
SED 1506 Transcript

EPISODE 1506

[INTRODUCTION]

[00:00:00] ANNOUNCER: This episode is hosted by Sean Falconer. Sean has a PhD in computer 
science, was a postdoctoral student at Stanford's Medical School, and is an ex-Googler and startup 
founder, now serving as head of Developer Relations at Skyflow, an architectural solution for data 
privacy. Sean has published works covering a wide range of topics from information visualization, 
quantum computing, developer experience to data privacy. You can find more of his work by following 
him on Twitter, @seanfalconer.

[00:00:35] ANNOUNCER: Cloud computing provides tools storage servers and software products 
through the internet. Securing these resources is a constant process for companies deploying new 
code to their cloud environments. It's easy to overlook security flaws because company applications are 
very complex, and many people work together to develop them.

Wise Labs, for example, had millions of users’ data stolen due to a mistake by a single employee. The 
company Bridgecrew is a cloud security platform helping to prevent mistakes like that from happening. 
Bridgecrew integrates into developer workloads to automatically find infrastructure errors in cloud 
accounts, workloads, and infrastructure as code. Their platform also monitors code reviews and builds 
pipelines to prevent errors from being deployed into production. If an error is found, then Bridgecrew 
Software reverts that code back to its last known correct state.

In today's episode, we talk to Guy Eisenkot, VP of product and co-founder at Bridgecrew. Guy 
previously worked as a principal product manager at RSA Security and as a product manager at 
Fortscale before that. We discuss infrastructure as code, DevSecOps, cloud security, software supply 
chain and composition analysis.

[INTERVIEW]

[00:01:50] SF: Guy, welcome to the show.

[00:01:51] GE: Hey, Sean, happy to be back.

© 2022 Software Engineering Daily 1



SED 1506 Transcript

[00:01:54] SF: Great. Yeah, it’s been a while.

[00:01:55] GE: It has been a couple of years.

[00:01:57] SF: Yeah. So, I think given that it's been several years, and I'm sure a ton of things have 
changed on your end. I think, to kick things off, can you start by introducing yourself and maybe share a 
little bit about your backstory?

[00:02:09] GE: Yes, absolutely. So, hi. My name is Guy Eisenkot. I was up until very recently, the co-
founder and the VP of Products for Bridgecrew, and we’ll mention Bridgecre in a sec. We were acquired 
by Palo Alto Networks in 2021, and ever since I lead product for Prisma Cloud in a subcategory called 
Cloud Security. Prior to founding Bridgecrew, I've built products in the machine learning space and 
analytics as well. Generally, I can say, that I've been trying to solve human problems with data as long 
as I can remember. So, I'm firmly not a developer. I actually majored in history and economics, but I've 
been building foundational software for the past 10 years.

[00:02:50] SF: Awesome. Yeah. Thanks for that. I think you have a really interesting depth of 
background across a lot of different parts, both from like an engineering standpoint, as well as in 
product. So, I think this will be a fascinating conversation today.

[00:03:03] GE: Yes, looking forward to it.

[00:03:05] SF: Yeah, so Bridgecrew embeds security directly into the development lifecycle, across a 
few different areas to make it easy for, essentially developers, to secure infrastructure as they build it. I 
think in order to talk about how you do some of these types of things, and some of the products that 
you offer, I think it makes sense to maybe start out by talking about if a structure as code, for anyone 
that might be a little bit unfamiliar with it. Infrastructure as code, I think, it's been around for a while, but 
the growth and interest, both in, I think DevOps and the movement, the cloud. It feels like awareness 
and excitement in this field is really on a fast growth path. Companies are starting to utilize frameworks 
like Terraform and CloudFormation, to build change and version cloud and on-prem resources. What do 
you think this sort of shift has happened? And what value do these frameworks provide to business?

© 2022 Software Engineering Daily 2



SED 1506 Transcript

[00:03:55] GE: I'll give you a bit of a backstory. One of my co-founders, actually, the technical one, 
taught me something very profound in our previous company. And it's been like a light tower for me, 
ever since. It's something foundational about software development, which is building good new 
products, not necessarily sustaining the existing one. Actually, it means to be constantly in a state of 
migration, and that's a really deep way to understand how software engineering has changed, and what 
infrastructure as code and Terraform had to do with it.

