
SED 1505 Transcript

EPISODE 1505

[INTRODUCTION]

[00:00:00] ANNOUNCER: This episode is hosted by Lee Atchison. Lee Atchison is a software 
architect, author and thought leader on cloud computing and application modernization. His 
most recent book, Architecting for Scale, is an essential resource for technical teams looking to 
maintain high availability and manage risk and their cloud environments. Lee is the host of his 
podcast, Modern Digital Business, an engaging and informative podcast produced for people 
looking to build and grow their digital business. With the help of modern applications and 
processes developed for today's fast-moving business environment. Subscribe at mdb.fm, and 
follow Lee at leeatchison.com.

[INTERVIEW]

[00:00:46] LA: Maintaining availability in a modern digital application is critical to keeping your 
application operating and available, and to keep meeting your customers’ growing demands. 
There are many observability platforms out there. And certainly, Prometheus is a popular open 
source solution for cloud native companies. Yet operating an observability platform costs money, 
and all of the platforms are highly data intensive. Managing costs and data retention policies is 
critical to keeping your application operating healthy and operating available. 

Chronosphere is the leading observability platform for scaling cloud native applications, focusing 
on managing costs by managing data. Martin Mao is the Co-Founder and CEO of Cronus fear, 
and he is my guest today. Martin, welcome to Software Engineering Daily.

[00:01:37] MM: Thanks for having me, Lee. And looking forward to our conversation today.

[00:01:40] LA: Yeah, so am I. So am I. I've come from the observability space, too. I've spent 
several years at New Relic. And so, I think I'm looking forward to this conversation – 

[00:01:49] MM: I do. And I think that will make this conversation even better. 

© 2022 Software Engineering Daily 1



SED 1505 Transcript

[00:01:53] LA: Let's start specifically talking about cloud native, since that's one of the things 
you focus rather heavily on. And cloud native is certainly the buzz right now. And scaling modern 
applications is important. So, I'm wondering if you can tell me, what makes scaling a cloud 
native application, fundamentally harder in your mind than a legacy application?

[00:02:16] MM: Yeah. Hopefully, the result of being able to scale a cloud native application is 
actually easier than a legacy application. Otherwise, I think going through the adoption, you may 
not be getting the outcome, well, one of the outcomes that you're aiming for. But I think one of 
the things that makes it harder is that cloud native environments and architectures are just so 
much more complex. There're so many smaller and more ephemeral services that have 
dependencies on each other. The infrastructure that you're running on is a lot more dynamic and 
ephemeral as well. So, you can imagine the overall architecture is a lot more complex and a lot 
harder to reason about than legacy applications. 

And then on top of that, as an application developer, the onus to operate this is really on you, 
right? So, it's not only is it a tougher environment, but the responsibility for operating in that 
environment is now on the developer themselves. So, I think both of those reasons is perhaps 
why it's so much harder and more complex to create and scale these cloud native applications. 
And I think that's what makes observability or gaining visibility insights into these environments 
is even more important after you adopt cloud native.

[00:03:27] LA: Yeah, one of the things I like to say when we talk about microservices versus 
monoliths, which is not exactly the same thing as cloud native, but it plays into it very, very 
closely. Monoliths, the complexity is in the code. And in microservices, that complexity is in the 
interactions.

[00:03:45] MM: Mm-hmm. 100%. 

[00:03:46] LA: And that makes monitoring the code maybe less important in cloud native 
applications, but monitoring the interactions between the services and between the services and 
cloud services, etc., that's critical, absolutely critical for keeping the system up and running.

© 2022 Software Engineering Daily 2



SED 1505 Transcript

[00:04:02] MM: You're 100% correct. Right. You can imagine what used to be two function calls, 
and you're not too worried about what's happening between those two function calls, is now a 
call over the network. And now, that introduces a whole bunch of other dependencies and 
complexities there, for sure. And also, it's outside of your code base, so you lose the visibility 
into what the piece of code on the other side is doing as well.

[00:04:25] LA: Yep, it impacts performance, but also impacts availability. We talked about this 
trilogy between scale, diversity of capabilities. I guess maybe nimbleness is the right word there. 
Scale, nimbleness and availability. So, what demands does keeping that trilogy working the way 
you need it to? What demands does that actually place on observability in general?

