky thing.

[00:09:41] SF: Yeah, I guess like why machine learning for these types of devices, these edge 
devices? What type of I guess use cases are people solving using AI on the edge device that they 
weren't able to do previously?

[00:09:56] DS: Yeah. So, there's a really nice way to think about this is that we've got this edge device. 
So, you know what is an edge device, first of all? It’s a device at the edge of the network. So, it's 

© 2022 Software Engineering Daily 4



SED 1512 Transcript

something that's like a node out there in the world where things are happening. It could be an IoT 
device with some sensors on. It could be like a gateway device that's working with a few IoT devices to 
give them connectivity. In more tangible terms, it could be something in your car, it could be your 
smartwatch that you wear when you go running. It could be a weather sensor on a building. It could be 
a machine in a factory that's got some sensors hooked up that can monitor it.

So, all these devices are out there pretty pervasively in our world these days, that are kind of living this 
IoT dream where they're collecting data. And then they're looking at that data a little bit and sending it 
off to a server, maybe. We've got some insight into what's going on in our world and the big vision in IoT 
is that if you instrument everything, you can then make business decisions based on it, or you can build 
smarter products. But the problem is, the thing that wasn't really anticipated is the sheer volume of data 
that comes from the sensors that are out in the field.

Imagine you've got a single device, it might have multiple sensors on, each sensor is like capturing data 
at thousands of samples per second, all of that data is on a device, which is maybe running on a 
battery, or it has limited connectivity, and it's very difficult to send even remotely representative sample 
of that data upstream. So, you really have the situation where we've got all this potential, all this data 
that's describing what's going on in the world, but we can't really do anything with it, because it's 
trapped on these devices. And previously, all the devices could do, they don't have enough memory to 
store much of the data. If you've got a tiny little microcontroller with a couple of 100 kilobytes of RAM, if 
you're lucky, you're not going to be able to store a load of data and then do analysis on it.

So really, what's going on is we've got some maybe very, very simple logic that's doing like a moving 
average filter. It's like, “Ooh, if temperature gets above this, then send a message to the server.” And 
that's about all we can do. That's really a shame, because the data we have captures so much nuance 
about the world, but the utility of these little signals we're getting from is not that high. So, the thing 
that's really, really cool is, if you can take a machine learning model, and put that on one of these edge 
devices, then the machine learning model essentially, is a little bit of software, which has been trained 
to represent some human insight. So, it's like you've taken a little bit of human insight or human 
intelligence, and captured it in this program through some kind of method. And then you're able to 
deploy that program down onto one of these devices, and it can suddenly start to make sense of this 
data that's flowing in. It can turn us high frequency stream of sensor data into a series maybe of 

© 2022 Software Engineering Daily 5



SED 1512 Transcript

meaningful events that tell you about what's happening in the system. And then you can send those 
events upstream and act on them. Or you can use them to initiate some kind of local action.

Maybe we've got an industrial machine that can detect when something's going wrong when 
something's deviating from a normal state, and it can shut itself down to stop any damage happening. 
Or maybe you've got a security system, which is able to not just detect if there's motion going on in a 
room. But if there's a person walking around between certain hours, and then it can wake someone up 
to go investigate, there's just so many different applications where if you put some intelligence down on 
the device, you get a load of things that are feasible, that weren't feasible before. And it covers 
everything from improved privacy where there are so many applications where you don't want to be 
sending raw data from the field up into some mysterious cloud environment. Home security is a good 
example. Like, I wouldn't want to have a camera in my room, in my house, watching me all the time and 
streaming the data up to some cloud company. But I'd be quite happy to have a little camera that's able 
to say whether a person is in the room or not. And if there's a person in the room while I'm on vacation, 
then maybe that's not good.