So, when you think about the adoption of infrastructure as code, it's really a brainchild of that mentality. 
If you want to make the absolute most of a modern application stack and use modern development 
practices that allow you to build very fast and ship very fast, you eventually need to be able to adapt 
and change effortlessly. What Terraform allows and infrastructure as code framework is a decent 
substitute to that, Terraform just being community projects. It manifests that even more, is that it 
unlocks that for a growing part of the application stack. It reduces huge friction by obstructing 
something that we all use today when we build a modern web application, which is cloud provider API's. 
By providing us a single configuration surface through either a new programming language or an 
existing programming language that invokes infrastructure as code on the back end, it just goes way 
beyond what you need to be able to run a modern web application. So, to sum that up, I think for a 
growing business, the utilization of infrastructures as code is almost a mandatory prerequisite for 
building something new.

[00:05:37] SF: Yeah, I love that idea of the constant state of migration. One of the great things, I think, 
about some of the specific cloud providers like AWS, Google Cloud, Azure, and so on, is that they do 
provide these fairly easy dashboards where like a non-expert in infrastructure, can create cloud 
services, adjust permissions, provision servers, and so on, with just a few button clicks. Essentially, 
does infrastructure as code need to live separately from that? Can these things coexist? Or is this 
something where if you're choosing essentially infrastructure as code, then you don't want to you rely 
on the UI tools, because things are essentially going to get out of sync?

[00:06:17] GE: That's actually one of the most beautiful aspects of modern infrastructure as code, is 
that it can be both. It can be a path to migrate for an existing legacy infrastructure, to a net new stack. It 
can allow you to be a fully blank canvas where you can build an application from scratch. For us at 
Bridgecrew, I can say that multiple life cycles of development throughout the product history, we've 

© 2022 Software Engineering Daily 3



SED 1506 Transcript

essentially built large portions of it from scratch after improvements and enhancements were introduced 
to then AWS services that we use, just in ways that we can simplify the things that we did previously. 

So, I think the benefit is not only the fact that you can use this very simple and intuitive programming 
language and not whatever, the dashboards in the UI, it also caters to what you've already done 
previously. It can work on top of it. It can work aside it, and it can fully replace the way that you've 
configured and provisioned infrastructure previously.

[00:07:15] SF: So honestly, like companies like Google and Netflix, Facebook, other famous 
technology companies, and even what we consider a traditional tech startup, are using a lot of these 
techniques around infrastructure as code. But is this something that you're also seeing, a nontraditional 
technology company adopt as well, like a company like Walmart or Target. They probably have fairly 
large tech department, but are exactly what you think of, when you think of technology innovators. Are 
these types of companies also migrating in this way?

[00:07:43] GE: A large portion of them are. We're seeing some – so, right now, I think I have an 
interesting preview now that we're part of this huge global enterprise called Palo Alto Networks. It 
secures probably up to, more than 70,000 customers globally. Our division handles a subset of them. 
And you can see two classes of engineering teams. One is the classic, you mentioned, the born in the 
cloud, the fast facing, and actually, the easy side, people who understand that this is just the way that 
they can utilize the most of their cloud infrastructure. And then there's another camp, which is the digital 
transformation camp. Actually, these are some of the biggest names and brands in the world, where 
there's a group of people that understands the value, but then there's another group of people that's 
very dedicated to continuing to serve what I'll call the traditional, the legacy infrastructure.

So, for those digital transformation companies, they're even more excited about infrastructure as code, 
because it just allows them to reduce some of the friction and get more people on board and more 
people excited to adopt some of these development best practices.

[00:08:48] SF: Right. Yeah, that makes sense. So, when we talk about starting to think about like 
security, when it comes to infrastructure as code, what are some of the common mistakes that like a 
team makes when managing security for frameworks like Terraform, or CloudFormation or others?

© 2022 Software Engineering Daily 4



SED 1506 Transcript

[00:09:03] GE: I think one common misconception is not to realize that infrastructure as code is just 
like any other programming languages. T follows the same design patterns and effectively carries the 
same types of risks. On one hand, it offers structures that allow developers to define what they want to 
do, which is exactly the same if you compare it to a Node or a Java application. And they allow you to 
build individual instances of artifacts, usually pretty straightforward, with no mirrors. 10 lines of code, 
you can now build scalable databases and a global infrastructure and that's pretty cool.

From a security perspective, the main challenge is defining how those instances of infrastructure talk to 
each other, and how those connecting to planes that are usually the ones where most of the mistakes 
happen. One is the network plane, the other is the identity plan. Not to say one is more complex or 
interesting than the other. That actually varies between cloud providers. But that's definitely something 
that's been a growing concern for a large portion of it. Terraform, CloudFormation, developer 
communities, since cloud providers have provided a lot of good defaults to get your cloud infrastructure 
up and running. Those good defaults, make things talk to each other and connect pretty regularly. But 
they're not really designed to be optimized for security concerns.