[00:04:52] MM: Yeah, it actually places a lot of demand. And you hit the trifecta there, right? 
People want more scalable, more dynamic and more highly available applications. And 
generally, like a lot of things in life don't come for free. So, being able to get these things does 
come at a cost. And one of the costs I would say is observability. It makes it much tougher from 
an observability point of view. 

And specifically, it's probably four things here that it actually adds on the demand side for 
observability. The first of which is, for an observability system, because you have so many more 
pieces in this, that they’re so much smaller, generally, the amount of data being produced and 
observability data being produced is much higher than before. So, even if you have – You can 
imagine the same infrastructure footprint overall handling the same amount of request for the 
business. Just by having that architecture be cloud native, as opposed to not, generally 
produces a lot more observability data. And hence, you need an observability solution that's 
also a lot more scalable that can handle that increased volume of data. 

The second demand it places is, because these environments are generally more complex, you 
generally need to be able to slice and dice that data in many more ways that perhaps you didn't 
need to in the past before. So now, for you rather than just running on that single monolith, you 
may want to know exactly which host or which node you're running on, or which AZ you're 
running on, which version it is and things like that. And all of these extra dimensions generally 
leads to a problem called higher cardinality. And hence, not only do you have a lot more data, 
but you also need to query and pivot the data in a lot more ways that you didn't need to before. 

© 2022 Software Engineering Daily 3



SED 1505 Transcript

And in that adds a demand of requiring an observability system with much higher performance 
requirements than before. 

And both of those things, that the more data, and the higher complexity, and the higher 
cardinality generally leads to higher costs. And you mentioned this earlier. So, normally, more 
data equals more cost. The sort of need on demand on observability is perhaps you need a 
more cost efficient solution than ever before. 

And then the very last thing is, because it's a very different type of architecture now, it's a lot 
more distributed than it was before, we are working with micro services as opposed to 
monoliths, then you need a specialized feature set that's built for this type of architecture. And 
this is where things like distributed tracing really comes in and becomes a core requirement of 
an observability system. Whereas perhaps, in the legacy environment, APM would have been a 
justifying solution there.

[00:07:22] LA: Yeah, I was just going to say that traditional APM is really less and less 
important, it seems like, as we're moving to more microservice-based architectures. And so, talk 
a little bit about the difference. For listeners who are maybe new to this space a little bit more, 
what's the difference between distributed tracing for observability and a more traditional APM 
approach, application performance monitoring approach, to observability?

[00:07:51] MM: Yeah. I think the high-level concept is very similar. And really, it's about 
capturing the flow of a request or the flow of a workflow perhaps through your system. So that 
higher-level concept of understanding how a particular request interacts with the various parts of 
the system remains the same. And that's what APM sort of gave us before. And that's what 
distributed tracing gives us today. 

Now, one of the main differences there is that, as you talked about earlier, when we used to 
have these monoliths, it was more about how that request went through one giant piece of code. 
And you were very interested primarily in how that piece of code or have interacted with the 
operating system in the underlying hardware, and you're looking for performance optimizations 
there. 

© 2022 Software Engineering Daily 4



SED 1505 Transcript

However, you can imagine these days with a microservices-oriented architecture, generally you 
don't have those giant portions of code anymore. Each of your microservices do less and less. 
And it's a lot more about sort of the interaction of that request and the dependencies between all 
of your microservices there. And you can also imagine that, generally in your microservices, 
you're running on more of a container-based infrastructure, where perhaps you don't even have 
access to the underlying operating system or the underlying hardware, or all of those layers 
have been abstracted away from you. So, it's trying to achieve the same thing, which is trying to 
gain visibility and insights into how the request flows through. 

However, because the architecture is so much more fundamentally different now, there just 
needs to be a different sort of tool set that can actually track these requests across the network 
through all of your different microservices and give you a view of that instead.

[00:09:30] LA: You used a phrase earlier, and that was a higher cardinality. That's really gotten 
me thinking and intrigued a lot by the impact of that, and really the impact on observability to 
that. Because you're right, when you're running a monolithic application and you start your code 
path, you know what type of server you're on. You know how much memory it has. You know 
which instance of the application, which version of the application within. Because it doesn't 
change throughout the call for the most part. 

When we start talking about a microservice-based application, we're calling service after service 
after service, each of those separate services is on a separate host potentially in a different data 
center. But we won’t even go there. But it's running a different version, perhaps a different 
version of the same service than other calls are running. And there's that extra dimension of 
data really is critical for solving some of these sorts of problems. But it is an extra level of 
dimension of data that never really existed before and really wasn't important for normal 
planning. 