[00:14:37] SF: You mentioned a lot of really interesting use cases. I think in this idea of bringing 
intelligence to these edge devices. I think a lot of the like recent excitement in development that people 
had around machine learning and AI has primarily come from training these really big models with 
massive amounts of information data, but utilizing the scale of the cloud, and a lot of techniques like 
neural networks and so forth have existed for a long time. But it's like the scalable training that's made, 
what was impractical, now practical for performance perspective. With machine learning on edge 
devices, where, as you mentioned, they could be super low power and not have a lot of resources, 
you're essentially operating in a completely different world from these massive models running on the 
cloud. What were the technical innovations in the space that have made it so that companies can 
actually start to invest in this type of technology?

[00:15:28] DS: Yeah, really good question. So, there's a whole set of tools that have made it possible 
to actually get these models running on device. One of the kind of most important is just the runtime or 
the compiler that you use to take a model that you've trained somewhere, and get it to run on an 
embedded device. So, some of these tools like TensorFlow Lite and microcontrollers are basically 
allows you to take a model that is trained in a pretty typical way on cloud system or on a development 
workstation, and puts it into a form which is optimized to run on an embedded device. It has an 

© 2022 Software Engineering Daily 6



SED 1512 Transcript

interpreter, which is nice and lightweight. It doesn't have lots of dependencies, like the typical Python 
libraries might. It's just nice and portable and simple and it can run these things on device.

But natively, it runs them kind of slowly. The thing with machine learning models is they have a lot of 
repetitive math like big matrix multiplications and those little microcontrollers are not necessarily 
particularly fast. I mean, saying that, one of the things that's led to this technology kind of bursting out 
right now is that over the last few years, we've got these really cheap microcontrollers, cost a couple of 
dollars and are more powerful than the computers that I used to play video games on when I was a kid. 
So now, that we've got this hardware that can potentially run these things, even then, it's a little bit slow, 
by itself. One of the things that's happened is that the companies that develop these pieces of silicon 
have identified that it's really important to be able to do this type of computation and they've come up 
with libraries that make use of optimizations on the hardware level, to implement some of the 
fundamental building blocks of the mathematics for deep learning.

So, we've got these tools that can run a model, those are then connected with these libraries that can 
make use of the special features of the hardware in order to run them quickly. And suddenly, you're able 
to do computer vision, with a deep learning model on a little tiny microcontroller that uses barely any 
power. So, there are also some optimizations and interesting approaches that you can use to transform 
a model, again, kind of mathematically so that it's more efficient to run. So, things like quantization, 
which is a way of basically just reducing the size of the numbers that you're dealing with, and allowing 
you to kind of do less work, but get the same result.

[00:18:10] SF: So, it sounds like there's these hardware optimizations that have been built in, and then 
it sounds like also that, a lot of the trainings are actually happening on the device. Are the devices 
primarily performing just inference operations?

[00:18:22] DS: Yeah, that's a very important point. So, what we've seen is that training on device is 
totally possible, it's just more math. There's no reason technically why you wouldn't be able to do it. But 
the limiting factor really is the availability of labeled data. So, when you're training a machine learning 
model, typically you're taking a dataset and you're marking different samples in that dataset with some 
metadata about what they represent and that metadata is called a label.

© 2022 Software Engineering Daily 7



SED 1512 Transcript

For example, the thing everybody always says is like, training a model to identify a cat versus a dog. 
That's kind of boring, actually. Let's talk about something embedded specific. Maybe we're training a 
model to identify whether I'm running or doing push-ups, and it's going to go in a smartwatch. So, I've 
got a dataset of lots of captures of maybe accelerometer data recorded from people who are doing 
push-ups or are running. What I need to do in order to train a model is label that data with the activity 
that the person was performing. So, that's very easy for me to do. Well, it's not always easy, but that's 
something I can do if I've got this dataset, I can sit down, ask the people what their activity was, and 
label it all. But if we're on device, there's no sort of third party there who's applying the labels. 
Sometimes you can figure out what's going on from situational cues, but if you can do that already, you 
probably don't need another machine learning algorithm to help you understand what's going on, right? 
So, you It's actually quite hard to get data and know what the data means when we're out in the field. 
And so that means that training in the field is pretty challenging, because you're just lacking stuff to train 
with. And while there are some ways around this, and there are definitely some situations where you 
can infer what's going on from some other cue, the vast majority of the time, we're talking about 
machine learning in an embedded context. We're talking about doing inference on the embedded 
device, but we're probably going to be training the model somewhere else, and that's going to change 
and evolve over time. I'm sure we'll see more training on device as the tooling improves, and people 
figure out what kind of use cases it works in. But for now, the vast majority of the time, we're talking 
about inference on device.