So, unless you're building a payment application, and you have to adhere to very strict segmentation 
rules and laws, most of us that are building enterprise software, have to kind of work against intuition 
and understand and get familiar with the limitations of each and every type of cloud service. And then, 
when we do our job well, we get to an end state where identity and networking are defined to serve the 
business and make the application work, but they're also serving the purpose of making sure that my 
application that actually runs on the internet doesn't have things that are exposed to it and could 
potentially become compromised by that.

[00:10:53] SF: So, in these situations where companies are using infrastructure as code, something 
like Terraform, who is typically responsible within that organization for these security concerns? Is that 
the security team or is that going to be shifted to like the DevOps team or even potentially, with the 
application engineering team?

[00:11:13] GE: I've been fascinated by that question for the past three years, ever since founding 
Bridgecrew. One of our early, but very profound experiences going out to the market and trying to 
educate ourselves about how traditional security teams, the one that do corporate security are now 
ingesting this new task of implementing security controls, is learning that not only is there a knowledge 

© 2022 Software Engineering Daily 5



SED 1506 Transcript

gap, but there's a pretty substantial access gap. SOX, three years ago, four years ago, didn't have 
access keys, and good familiarity with the ways you access a cloud console, to be able to even collect 
logs or iterate after the fact.

So, it's interesting to see that what was supposed to be a security concern, turned out to be something 
that's concerning to different types of organizations. Development organization has some roles and 
responsibilities, then security has some roles and responsibilities. And the emergence of DevOps and 
DevSecOps has created additional people in the organization that are now interested in making sure 
that when infrastructure is built, it's done through a CI/CD pipeline, and that there's proper controls 
validating the changes that are being made.

Long story short, it's a lot of different people. I had, up until, I don’t know, a year and a half ago, 
probably pre-COVID, almost two and a half years, I had this ambition or hope that we're starting to see 
more centralized infrastructure and platform engineering group form, where the understanding is that 
this is such an important job that organizations will be form dedicated organizations within their 
engineering groups that are in charge of secure packaging, and distribution of premade secure defaults 
and templates. And that's something we've seen in the financial sector and somewhat in the IT sector 
as well. I thought this will just spread like wildfire. But I think for a variety of reasons, that process 
actually slowed down. We've been talking to our peers at AWS and Google Cloud to see what they 
think of this, and they're also agreeing that instead of infrastructure as code, security becoming being 
this own thing that small group of people is very interested in and excited about. It's now become much 
more apparent that larger and less dedicated engineers are getting tasked with working with these 
types of frameworks.

[00:13:29] SF: What's the danger of tasking those teams with this responsibility?

[00:13:34] GE: There's a few. I think the biggest one would be how easy it is to make a mistake. So, 
even before we go to the specific types of use cases, there's something about cloud infrastructure that 
breaks down a lot of the organizational barriers that developers had previously. And then think about 
how infrastructure as code which is, again, 10 lines to deploy a multi-region instance of a database that 
can now store personal information of your customers. This is literally 10 lines of code, with probably 30 
or 40 different types of attributes you can toggle around with. It's really common to see that those 10 
lines of code don't necessarily contain the, I don't know, five, six, seven, complete best practices for 

© 2022 Software Engineering Daily 6



SED 1506 Transcript

deploying that set of infrastructure. Essentially, if there's no guardrails along the way, we see 
developers that are even security aware and not necessarily aware of all the different knobs and 
switches within a specific type of implementation that the cloud provider has exposed for them.

[00:14:34] SF: So, this is probably, I think, a good time to start to talk about Bridgecrew and some of 
the products and services that you offer. How does Bridgecrew help prevent people from making some 
of this common infrastructure as code, security mistakes that you've mentioned?

[00:14:49] GE: Bridgecrew essentially, pioneered what I'll call crowdsourcing and standardizing 
infrastructure as code security. So, when we founded the company in 2019, we saw companies of all 
sizes, struggled to implement security controls for both, centralized governance, security and 
compliance reasons into their application development. And essentially, we've built software, open and 
commercial to educate the market on its importance. One of the projects that I'm most proud of is not 
our most popular one. It's our training project. It's called TerraGoat, and it allows people to download a 
local instance of infrastructure as code configurations, from different types of frameworks. And then, to 
see if their existing pipelines will prevent them from pushing that code into production. So, that's 
something we believed in fairly early on, and we've kind of built our entire vision on how we can now 
educate them on the security market, and then educate developers on just using the right tools to be 
able to mitigate as much as possible and then prevent as much as possible some of these mistakes 
forever getting into production.