How do you deal with that quantity of data? And you've talked a little bit about pivoting to focus 
on those dimensions. But what are some of the tools? What are some of the techniques that 
you can use to actually take advantage of that additional data and use it to diagnose problems?

© 2022 Software Engineering Daily 5



SED 1505 Transcript

[00:10:53] MM: Yeah, there's probably two things here. So, the first thing we found, and we 
haven't gotten into this yet, but the history of the company here at Chronosphere is that myself, 
and my cofounder, and a lot of the core team used to be the observability team at Uber. And we 
solved this problem for them many years ago. 

And what we found with the high-cardinality use cases is, as you rightly pointed out, you sort of 
need these dimensions. And without these, you sort of lose a lot of that visibility. So, the first 
thing that we did was just to build backend technologies and infrastructure that could scale and 
handle these in a fairly cost-efficient manner. 

So, you can imagine there's no perhaps a magic trick there. You just sort of have handle it. Stall 
that data and scale up to handle it. And then sort of hopefully have the backhand be cost-
efficient enough, thus, that when you do do that, it doesn't cost you an additional arm or a leg to 
achieve that. 

And what we found the last few years that that pattern continues. So, what we achieved at Uber 
was – I think when we went through this with our technology, we sort of made the backend 
technology about 7X more efficient for the same amount of data, which was great. But what we 
found over time was that this trend doesn't slow down. You keep producing more and more data 
over time. 

And now here at Chronosphere, we're really focused on smarter ways of dealing with that. And 
what we mean by that is really having a look at the problem from a different perspective. Not 
just what dimensions do I need to put on? And what dimensions could I possibly need? But 
starting to look at the problem from, “Okay. Well, what is the outcome of the data that I'm 
storing? What are the views of the data that I need to make?” And particularly subsets of data. 
How long do I need that data for? And at what level of detail do I need that data for? And almost 
working your way backwards from the value of the data to then producing and storing that data 
with that level of dimensionality, and perhaps retention periods and things like that. 

So, now at Chronosphere, it's more of having a look at the outcome and the value of the data 
that you're storing, and then manipulating that data thus that the storage and the cost of it 
matches up with the value and the outcome that you're trying to achieve with that dataset.

© 2022 Software Engineering Daily 6



SED 1505 Transcript

[00:13:03] LA: Makes sense. Makes sense. And I think we're going to get into this a little bit 
more, too, as we go on. But we talked about the data collection is one thing. But then 
observability is how do you utilize that data to understand how your application is working and 
solve problems that are occurring with your application. 

Now, I know Chronosphere talked about three phases of observability. I think the three word, 
know the problem, triage the problem, and understand the problem. Do you want to talk a little 
bit more about what you mean there and how Chronosphere helps with those three stages?

[00:13:37] MM: 100%. This is a similar vein to what I was just saying where we took a little bit of 
an outcome-based approach to observability. I think you look at the industry right now, and a lot 
of people are defining observability as logs, metrics and traces. I mean, yes, you do need the 
three different data types. However, perhaps that is – You can imagine just by having those 
three and producing those three data types doesn't guarantee you observability or even great 
observability there, right? 

We sort of looked at it from an outcomes-based approach. And from that we sort of looked at, 
“Well, what are you trying to get your observability system to really do? What value does it 
add?” And for us, it comes down to these three things. Can you know when something is 
wrong? Can you triage how bad that issue is? And then can you understand the underlying root 
cause and go and fix it? And it just comes down to that. And I think that's been the same when 
even before observability to the – Or when it was all about APM solutions, as you know, you're 
trying to achieve the same outcomes there. 

Of course, the environment and the architecture is very different. So, you need a different 
solution there. But the sort of ultimate outcome is really the same. And I'd say that it's not just 
these three phases. But the ultimate goal here is to get to a remediation. Is to fix whatever the 
current issue is and get the system into a stable state again. And while the three phases of 
knowing, triaging and understanding are ordered in that particular order, what's interesting is 
that you could almost get to remediation from any of these phases. So, you don't have to go 
through each of the three steps, which I think is pretty critical these days. 