[00:20:49] SF: You mentioned that there's these techniques, for example, like reducing the size of the 
inputs. So, is the process of like building the inputs for the machine learning, like building the model, 
different? Is that feature engineering process different for using things like real time signals versus, 
traditional ways of building machine learning models?

[00:21:15] DS: Yeah, I'm glad you brought that up, because that's one of the things that makes 
embedded machine learning really interesting, really unique, and it's sort of at least opened my mind up 
to this whole universe that I hadn't previously been that aware of, of digital signal processing. So, 
people have been trying to interpret real time streaming data on small electronic devices for a long 
time, and the set of tools that is used to do that, for example, to take an audio signal and extract some 
information from it is called digital signals processing. It's this amazing field that's been around for a 
long time. There are a lot of really, really cool algorithms that are like fascinating to read about and 
understand and play with, that can help take this really kind of big, high frequency messy data, and 

© 2022 Software Engineering Daily 8



SED 1512 Transcript

extract the pertinent features from it, in order to make decisions. Historically, this has all been done just 
so that you can write some sort of heuristic logic or conditional logic to understand what's going on.

So, maybe you've got like a clap detector where you can go, “clap, clap”, and the light switches on and 
off. You could use digital signal processing to kind of – if you figure out like, what frequency is that clap, 
and you look for audio that's in that frequency only and filter the rest out, then you can use that to gate 
whether the light turns on and off. So, all of this same technology, we have available now to feed into 
machine learning models. What we can do is rather than like feed raw audio into a machine learning 
model, which is kind of problematic in a lot of ways, because raw audio, it's very sort of big. You've got 
like a high frequency you need in order to capture all of the audible frequencies. You got to be capturing 
audio samples at a certain frequency. And you end up with a lot of data. If you feed a lot of data into a 
deep learning model, you need a big deep learning model, typically. The model itself needs to be quite 
large, or at least, you need to do a fair amount of computation in order to process these samples as 
they come in.

So, what we're able to do instead of that, is throw a battle tested, like highly researched digital signal 
processing algorithm in front of the deep learning network, and let that process the audio, and out of 
that, we get a kind of like distilled, simmered down version of the audio with only the information that we 
care about. So, if we're dealing with speech, maybe we can tune our signal processing algorithm to 
only pick up frequencies that are in human voices, because we don't need any of the rest of that 
information. And we can also sort of reduce the resolution and time of that data, so that it's only enough 
resolution to recognize the types of sounds we make during speech. We don't need to go any more fine 
grained than that, because we're dealing with speech. Suddenly you've taken this big huge input and 
boiled it down into something much more manageable, that we can feed into a deep learning model, 
and it makes the models life easier, because it doesn't have to figure out that stuff on its own. They can, 
right? Deep learning models are really good at that. A deep learning model, you can think of as a 
universal function approximator, so it can learn in theory to take any inputs and give any output. But it's 
better if you can do that stuff in a really easy, well-known way using kind of battle tested engineering 
tools, and then give you a model less to worry about. That way you have more control as well. Because 
I can say, “Hey, I want to ignore signals in this frequency, maybe there's a lot of noise going on in a 
certain frequency.”