[00:15:56] SF: You originally founded our company in 2019, which is not that long ago, but even in 
these few years, have you seen sort of a change in the understanding and awareness of these potential 
security issues when it comes to infrastructure as code deployments?

[00:16:13] GE: Oh, absolutely. I think not even in one specific instance. I think, there were a few 
waves. The first wave was around that time when the company just got off the ground, and it wasn't just 
us, it was a few other similar open source projects that have made it and this is where the cloud 
security community gets a lot of credit for not only being able to – we do great conferences, but we also 
build a lot of internal tools and we open sourced them. And there's just this very dedicated group of a 
few thousand developers worldwide that have encountered problems since the early 2010s. And 
instead of writing a blog about it, they just build tools that solve them. And we were very inspired by 
those tools. I think, starting 2019, those tools have really started to catch on and standardize, just the 

© 2022 Software Engineering Daily 7



SED 1506 Transcript

sheer understanding of what a misconfiguration in the cloud is, and what are the best ways to mitigate 
it. It's not just creating alerts, or building JIRA tickets, that there's an opportunity here to build a very 
efficient and automatic workflow to prevent developers from ever pushing that bad code into production.

[00:17:18] SF: Yeah, I love that idea of really baking the best practices. So essentially, mistakes don't 
happen.

[00:17:24] GE: Exactly. One last comment on that, is I think there was a second wave about a year and 
a half ago, that was sparked by a few very high-profile disclosures of misconfigurations that were 
conducted by the cloud providers themselves. So, this is where researchers from Palo Alto, from a few 
other very similar product research groups, like Wizard, Orca, and LightStream, interestingly enough, 
some of them operate from the same building blocks as bridge crew, have been able to identify pretty 
staggering instances where AWS, Google Cloud and Azure have failed to correctly configure different 
types of infrastructure, and open the cloud services themselves for abuse.

In those cases, infrastructure as code would not have necessarily been the optimal solution. But it did 
do a lot to raise the awareness that infrastructure is this now new front in cybersecurity, and as a up 
and coming topic, it does have its standards and best practices that help you prevent some of the 
exposure that comes in from that type of risk as well.

[00:18:28] SF: And Checkov is Bridgecrew’s open source policy as code tool that scans things like my 
Terraform template for the security issues. So, can you walk me through like how I would go about 
using Checkov and integrating that into my infrastructure as code deployment? And what are the 
outcomes? Is this is like a pass-fail, like a unit test? Or it sounds like this is probably something a little 
bit more nuanced than that.

[00:18:52] GE: It's both. So, the nice thing about Checkov is that it does follow two design patterns. 
One is that it really is constructed like a testing tool on one side. But on the other, it’s built like a lot of 
the cloud terminals and CLI tools we use to provision infrastructure. So, it brings in some of the logic 
and design principles that you've seen in tools like Terraform, Packer, Salt, Ansible, Puppet, which our 
users are very familiar with. And then the other hand, they just play very nicely with tools like CI/CD 
tools like, CircleCI and Jenkins and Azure DevOps and AWS’s code build, and just the ability to run as 
an ephemeral job that looks at your code, and provides a very straightforward set of results that, as you 

© 2022 Software Engineering Daily 8



SED 1506 Transcript

say, a pass-fail in some context for the developer to untangle, but in an interface and in a UI that they 
understand.

So generally, there's two operational patterns. One is just the baseline. So, you can either download 
Checkov locally or run it from any Docker, scan your code, and get a pretty robust report about every 
imaginable misconfigurations you can think of. So, it started with infrastructures code, but it does image 
analysis and it does hand-on abilities in open source package managers, and it finds secret, and it's 
gone well beyond that. But you can do that against your existing codebase, you get a nice report, and 
you can essentially get a good grip on what that repository is potentially in risk of. And then the more 
common operational flow is to include Checkov in a CI pipeline. You can include it in, let's say Jenkins 
and use an example of a new choreograph synchronized job in Jenkins that run, usually, in a staging 
environment, pre-deployed, post deployed, it doesn't really matter. And it just performs a set of checks 
on all of the configured and changed code. So, instead of getting that full report and all your existing 
repo, you get the results only to what's changed in this specific run. And then whether that's be the 
developer that now pushes this CI job or tries to push it a side branch into the main branch, depending 
on the branching strategy, they get this report as they evaluate other unit tests and outcomes for their 
CI/CD system, and gives them as much context as they need whether to ignore the problem or to solve 
it.

[00:21:08] SF: So, how much, I guess knowledge and experience does a typical user of Checkov need 
in order to use the tool properly?