© 2022 Software Engineering Daily 7



SED 1505 Transcript

If I was to give some concrete examples of what that looks like and perhaps how Chronosphere 
helps, we can maybe start with the no phase of like can you ever detect when there are issues 
here? So, to give a concrete example, perhaps you're doing a deployment of your microservice. 
And all of a sudden, as you do the deployment, you detect that your microservice and your 
endpoint is returning more errors. So, all of a sudden you can imagine that if you can detect that 
that's an issue, you don't even need to triage and root cause it. You may not even need to 
understand, “Well, what about my code change is causing this?” The first thing you probably 
want to do is get the system back into a healthy state. And you can imagine rollback that deploy. 

[00:15:50] LA: Rollback. 

[00:15:51] MM: To achieve a remediation there, right? In that particular example, with the 
Chronosphere platform, of course, we're storing all of your infrastructure and your application in 
your business metrics. And we have an alerting platform on top. Most observability systems out 
there do that. And you can use these systems to be notified and check issues. 

The differentiator here for Chronosphere is that our sort of ingest latency is extremely low. So, 
within, I would say, a few 100 milliseconds, the data, the hat detection of the fact that errors 
have been returned are detected extremely quickly. And then our alerting intervals are at a one-
second interval as well. So, you can imagine within a fraction more than a second, you can 
detect this. And then you can also integrate it with your perhaps CI/CD system and 
automatically roll the deployment back, right? These are the things that we could do for the first 
phase. And you may not even need a triage and record the issue at all. 

Sometimes you may have to triage and get there. And sometimes just by knowing that 
something is wrong is not enough to remediate. So, perhaps a second example is, all of a 
sudden, things are fine in production. You haven't rolled anything out. And you notice that the 
error rates for your endpoint for that micro service are increasing, and you're getting more and 
more errors there. And, of course, you can get detected when this happens. But because you're 
not actively introducing a change to the system, maybe there's no rollback to do. So, that's 
when you would have to start triaging and knowing like, “What is the impact? And what is really 
wrong here?” Because you can imagine, if you get paged at two o'clock in the morning, perhaps 

© 2022 Software Engineering Daily 8



SED 1505 Transcript

you want to know, “Is this something I have to deal with right now? Or can I go back to sleep 
and deal with it in the morning here?” 

And I’ll say with Chronosphere and with most of the other solutions out there, again, you have 
the metric data, so you can sort of see what's going on and see your error rates through the 
dashboards that are built on top of that. I'd say that this is where that concept of high-cardinality 
perhaps would come in. 

So, if you have increasing error rates, perhaps having a look at the view of, “Well, are the error 
rates happening across all of my deployments? Is it just one particular AZ? Is it just one 
particular cluster that this is happening to?” Gives you the insight of like, A, where is that 
particular issue? And also, how bad it is. 

So, you can imagine for our particular example, perhaps you're seeing increasing error rates. 
But as you drill into the data and as you start to pivot it, you can see that they are all coming 
from one AZ, for example. And it's really that AZ from your cloud provider that is causing the 
issue. And you can imagine here, again, you may not want to do the complete root cause of 
what is causing it. You could perhaps, at this point, remediate the issue via let's say routing 
around that particular AZ that is impacted and just having your request go to the other AZs that 
your stuff is deployed in. 

So, you can imagine an observability tool can definitely help with the triage phase, for sure. And 
again, a lot of tools out there can store the metric data and have the dashboards on top. I'd say 
what's unique about Chronosphere in this particular instance is that the backend performance is 
a lot more performant than a lot of the other systems out there. So therefore, as you do these 
queries over high-cardinality data, they will be a lot more – The results will return a lot quicker 
than – 

[00:18:56] LA: You’re focused on those extra attributes. And so, you're able to perform those 
sorts of – 

[00:19:02] MM: Exactly. Exactly. So, there are particular use cases with customers we’ve seen 
where they get like an almost 8X increase in query performance. That as they're trying to look at 

© 2022 Software Engineering Daily 9



SED 1505 Transcript

the different views, it comes back a lot quicker. Or perhaps another customer we've been 
working with, they couldn't actually load data if they look back more than an hour. So, all of a 
sudden, with increased performance, they're able to see a lot more data than they have, and 
they get a lot more insights that way as well. 

And the last one here is perhaps root cause analysis. So, sometimes you do have to do root 
cause analysis while the issue is happening in production. Ideally, not because I feel like for a 
lot of developers out there, you don't really want to do root cause analysis while the system is 
down. That's probably the worst time. And ideally, you can remediate ahead of that and then 
take your time to do the root cause analysis. But perhaps sometimes you just have to do it. 

And I'll tell you that this is where you really want a system to handle more than just metrics and 
show alerts and dashboards. You really probably want to bring in things like a distributed tracing 
to really get to the root cause of what is your particular issue. 