© 2022 Software Engineering Daily 9



SED 1512 Transcript

At the DSP stage, I can just decide I'm going to throw that frequency information away before it even 
reaches the model, and it's just saving time and allowing me to have a bit more decision-making control 
over what's going on.

[00:25:28] SF: We talked about a lot of this, like optimization work that people kind of have to be 
thinking about, and I imagine it’s a little bit like, you know, the constraints of doing game programming 
in the 1980s versus what people have at their fingertips today. So, is there like new skills that people 
have to learn that coming from, I imagine, embedded systems programmers already have some of 
these like optimization tricks and thought processes at their disposal, but coming from maybe traditional 
machine learning world, do they need to kind of get up to speed on some of this different way of 
thinking versus like, “Hey, I can just scale endlessly, horizontally and vertically within the cloud and 
build whatever I want?”

[00:26:10] DS: Yeah, definitely. I think one of the key things for me is this idea that you need to decide 
what does good enough mean, because in the machine learning research world, and in the production 
world, really, if we're honest, there's just this kind of hardcore pursuit of metrics and performance above 
everything else. And this idea that what we need to do is eke out every last fraction of a percentage 
point of performance against a benchmark dataset to prove that our model works well. The thing is, the 
way that we do that typically is by pouring processing power and memory at the problem. So, we're 
now, we've got these models that we're using for language processing, which are vast, vast things that 
can't even run on a single computer, right? They can only run in a distributed setup with like a ton of 
GPUs. That isn't going to fly when we're talking about little tiny, embedded devices.

What we've got to do instead of thinking about, like, how can I get the absolute best accuracy at doing 
this, it's still important to think about accuracy and get the best bang for your buck, with performance. 
But we also need to think about, if I'm designing this application, what's the minimum signal that I could 
get from this system that will help this application be better? So, for example, imagine we've got a 
machine in a factory that we're wanting to understand when it's about to fail, and if we can catch a 
failure before it happens, that's awesome. We're going to save a bunch of money because some parts 
of it won't get destroyed when it fails. Do we need to catch the failure 100% of the time? Maybe not, 
because even if we catch the failure, 20% of the time, we're still saving money. So even if we can build 
something that doesn't give perfect results, but is good enough to move the needle a bit, it can be a 
really valid application for this technology.

© 2022 Software Engineering Daily 10



SED 1512 Transcript

Thinking in that type of mindset of like, “Okay, I'm building this product”, if I just knew a little bit more 
about one little thing, what could I do? Sometimes the answer is, “Wow, you can actually make that 
work so much better, even with that little bit of information.” Maybe you're not throwing everything at the 
machine learning model. Maybe you've got a perfectly good heuristic algorithm that you've written using 
your domain expertise, that expresses, “Hey, if this happens, we'll do this. If that happens, we'll do that.” 
But maybe there's like a kind of few corner cases that that doesn't catch, and maybe you've got this 
20% of corner cases, that might be the thing that the machine learning model can help with. And by 
training a machine learning model on those particular corner cases, it can give you a little bit more 
insight that allows you to capture those and do a good job of resolving them.

So, it's all about thinking like, how can this add to what I'm doing and how can I create signals for 
myself that are beneficial without necessarily thinking, this is like a magic wand, I'm going to wave and 
it will do everything for me and figure out what's going on.

[00:29:24] SF: Right. I imagine a lot of use case dependent, going back to your example earlier, where 
you talked about classifying push-ups versus, I forget about the example is, sit-ups, let’s setups and 
then. If my whoop misclassifies my sit-ups as push-ups one time out of 10, it's not that big a deal. I'll be 
okay. There's the George Box quote of like all models are wrong, but some models are useful and it's 
probably as applicable to this idea of AI on edge devices as anything, really, in the space.