[00:21:18] GE: That's the beauty of it. There are two types of Checkov users. There's the, you can call 
the evangelist and then there's a passive user. The evangelist is usually the person that brings this tool 
into the pipeline. This is usually someone from either a security or DevOps background. They’ll need to 
have some basic familiarity with infrastructure as code to be convinced that the result is good enough to 
be included in the standard set of practice, and also in how the pipelines are configured in order to 
make sure that outputs are printed in the right steps and the reports are viewed by the right people. 

Passive user, which I think is the more interesting of the two, really doesn't need to know anything 
about infrastructure as code, just like they don't need to know everything about everything else. They 
get tested during CI, and that's what's nice about that second workflow. So, after that initial baseline 
has happened, any developer that understands programming can then see a printed version of a 

© 2022 Software Engineering Daily 9



SED 1506 Transcript

Checkov result, it will then highlight what security control has failed. It will provide a link to a guideline, a 
public documentation that we write, and open source as part of checkout that includes the logic of the 
tests, why it failed, and potential remediations. And then they can decide, and effectively they see a 
printout of the code snippet that has been misconfigured. And then taking those three aspects into 
account, they can decide whether to resolve using the recommendation that we provided, seek out 
another recommendation on Google or Stack Overflow or disregard the result, print out a skip 
comment, and continue to the next test.

[00:22:52] SF: Okay. So, if I understand that correctly, basically, there's probably someone like a 
DevOps person that's doing the initial sort of integration setup. And then as that's integrated in the CI/
CD, all the application engineers are essentially going to be utilizing that framework because it's baked 
into the CI/CD, and that'll create this report where they can catch these errors and make adjustments 
as needed. Is that correct?

[00:23:16] GE: That's accurate. Yes.

[00:23:18] SF: And then, in terms of best practices, are there already best practices for common 
infrastructure combinations and challenges baked into the system? I imagine that there's so many 
different ways that you can create these different cloud resources and combine them in different ways 
and have different levels of access. How is that sort of managed? How do you keep essentially the 
system up to date with these different combinations and the best practices around them?

[00:23:46] GE: So, there's two parts of that question. One is, what are we actually enforcing? That's 
actually based on common frameworks that we, as an industry, have developed over the past, I would 
say 10 years, stretching that back, as far as virtualization standardization has begun. So, if you think 
about CIS benchmarks, and there's a bunch of them, but different types of bodies that we have decided 
to trust have given us this initial checklist of items we should look at before provisioning new 
infrastructure. And cloud providers themselves have gone a long way in providing frameworks to make 
decisions about how infrastructure should eventually be configured when it goes to production, and it 
follows a few basic patterns. They would usually look at things like making sure that again, networking 
and identity usually come up first. This is networking just to prevent that your infrastructure isn't 
exposed to the public internet, identity that people shouldn't be able to access your services are able to 

© 2022 Software Engineering Daily 10



SED 1506 Transcript

access. And then there's a long tail of additional verifications that a well-architected manifest should 
follow.

These include things like ensuring that encryption is properly configured for databases or data in motion 
infrastructure like Cues and Kafkas, and these sorts of services. We want to make sure that logging is 
used consistently. Each service now packs on its own logging sub tools. So, sometimes we need to 
have additional checks that look to see that the required logging controls are in place, monitoring on top 
of those logs, that's also something that we define in infrastructure as code. And a few more, one other 
big one is the correct use of secrets, environment variables, user and passwords, right? These 
infrastructure components eventually need to be communicating with each other. They need to share 
secrets to make sure that that's done in a way that doesn't expose those secrets, once those 
infrastructure components are spun up.

So, there are like six or seven examples of the types of failed issues that a Terraform file going through 
Checkov might look at. Your second question, which was also interesting was how do we make sure 
that we continue to keep this up to date? When we started Checkov three years ago, we had this 
expectation that we develop or build some in house research and build out some expertise around what 
should be these controls that are implemented based on customer base, and discussions with the 
community, et cetera. Something very different happened. Instead of us building that, we built 
something like the first 100 or 200 policies. The next 1,800 were vastly contributed by the community. 
We just found that, people are building in such different manners using existing infrastructure, that our 
ability to track, what is it, like 10,000 different discrete cloud provider API's, and about 500 different 
types of cloud provider services between Amazon, Google and Microsoft, just an impossible task for a 
single team. So, that's the part that was crowd sourced, and most of the policies are now managed and 
tested through our community validation process that happens on a public Git repo.

[00:26:55] SF: Yeah, it's awesome. I think one thing that I did want to mention is that you have, from 
the beginning, invested in open sourcing some of the tools and technologies that you built. Why was 
essentially making those tools open source important to you and the rest of the founding team at 
Bridgecrew?