So, if we look at one example here, maybe you're an ecommerce company, and your checkout 
flow is broken. And you know that your customers are not checking out successfully. However, 
when you look at all of your backend service SLOs, everything is green. And we see this from 
time to time, where it's not obvious what is the root cause of this. But clearly, there's an impact 
to your customers. Clearly, there's an impact to your business. 

And imagine this case, it's great to have a tool like Chronosphere to both alert you that, yes, 
your checkout flow is broken. But then also sort of be able to then pull out all of the particular 
requests end to end for that checkout flow and then do the analysis for you to really try to show 
you why that issue is happening, because it may not be obvious in your individual service SLOs 
there, and sort of present the root cause to you. So, that's another area where I'd say 
chronosphere, in particular, can help with that particular phase there. 

But again, all of it, the no phase, the triage phase, the root cause phase, all of it is really about 
getting to remediation as quickly as possible. And if you have to go through all three, fine, so be 
it. But if you can do it just by detection, or if you can do it when you're triaging, you can get to 
remediation even quicker. And ideally, you only root cause while the issue was not actively 
happening there.

© 2022 Software Engineering Daily 10



SED 1505 Transcript

[00:21:13] LA: Yeah, it seems to me there's detection, triage and root cause understanding, but 
you want to do as little of that as possible prior to remediation, as much as possible to post-
mortem.

[00:21:25] MM: Yeah. Because if you imagine, if you can roll back, now you have all the time in 
the world. Your downstream dependencies. Your customers are not impacted. You have the time 
to really take the time to understand why, when I wrote out, did this cause issues, right? As 
opposed to you can imagine trying to figure that out while your customers are complaining, 
while the other teams are complaining. Generally, under stress is probably the worst time to go 
and try to do this. But, yeah.

[00:21:46] LA: And one of the things that you haven't talked about, but I'd love to hear how 
Chronosphere helps with this, is early detection. So, before problems occur, you can notice 
trends, notice problems. Your service is starting to go a little flaky, but hasn't created problems 
yet. But you know it's going to based on the trends of the direction that the specific metrics are 
going. I'm wondering if you can talk about that dimension of this problem, and whether or not 
Chronosphere has anything unique that helps in those areas?

[00:22:17] MM: Yeah, 100%. And I think he hit it spot on there. To sort of be more preventative, 
you're really trying to look at more historical trends. And that's, obviously, the trend of the data in 
the most recent periods, or perhaps the last hour or last day or so. But also, interesting trends 
that happen week on week, right? 

So, yes, you can imagine on a Friday afternoon, the trendline may be going up. But maybe 
that's expected, because every Friday afternoon, your business gets a lot busier than normal. 
So, I'd say, from that perspective, what Chronosphere is trying to do is to essentially give you 
particular – And honestly, these are like data science techniques of doing things like week on 
week standard deviation analysis to see how your expected trends are expected or not 
expected based on the historical data there. I wouldn't go as far as calling that AI or AI Ops. It’s 
really, for the most part, a lot of data science techniques and sort of data manipulation 
techniques that can sort of help you find these outliers and these trend lines more than anything 
else. 

© 2022 Software Engineering Daily 11



SED 1505 Transcript

And I think the second part there is, as we talked about high cardinality earlier, and we're 
producing so much more data. It's not just doing the analysis. You now have to do the analysis 
on so much more data with so many more dimensions than you ever had to before. So that just 
requires, you can imagine, a backend that can, A, store all of that data. And B, be performant 
enough to perform all the analysis for you as well. So, those are probably the two areas where 
Chronosphere differentiates against other platforms out there in this particular space. 

And again, it's all because it goes back to, as you're adopting cloud native architecture, you then 
all of a sudden produce much more data or produce a much more high cardinality data, and that 
sort of introduces that requirement again.

[00:24:02] LA: Yup. That makes a lot of sense. So, I'm going to ask a question that I hear a lot. 
And you started to answer this already. So, this isn't an attempt to necessarily repeat the 
answer. But I think it's really just to drive the point home. The question I get is, “Well, 
Prometheus does all of this. So, why can't I just use Prometheus for cloud native monitoring? 
Why do I need something more than that?” What do you tell people when they asked you that?