[00:29:56] DS: Exactly, yeah. And I think this philosophy obviously, applies across machine learning. 
It's not just something that's specific to edge devices. But it's really important on edge devices, because 
often, you're constrained by maybe how much memory you've got, or the latency you can put up with. 
So, for example, for vision, typically, if you're doing something with vision using a deep learning model, 
the bigger your model is, the more accurate it's going to be, up to a certain point where you get 
diminishing returns. But the point of diminishing returns is a lot bigger than the size of memory that's 
available on a typical embedded device.

So, at a certain point, you've got to decide, “Hey, I've got a cut off here, I'm only able to use like 100 
kilobytes of memory. I still need some space on this device to fit the rest of my program.” So, what can 
you do with 100 kilobytes? What's the best you can do? Maybe you can only get 60% accuracy on your 
task versus 80% with a bigger model. That can't be the end of the world, if that happens. It's got to be, 

© 2022 Software Engineering Daily 11



SED 1512 Transcript

“Hey, this is still an ingredient that can help make my application better, even if it doesn't solve all my 
problems.”

[00:31:14] SF: So, I want to start to talk a little bit about Edge Impulse. Back when I was doing machine 
learning projects in university, you had to know a lot about how all this works, like data cleaning, which 
algorithms they use, how to read the output. And the tooling was super rudimentary, I don't know if 
you've ever used Weka, but they were obviously built by an academic with no intention of commercial 
use. So, I guess, like, how has this changed? And what does Edge Impulse kind of – or where's it fit 
into this like tool chain?

[00:31:43] DS: Yeah, I love that you use that idea of this stuff was built by researchers and academics 
and never intended for production use, because that's really the thing that drove the founding of Edge 
Impulse was like a bunch of people trying to build cool stuff that is all possible in theory, and running 
into obstacles, because the tooling is just so difficult to work with. And it's not the fault of the people 
who made the tools. It's just that those tools were designed to prove something in a research context, 
they weren't designed for real world use.

So, what we do at Edge Impulse is come at this from the point of view of like, “Hey, if you're an 
embedded engineer, and you're trying to add a product feature that does something really cool, and 
you think machine learning might be able to help with that, how do we give you the tools to prove out 
and figure out whether machine learning can help, and then go all the way through the process end to 
end, and do a really, really great job of training the best model in combination with signal processing, 
that you can testing it out. So, you fully understand as an engineer, how it works and what are the 
parameters within which it does a good job. And then how do you get that integrated into your 
application that's going to be running on an embedded device?

So, we really tried to look at this through the lens of like someone who's an embedded expert, someone 
who works in embedded development, but isn't necessarily a machine learning expert. Although we 
want to be really useful for people who have machine learning expertise as well. I think of Edge Impulse 
as an end to end platform, and there are a few competitors out there as well. It's a space with a lot of 
innovation. But it's really a platform that's designed to help you throughout this entire thing that we call 
the machine learning workflow, that starts from when you're thinking about what you want to build, and 

© 2022 Software Engineering Daily 12



SED 1512 Transcript

maybe knocking together some simple prototypes, and goes with you all the way through the process 
of training models, deploying them to device and then making sure that they work well.

[00:33:56] SF: Can you walk me through the process of how do I build essentially like the to-do 
equivalent of ML on an edge device using Edge Impulse?

[00:34:07] DS: Yeah. Well, we got this really nice feature that basically, because this is such a common 
thing that someone who just wants to give this technology a spin. So, one of the things you can do with 
Edge Impulse is like treat your phone as the edge device. If anyone's familiar with WebAssembly, we 
figured out this way to use WebAssembly to deploy a model to your phone, super quick, just so that you 
can test it out and see how it works. So, the most basic end to end thing might be, imagine I want to do 
this push-up versus sit-up detector, right? So, I can hold my phone in my hand. Actually, to begin with 
Edge Impulse, it's like a set of tools based around a web UI called Edge Impulse Studio, which is kind 
of like a workbench for dealing with data from sensors and training models and deploying them.