[00:27:16] GE: Right. So, for two main reasons, one was that we have a very deep and almost 
philosophical relationship with open source. We've used open source in our previous company. We've 

© 2022 Software Engineering Daily 11



SED 1506 Transcript

used open source extensively, when we build the foundations for Bridgecrew. We use cloud security 
tools that the community has curated and helped us both learn and cater to some of the use cases that 
we saw in the market. And also, our stack naturally, was built out of open source. Who can build a 
modern application without open source?

So when it came time to decide whether or not Checkov should be open source, we asked ourselves, 
what's your goal? The main or the deciding factor for open source and Checkov was an understanding 
that this is a problem that every developer will eventually have, and open sourcing a tool that helps 
them solve, it probably does the best service to educate the market and make sure that this use case 
gets the right attention. That was the original call. Over time, we saw that there's other benefits of 
building a community around an open source tool as a commercial company. And when we made the 
decision to join Palo Alto, we learned that not only do we have that vision, but also senior executives at 
this company understand that. I think that vision has been one of the main contributing factors to its 
success as a code scanner, and now, much more than that.

[00:28:35] SF: Yeah, it's awesome. I mean, it sounds like even from just the sheer scale of the number 
of ways people can configure infrastructure, having those community contributions back to Checkov, to 
incorporate best practices and incorporate the growth and cloud that as a single company you can 
never keep up with is amazing, and probably makes for an overall better product for everyone.

[00:28:55] GE: Absolutely. I can't agree more on that statement.

[00:28:58] SF: So, one new area that you're helping companies address security needs is with the 
software supply chain. And just so we can set appropriate context for this topic for our listeners, can 
you first explain what is the software supply chain?

[00:29:13] GE: I have my own definition. I think one of the problems with the emerging space in the 
cybersecurity market is that people create their own definitions, but I have my own. I hope it helped. But 
the software supply chain problem and where this is coming into the discourse is a growing 
understanding that this because we build infrastructure, and as we build it in a distributed fashion with 
global teams that are essentially located anywhere, we need to be much more conscious and aware of 
what dependencies are used as part of that construction process, not only one of the programming 
languages that we introduce, we need to have a much more consistent and better grasp of what open 

© 2022 Software Engineering Daily 12



SED 1506 Transcript

source we use, what's the infrastructure that we use to deploy, to package, to compile, when to ship 
that infrastructure, and also to have a way to consolidate that into a single threat model that recognizes 
those supply chains are actually pretty powerful applications, that have access both to our source code, 
and also to a runtime environment. Just by that fact, they're becoming a target for external actors that 
think that's a good way to either steal that data, and or get access to our customer’s data as well.

[00:30:24] SF: Yeah, I think one of the security areas that are sometimes often overlooked is 
something as simple as someone's VCS or version control system. We spent all this time thinking about 
code security and data security, and even infrastructure security. But essentially, if a bad actor has 
access to our actual source code, a lot of that security is probably mute. So, in terms of some of the 
things that Bridgecrew is doing around software supply chain, how does Bridgecrew help companies 
essentially secure the combination of their CI/CD and their version control system, and also other parts 
of the software supply chain?

[00:31:00] GE: This is a hard problem to solve. I won't claim that Bridgecrew solved this. But again, if I 
go back to Palo Alto Networks understands this. They've seen the SolarWinds attack unfold, covering it 
from various angles. And naturally, with large corporations like even like Microsoft getting hit, this has 
become center stage.

Bridgecrew’s role in this play not just to look at the code, as you mentioned, to see that the code is 
using proper best practices is go beyond essentially, anything that you use in order to compile and ship 
that code. The late approach means that will allow in our open source to scan things like version control 
system configurations. So, if you run Checkov against your GitHub or GitLab, or Bitbucket configuration 
sets, we've prepackaged probably about 20 out of the box rules that make sure that you're using their 
security best practices, the things that they preach to, the things that they do when they build out new 
repositories.

And then the second part of it, it's also in Checkov is verifying that CI/CD systems are configured 
correctly. So, things like GitHub actions, and CircleCI and Argo CD. These are not only CI/CD systems 
that help you automate your delivery pipeline. But again, these are very powerful – they have very 
powerful applications that have a lot of access to your code and your cloud. And they also have the 
ability to get invoked automatically. So, just imagine what happens if someone identifies 
misconfigurations that can lift them. Those are pretty much the simple use cases, just ensuring the 

© 2022 Software Engineering Daily 13



SED 1506 Transcript

posture of your version control, and your CI/CD systems. And then if you use the Bridgetcrew platform, 
you get the benefit of continuous verification of the appearance of different types of vulnerabilities within 
that infrastructure stack. So, we'll detect if your GitHub action is using a vulnerable version of a popular 
distribution of an image, right? So, you may be running Jenkins or may be running GitHub actions, but 
it's running on a vulnerable image. We checked that and flagged that as a potential CI/CD risk. And 
obviously, the combinations, right?