[00:24:31] MM: Well, the first thing I say is, A – And we, here at Chronosphere, do love 
Prometheus. And I think it is a solution that you can use. And it's a fairly self-contained solution. 
So, you can imagine with a single binary, you can get basic monitoring of your cloud native 
environments, which I think is fantastic. And beyond that, I'd say that it did serve well in sort of 
standardizing the instrumentation, and the protocols, and the query language across an industry 
for cloud native. For all of that, it is fantastic. And you can definitely get started on it. 

I will say that because it's a single binary solution, a lot of companies out there start to vertically 
scale that up and you can imagine start to use larger and larger instances to run that on, and 
perhaps eventually run into a limitation with vertical scale. And unfortunately, it was not really 
designed for horizontal scale there. There is a high availability mode where you run two of these 
instances, but you can imagine, it was never built to be a distributed system. So, the data 
consistency has issues and things like that. 

© 2022 Software Engineering Daily 12



SED 1505 Transcript

So, there are particular reasons why it exposes an API for other solutions, like M3, which was 
our open source time series database and scalable metrics backend for Prometheus to be 
introduced to work in conjunction with it. And really, that or perhaps Cortex or Thanos, are other 
technologies you can use to go help solve some of those horizontal scale challenges that 
Prometheus was not really designed for. I think it was designed to help folks get started in an 
easy fashion. You can imagine a much more complicated distributed solution is going to be 
much harder and more complex to run. So, it does that job extremely well. 

The other thing about it is it is a contained solution for monitoring, which means it does ingest 
and store metrics, which I think is great for detecting when issues go wrong, and perhaps the 
triaging as well. However, for a whole observability suite, you start to need to piece it together 
with things like a dashboarding solution. It doesn't really come with dashboards out of the box. 
As you start looking for requirements for root cause analysis, you probably need something else 
that can handle distributed traces and store those and whatnot. 

So, I'd say it's an okay thing to get started. And we are big fans of it. However, as you start to 
scale and have a larger and more complex environment, I'd say that that's when you probably 
need something a little bit more than Prometheus.

[00:26:57] LA: Yeah, and that makes a lot of sense. And one other thing that I tell clients when 
they asked me that question is think about the cognitive load required to understand what 
Prometheus is telling you. The quantity of data that you get and that you have to deal with is 
incredible. And so, trying to get useful tidbits of information out of that can be a challenge, 
unless you have something on top of Prometheus or alongside Prometheus that helps you with 
that. Yeah, something like Chronosphere, certainly. 

So, what's the general answer to this question? Besides Prometheus, there's obviously lots of 
other observability platforms out there. I spent seven years in New Relic. There’s certainly 
Datadog. There's certainly lots of other observability platforms out there. What truly makes 
Chronosphere unique? We talked about the cardinality effect for cloud native applications, and 
that is something that is truly unique. Both what else? What is it that – Why would someone 
choose Chronosphere over one of the other platforms?

© 2022 Software Engineering Daily 13



SED 1505 Transcript

[00:27:59] MM: Yeah, I mean – And I'd say, I'll precursor this answer with perhaps 
Chronosphere is not the ideal solution for every use case out there as well, right. So, I think it 
really comes down to what the challenges are that a company has out there. And depending on 
the challenges, I think Chronosphere definitely is an ideal solution for some and perhaps less 
than ideal for others. 

I'd say, at its core, and we touched upon this a little bit, the requirements that we went through in 
terms of what you need of an observability solution as you adopt cloud native in terms of scale, 
the high cardinality support, the cost efficiency, and then the end user features, those are really 
the tenants that Chronosphere was built around. 

So, you can imagine if you're not adopting cloud native architecture, if you're not adopting 
container-based infrastructure, if you're not adopting microservices, perhaps an existing APM 
solution would be just fine. You can imagine, everything here at Chronosphere has been 
optimized for that particular type of environment. 

And it starts off with the backend that we originally built at Uber for the scale and the high 
cardinality of the data and the performance requirements that you need to even query the data. 
So, you can imagine, even at its core, yes, producing and storing and making metrics, let's say, 
available, is not very different between a lot of the solutions out there. However, as you sort of 
adopt cloud native and you have so much more data than you ever had before, then you can 
imagine that that is when these properties really sort of come to differentiate themselves a little 
bit more. 