So, it also has a bunch of other different parts that can connect to different devices and do different 
things like collect data. One of these parts is this mobile client that I'm talking about. What you might do 
is set up a project in Edge Impulse, you then connect it to your mobile phone, you just have to scan a 
QR code, and then you can capture some data super quick. So, lie down on your mat, and do some sit-
ups with your phone in your hand, and then do some push-ups, I guess not with your phone in your 
hand, because it wouldn't move around very much. We've done stuff like strapping an embedded 
development boards, to our arm with some bandages, and doing a workout and collecting a dataset 
based on that.

Once you've got this little dataset, you really only need like a couple of minutes worth of data to begin, if 
you're doing something with activity classification. You can train a simple model and we kind of worked 
through this idea of sensible default values. So, if you first arrive at Edge Impulse, you've got this data 
that you've collected, if you just kind of click through, we’ll hopefully have come up with some stuff, 
which makes sense that will give you a model that works. It might not work super well, but it will work 
enough that you'll be like, “Wow, that's crazy.” And then you start with that, and you go from there. 
Because machine learning development is the most iterative thing you can possibly imagine. The whole 
way it works is iterative. The technology itself works through iteration, like the model is trained through 
iterations of trying to get better and better at modeling the training dataset. And then the workflow is 

© 2022 Software Engineering Daily 13



SED 1512 Transcript

iterative as well. You're figuring out, “Hey, I tried this DSP algorithm, it works all right. Let me try a 
different one and see what the difference is. Like is this working any better or has it got worse?” So, 
what we allow you to do with Edge Impulse is iterate really, really fast, so you're able to test things out 
super quickly, you're able to make changes and try them and keep track of the changes you've made. 
And over time, hopefully not even that long, get to something that works really nicely.

[00:37:07] SF: Imagine some of the examples that you gave, like the idea of having a device in a 
factory that can detect some sort of major problem within the factory or, or even like the idea of some 
sort of device sitting on the International Space Station that's doing something intelligent, that helps 
keep astronauts alive or something. How do you bring in, I guess, that domain expertise? Whether it's 
farming, a factory, or space travel and translate that expertise, I guess, into like an ML model that works 
for something like an edge device?

[00:37:38] DS: I'm so glad you asked that question. It’s so important. So, there are two sides of 
development with machine learning, right? One side is the technical part, where you're thinking about, 
how am I going to build this? What are all the technologies I need to bring in in order to make this 
happen? But the other part is thinking about your application, thinking about what it actually needs to 
do, and understanding whether it is succeeding or failing at that. The only way you can do that is with 
domain expertise. The only way – imagine we're building something to help the International Space 
Station stay in all of it, we're going to have to have somebody on board who understands that problem 
that we're trying to solve and understands whether we're doing it right or not. Because otherwise, I think 
everyone who works in technology has this little bit of a kind of Messiah Complex where it's like, “Oh, if 
I just came in and whipped out my laptop, I could solve this problem in 10 minutes.”

Well, that isn't true. And where you really realize it isn't true is when you're getting into trying to solve 
problems in industry that you don't understand, and you think you've got the right idea, but you don't. 
So, what you need to start with in any project, using machine learning is someone who really knows 
what they're talking about, and that person is your domain expert. And you're going to need to work with 
them to shape first of all, the design part of your projects where you're figuring out like, what is this 
thing going to do? Before you even factor in the technology, what do I actually want to build as an 
application? If I was going to build something, and the technology would just solve itself, what would I 
build in order to improve this situation?

© 2022 Software Engineering Daily 14



SED 1512 Transcript

And then figuring out what are the goals from there? And what are the kinds of non-goals? What are the 
things we need to make sure happens? And what are the things that we have to avoid at all costs? So, 
working through that design process with domain experts is absolutely critical, and even beyond just 
one domain expert, it's really important to have sort of an advisory board, almost, for your projects 
where you've got a pool of expertise that you can draw from to identify things you might not have 
realized. So, I guess a question you might ask is, why is this so important in machine learning, and we 
don't necessarily do this with other types of thing. And the thing is, first of all, we probably should do 
this with other types of thing.