So, what happens if a misconfigured VCS now has access to a vulnerable CI system that's able to ship 
code through an open source registry that just has outdated packages that are now vulnerable to new 
kinds of new variants or vulnerabilities, that eventually get shipped into your cloud environment that has 
publicly accessible infrastructure. So, from a threat modeling, and even a threat hunting perspective, 
we will get some of that visibility in Bridgecrew, and you'll be able to, essentially back cast, or back 
trace, all of those risks to the source and hopefully even fix them with the right configuration sets.

[00:33:48] SF: You mentioned that there's like 20 best practices for – it’s like baked in for securing 
version control system. What's an example of some of these best practices?

[00:34:00] GE: There's a few very silly, not silly, but very simple ones. I think of things like identity 
security. You have this for any SaaS, but some of these are just not toggled by default for some of 
these. So, just required to FA, that's a configuration, you need to opt in for your repository on GitHub. 
For companies that use SSO, so you can check if SSO is used on each and every repository. GitHub 
allows you to write a rule to make sure that developers can only access it using a dedicated set of IPs, 
if you're using something like a VPN or proxy chain to access net.

One other big recurring aspect is what's called branch protection rules. And all of the VCS providers 
now offer this in some variation. But what branch protection rule is essentially they are a set of controls 
that can be toggled on and off. Essentially, the code commit, code review and code merge processes 
are all governed through a set of specifically defined explicit controls. So, only collaborators with distinct 
access can make sure that new code is introduced into the system. Without branch protection rules, for 
example, for an open source repo, anyone from the internet can push new code into your repo. In 
closed environment, you want only, you can define something that's called the code owner that's only 
specific sets of people have access to specific sets of code. The simple configuration that everybody 
should be looking out for now, when they go into GitHub, search for branch protection rules, just toggle 

© 2022 Software Engineering Daily 14



SED 1506 Transcript

them all on, 99% that's all you need. But for bigger and larger environments, you should be looking at 
code owners as well.

[00:35:36] SF: Does any of this additional security to like CI/CD, or the version control system, impacts 
performance in a meaningful way?

[00:35:44] GE: Give me a sec to think about it. Performance is a wide topic. I think there's definitely 
just in terms of developer velocity, yes, there's a cost to pay here. So, let's take one example, that's 
close to home. If you run Checkov on a large enough repository, it could take probably between 30 
seconds up to probably five minutes. It's the longest run I've seen to get the results from that scan. So, 
if we scan hundreds of thousands of files, it could take probably a good 5, 6, 10 minutes for that scan to 
end and that's only what Checkov scans. Whereas, unit tests and integration tests and everything that's 
going on.

So, on that aspect, there's definitely a cost to pay in terms of developer efficacy, I would say. As for 
actual performance of the application, latency, lag runtime, not specifically. Nothing you should be 
concerned about, I think, that I can think of.

[00:36:34] SF: Yeah, it's a good distinction. I think one other thing that would probably be interesting for 
us to talk about is that you've recently started to move beyond purely securing infrastructure, but also 
expanding in the application security, specifically, software composition analysis. And if you're listening, 
and you're unfamiliar with software composition analysis, essentially the process of identifying open 
source software within a code base. Can you talk about why you're entering this new vertical? 

[00:36:59] GE: Yeah, so I think back in 2021, we called out internally and then externally on where we 
publicly talk, how the lines between infrastructure and application are becoming blurred. And this notion 
came about with, you know, naturally, a lot of big-ticket disclosures for vulnerabilities in the supply 
chain, including Log4j and the month and a half, it took to really resolve and get to a proper resolution. 
And when you think about that blurred line between infrastructure and application, you also remember 
that it's not only open source that you've decided to use, and you've made a conscious decision to 
embrace some of that adhered risk. There's just so many dependencies today that it's really hard to 
keep track of, when you use managed infrastructure. So, when I use a service like EKS, that Amazon 
runs Kubernetes, for me, or I use ElastCache, which runs Redis, for me, or use the different flavors of 

© 2022 Software Engineering Daily 15



SED 1506 Transcript

those open sources on the variety of cloud providers, I am accepting risk from those dependencies, 
regardless to what my software composition analysis tool is flagging up for me. And that became very 
apparent in the Log4j instance, when we started to discover that not only do the cloud providers run 
Log4j in a bunch of instances for us, they’re taking a very long time to patch it.