On the cost efficiency side, that is also an area I would say where a lot of companies are 
struggling with right now. You can imagine with an existing solution, in a pre-cloud native world, 
because we're already, I would say, perhaps high, but I would say perhaps reasonable for a lot 
of companies out there. And then what ends up happening is that, as they do this transition 
over, what we often find companies find is that they're not necessarily paying the cloud 
providers anymore for a cloud native environment. You can imagine, really – You can imagine, if 
you're running on top of Kubernetes now and you weren't running on them before, you're really 
paying the cloud providers for the underlying VMs, and the memory, and the CPU, and the 
storage that you get. So, perhaps all the resources haven't changed underneath the covers. And 

© 2022 Software Engineering Daily 14



SED 1505 Transcript

hence, your bill to the cloud provider and your overall infrastructure bill has not changed. 
However, what ends up happening is your bill for observability goes through the roof relatively. 

So, all of a sudden, it's not only that these challenges are there. But the cost of solving these 
challenges become extremely high. And this is where Chronosphere not only provides better 
unit economics and makes it sort of cheaper for the same amount of data that you're producing. 
But this is where we really start to differentiate in terms of how to help a company understand 
the data that's been produced and then help manipulate and customize the storage of that data. 
Plus, that it matches the use case a lot more, so that you're really getting the value out of the 
data that you're storing in the particular way that you're storing it as well. 

And what that really does is help you sort of control that cost as you continue to grow over time. 
And that's one thing we found at Uber was that, again, we sort of – It was great that we're going 
to instantaneous cost saving. However, the rate at which this data was growing was pretty 
astronomical. So, if we couldn't control that growth over time, that was going to cause problems 
down the line there a little bit. 

And then I'd say the last differentiator is perhaps on the sort of end user interfaces side of 
things, where, on top of this sort of performance that you get, we're really starting to build more 
customized user experiences to help you do the root cause analysis. So, you can imagine a lot 
of investment is being made into sort of automatically performing the analysis of root cause for 
you, and perhaps even customizing that experience for each individual end user. Because for 
an observability platform, almost every perhaps infrastructure-focused person or developer 
needs to use it day to day. But what they want to get and how they interact with the system is all 
fairly different across the user base. So, we're starting to sort of customize and optimize that 
experience for each of the different types of end users that come into this system as well. So, at 
a high-level, those are probably the ways in which Chronosphere are fairly distinct in the market.

[00:32:14] LA: Obviously, the piece that's common with everything that you mentioned was the 
focus on cloud-based applications. So, you're providing better solutions that are more 
customized for cloud native applications, but also provide them in a more cost-efficient 
mechanism and better usability. So, cloud native application is the key.

© 2022 Software Engineering Daily 15



SED 1505 Transcript

[00:32:35] MM: Yeah. And I'd say that that's how – I would say, you can imagine the 
observability market is packed with options not just for different types of environments and 
architectures that we're talking about. They're also packed with a lot of options on particular use 
cases, right? There are particular tools out there for end user monitoring and things like that. So, 
I'd say, for customers out there and for companies out there, really looking at what specific 
problems they're trying to solve or what type of architectures. And that would help them scope 
down the options base, at least, to fewer options, and then make a more informed decision 
there. 

Because I must admit, as you look at the landscape, there're so many options out there, and 
every tool claims to do everything well. And generally, as we both know, that's not the case. 

[00:33:17] LA: That’s not true. 

[00:33:18] MM: That this a tool, a platform that do everything well.

[00:33:20] LA: Right. In fact, that's actually one of the things that I'm impressed from what I've 
seen from Chronosphere so far, is the fact that you know what you're good at, and you focus on 
that. And I think that’s great. And the thing you happen to focus on is incredibly important to the 
industry today.

[00:33:35] MM: Well, I think it's where – Like, what we see is this is definitely not, I would say, 
what the majority of the industry is at today. But we feel like this is where the industry is going in 
the future. So, we're trying to meet people with where they want to get to eventually. And it is a 
journey and will take a while. 

And you can imagine for a lot of companies out there, there are going to have a hybrid mix of 
some cloud native workloads and some non-cloud native workloads there. So, helping support 
them through the transition in this journey is going to be critical for us.

[00:34:04] LA: This is almost a straight man lead into my final question, which is, certainly, as 
cloud native is in its infancy, as you've mentioned. And it's going to mature. It's going to grow. 
Cloud native is going to become the main way that modern applications are built in the 

© 2022 Software Engineering Daily 16



SED 1505 Transcript

foreseeable future. And as cloud native matures, how do you see Chronosphere expanding to 
meet what new demands may be coming out of the cloud native market? And as more mature 
cloud native ecosystems start to form, what are you doing to Chronosphere to keep at the front 
of cloud native world?