But secondly, machine learning basically automates the creation of software to some degree. We take 
data, and we run it through this process and a program comes out, which makes decisions. And that 
doesn't necessarily, as an engineer, have to be at any point within that process where you understand 
what's going on and that's really, really dangerous. If we're sitting down writing an algorithm to make a 
decision, then we have to know what we're doing, right? You have to know what the algorithm is doing. 
We have to understand what are the specific inputs and outputs that should map up, and we can even 
write some unit tests to prove that it works, to prove that we wrote the code correctly. So, it's a little bit 
of a self-limiting thing. Whereas with machine learning, it's easy for anyone to go in and hoover up 
some data, and then train this model and not really know what it's doing, and not really know why it's 
making those decisions. If somebody comes and asks, you've got no answer for them. So, that's why 
it's so important to do a good job of this. And that the main interface beyond the design and planning 
stages that involve domain expertise, the main interface that exists between domain expertise, and 
your system is the dataset.

The dataset is where we capture the insights of a human expert in the form of a dataset, and then we 
use that to train a model. So, it's absolutely critical that you do a good job of capturing that insight and 
understanding the boundaries where beyond which that insight doesn't apply. And making sure that 
you're capturing a dataset that's like representative of real-world conditions, and is diverse enough to 
capture all of the kinds of crazy things that you can see in reality, and that's really where you need the 
guidance of a domain expert, because how do you know what to capture if you're not an expert? You 
just don't.

So, what we've done, hopefully, is build some tools that embedded engineers work with domain experts 
on solving problems using machine learning. And the cool thing about embedded engineers is a lot of 

© 2022 Software Engineering Daily 15



SED 1512 Transcript

the time they have really strong domain expertise about areas where they're solving problems. So, it's 
quite a cool combination of roles.

[00:42:29] SF: Yeah, it's amazing. I think it's like a really important thing to bring together is that domain 
expertise, whatever you're trying to build for, with the expertise of the embedded engineer with 
expertise, essentially, in machine learning as well. Because there's been a number of high-profile 
machine learning models that have resulted in things that are very biased, because the inputs weren't 
particularly weren't good, they weren't designed with this diversity in mind, and you end up with 
something that's not going to really serve the larger population that's trying to use it.

So, as we start to wrap up, I did want to touch on some of the evolution of the engineering team at 
Edge Impulse. So, you've been there as a founding engineer, and now you're head of machine 
learning, how has like building a product like Edge Impulse, how's it different than say something like a 
traditional web based, SaaS based engineering organization?

[00:43:21] DS: Yeah. I mean, it's an interesting question. So, at our heart, we have SaaS products. 
We're building this set of tools that exist online that let you train models and deploy them to embedded 
devices, amongst many other things. But the real difference that we have is that we've got these two 
extra pieces of like domain knowledge, basically. One of them is on the embedded side. We have a 
really big, really strong team of hardcore, embedded and DSP engineers, who understand what it's like 
to be in the trenches, building embedded applications, and understand the fine nuance of designing 
signal processing pipelines for making sense of digital signals. And then on the other hand, we have 
machine learning team who's able to bring insights in, like, how do you train models, not just deep 
learning models, but classical ML models? And also, along with that, like, how do you interpret the 
information about these models? How do you understand whether a model is performing well or not? 
And how do you understand whether your application is effective? What are some of the problems you 
can run into that might not be intuitively obvious, which, that's the big risk with machine learning that 
you can run into problems and not even understand that you've got one or understand why it's 
happened.