So, I think that's sunk in, and that's around the point that we decided to take some of the internal efforts 
that we had around composition analysis and make some external. And we've decided to go about this 
in our own takers, naturally an advantage to go into software composition analysis in 2022. If you went 
into this, and you built an SCA, company three, four or five years ago, it was much harder for that 
package managers themselves. So, I think, NPM, Yarn, RubyGems, they had much less publicly 
accessible API's that allow you to discover those dependencies. And those API's just have become very 
open and very transparent. So, it's much easier for us now to not only analyze NPM, which is an NPM 
package, which is something that we've done for almost a year and a half now, but also to untangle all 
of its dependencies and build out a full-blown dependency tree using their existing registry API's. So 
long story short, yes, we definitely understood that infrastructure is not only vulnerable, but also a huge 
part of OpSec, and we've decided to build a software composition analysis that reflects the value it 
should provide to customers in 2022.

[00:39:31] SF: Yeah. It seems like the timing for a product like this is kind of perfect to now between 
instances like the Log4j instance, where I think this is going to be top of mind for a lot of people. And 
then, also as you mentioned, these package managers opening up these API's that actually make the 
technology of software composition analysis in the sense actually possible.

[00:39:50] GE: Absolutely. I think as always in cybersecurity, you have to have a combination of people 
understanding the risk and the other end, bad people that are utilizing the opportunities and trying to 
take advantage of them. Again, I think both independent researchers, as well as just attacks that were 
disruptive have done a very good job in advocating for why the market is right for disruption.

[00:40:14] SF: So, obviously, there's been these new product investments that you've made, and it's 
been a couple of years since you're on the show. One of the things that you've mentioned a couple 
times is that last year, you were acquired by Palo Alto Networks, and you're now part of Prism Cloud. 
So, how has that changed your product or areas of focus?

© 2022 Software Engineering Daily 16



SED 1506 Transcript

[00:40:33] GE: I will surprise you. I think what hasn't really changed is the roadmap. The roadmap has 
been pretty consistent. If I look at the one that we presented to Palo Alto back in early 2021. We've 
executed on most of it. It should not exceed a large part of it, just because of the added resources. 
There is a difference being part of Prisma Cloud and Palo Alto since eventually, it's a – I’ll call it a 
category formation company. Palo Alto, we disrupted the firewall space 20 years ago. It's been 
disrupting corporate security for the past 10 years, doing probably six or seven big acquisitions. For 
cloud security, it's been the standard. It's acquired six companies up until – now, we're number six. And 
by virtue of those acquisitions, it's essentially defining what is cloud security. So, when you see the 
space grow, when you see what the competitors versus what the market is looking after, you should be 
keeping an eye on Prisma Cloud, because it is a very thoughtful group of people that's been doing 
cloud security for the past six or seven years in a corporate scale, and I've learned a lot just by 
observing the decision making and the understanding that this market just brings in huge opportunity to 
be a market leader.

[00:41:45] SF: That's awesome. I'm happy to hear that the acquisition from your perspective is working 
out. I know, acquisitions can be very challenging, and sometimes they don't always work out the way 
that you had hoped they would be. So, as we start to wrap up here, is there anything else that you think 
is important for the audience to know?

[00:42:00] GE: Let's maybe spend a minute and talk about the future. I think future is bright for 
application developers specifically. I think, when we talk to prospective customers, we meet people that 
are early in their journey into the cloud, people that are probably in there, what is it third, fourth, fifth 
year, building a qualification, and coming in from a technical background, not being a developer, myself, 
but just doing software for so long, I’m just saying, the opportunity is such a blessing for someone in 
this industry. And not only can you pursue a career in application security, or in application 
development, but you can really use the publicly available resources that are made available by 
companies like Bridgecrew, companies like Palo Alto, and a lot of other great contributors from Google, 
Microsoft, Azure, and a variety of more. You just become exposed and educate yourself and be able to 
build out a career in this industry, and if anyone's interested in how we've done it, and how we're 
planning to go forward from here, I'll be happy to have those conversations. You can reach me out on 
Twitter and LinkedIn, and follow up.

© 2022 Software Engineering Daily 17



SED 1506 Transcript

[00:43:02] SF: Awesome. I think that's a great place to leave it today. So, thank you, Guy, for coming 
on the show. I think this was a fascinating conversation, and I'm really excited to see what's next for 
you.

[00:43:10] GE: Thank you, Sean. Continue the great rest of your day.

[END]

© 2022 Software Engineering Daily 18