So, what we're trying to do is bring together all of these kinds of disciplines under one roof, and have 
really good interplay between the teams. The thing we're even talking about this afternoon, one of the 
things we've noticed that the company is like everyone on the machine learning team wants to learn 

© 2022 Software Engineering Daily 16



SED 1512 Transcript

more embedded stuff. Everyone on the embedded team wants to learn more ML stuff. So, we've got a 
lot of people who are very curious about the world and about their different engineering disciplines. And 
we're trying to do our best cross pollinating, because we're sitting in this space where it's like a new 
intersection of things that haven't touched each other before. And there's so much cool stuff that we can 
do there. By building this, basically, like diverse organization of people with different backgrounds, we're 
able to identify what are the promising things that we can do. We found that it's just been incredible. 
We've been able to come up with ideas and build features around them that we've not seen anyone do 
ever in the world. We just come up with this stuff internally, and built it and it works really well, because 
we're in this unknown area where new things are touching. For me, that's the most exciting place you 
could hope to be at.

[00:45:56] SF: Yeah, that's incredible. I think it's a really good sign of the company's culture that the 
embedded engineers are wanting to learn more about machine learning, and machine learning 
engineers are wanting to know more about embedded, because it's a team sport to make a company 
successful. Is there anything else you would like to share with the audience before we wrap up?

[00:46:16] DS: Yeah, I mean, I'd love to talk a bit about the book. So, I guess one thing I'd like to share 
is that we've got a new book coming out. My coauthor, Jenny Plunkett, and I are currently going crazy 
getting past the finish line on getting the book ready for publishing. The name of the book is AI at the 
Edge. It's really sort of designed to be this introduction to the whole field of artificial intelligence on edge 
devices, for pretty much anyone with a technical background. So, it doesn't matter whether you're an 
embedded engineer, or an ML person, or a PM, or an engineering manager, or someone who's 
interested in founding a company, or even someone with domain expertise in a completely unrelated 
topic that they think might be interesting to apply ML to.

The goal is that it gives you sort of this A to Z lay of the land. So, you understand what all of the moving 
parts of this world are, and you can start to make progress on whatever project you want to build. It 
goes through everything from understanding all the different technologies, understanding what are the 
different embedded devices you can use, what are the different algorithms you can use, through the 
whole workflow that we suggest that helps you with a sort of eye towards ML fairness, and building 
applications that work really well, guides you through the process of training models, testing them, 
deploying them. And we even have a section in there about how do you build a team to work on this 
stuff, right? It's such a new field. How do you assemble a team of people who can execute in this 

© 2022 Software Engineering Daily 17



SED 1512 Transcript

space? And we're drawing on not just our insight from being around at Edge Impulse, and Google and 
so on, but we're also looking at all of these people that we know in our networks, and what kind of 
experiences have they had with this technology, and we tried to draw this really broad kind of 
summation of all of this hard-earned knowledge that exists so far about the field.

I'm pretty excited about it. It's going through the review process at the moment and even the feedback 
we're getting from reviewers is just adding so much to the kind of the hard-won insights that are in 
there. So, it's been this amazing team effort by a lot of different people, but very excited to get that out 
there soon.

[00:48:43] SF: Yeah, it's really exciting and I've already pre ordered my copy. So, I'm excited about 
that.

[00:48:46] DS: Oh, thank you.

[00:48:48] SF: Yeah. So, thanks so much for coming on the show and sharing the background on 
machine learning for edge devices. I think we got into a lot of different topics on this, and it's always fun 
to talk to you. I always learned something new. You make me feel a little bit bad about myself because 
you have way cooler hair and a better accent. But I want to thank you so much for coming on, and we'll 
make sure to include a link to the book in the show notes as well.

[00:49:11] DS: Oh, thank you so much, Sean. It's always fantastic to catch up with you as well. Yeah, 
thank you so much for having me on and thanks to all the listeners. If anybody's interested and wants 
to chat about this stuff, reach out. I’m on Twitter and always happy to chat.

[00:49:19] SF: Awesome. Thanks.

[00:49:20] DS: Cheers.

[END]

© 2022 Software Engineering Daily 18