[00:34:45] MM: Yeah, that's a great question. As you mentioned, and I said this earlier, too, I 
think we're just at the beginning of this migration. And I think at the beginning of such a 
migration, a lot of companies out there are sort of looking for more tactical solutions today, 
right? 

So, you can imagine, as you roll out a new architecture, you just need basic infrastructure 
visibility and basic application visibility, for sure. You can't really operate without these things. 
You've always had tools there. And you need to continue to have tools there. So, you can 
imagine, we're trying to help solve some of those particular problems for sure and sort of help 
companies regain that visibility they've always had before. Just, they perhaps lost it, or it's much 
harder to get. Now, they adopt this new type of architecture. 

I think what ends up happening as companies mature is that they start seeing observability less 
of a tactical must-have an more of a strategic tool that can give them competitive advantage 
over their competitors out there. And I think what ends up happening is that more and more, you 
are trying to get insight into the business in real time, because our technology stacks are really 
running and operating the products and services that we offer out there. As you start to leverage 
these tools for more sort of insight into the business, that will sort of, you can imagine, create a 
ton of new requirements both for the users, but to the business as well. 

So, from Chronosphere’s perspective, we're sort of preparing for a lot of those use cases and 
sort of helping our customers not only solve the infrastructure and the application observability 
use cases, but really start to up-level observable data as a whole and show them what positive 
impact it can have on a business. And I think along with that, you start to introduce more and 
more use cases and more and more end users to the system. And generally, the additional use 
cases and users are perhaps less technical. They're less developers and engineers. So, what 
ends up happening in the product is that, while there's a lot of cool features and very powerful 
features, we're really focused on automating a lot of that for these end users who may not 

© 2022 Software Engineering Daily 17



SED 1505 Transcript

understand – You can imagine, a business unit may not understand retention periods of data or 
resolution and things like that, but they sort of understand the value and the use cases they're 
getting out of it. So, perhaps sort of automating a lot of the pieces. Like, optimizing their 
retention for them without having them think about it is sort of one area that we are moving 
towards. As well as the concept that I mentioned earlier, where we're trying to sort of customize 
the experience and the views of the data depending on who it is coming into the system, is what 
we're trying to do it at a higher level. So, I hope you can imagine sort of expansion of the use 
cases well outside of just the infrastructure and the application performance use cases that we 
generally see today. And then sort of optimizing the product for that expanded set of use cases 
is what we're focused on moving into the future.

[00:37:37] LA: So, the person who is listening to this and is considering, or let's say maybe 
they've already made the decision that they're going to be investing in building cloud native 
applications, whether it's porting existing applications to become cloud native, or whether they're 
rewriting to become cloud native, or building new applications, it doesn't matter. But they're 
going to be focusing moving forward on building and supporting cloud native applications. And 
they're just getting into understanding what that means and the advantages of it, etc. What 
advice would you give to them as far as what should they be looking for in all of their cloud 
native understanding? But specifically, what about observability?

[00:38:25] MM: Yeah, I think with the transition like this, in general, even outside of 
observability, my advice may be to think about not just the technology change, but the sort of 
skill to change and organizational change that has to come along with such a migration as well. 
It's a very different way of operating. And again, it's not just that your architecture is different and 
your technology stack is different. Almost how you have to set up your organization, the mindset 
of the organization where the developers are the operators of everything and the sort of skill 
sets that each of these folks need are very different from perhaps the past. So, perhaps taking a 
more holistic view of what this migration would entail. And of course, there are benefits on the 
other side. So, I think it's worth it. But I think a lot of companies out there perhaps are not taking 
that sort of broader holistic view of all the changes that needs to occur in order for a successful 
cloud native migration. 

© 2022 Software Engineering Daily 18



SED 1505 Transcript

Now, to help support that, I think observability is key because it's the thing that can even 
measure how successful such a migration is, whether you're getting the benefits that you're 
trying to get by doing such a migration. Plus, giving you insights into all of the applications and 
the infrastructure and the business on the other end. So, I think, on the observability side, sort of 
really understanding that perhaps, compared to the past, monitoring and observability plays 
such a more key role now than ever before. 

And not just that. Sort of thinking about in the future, if you could have real time visibility into 
your business, not just into your technology stack, what can that really do for you? Especially in 
the macroeconomic climate, you can imagine of attempting to sort of provide the best service or 
the best product in a very competitive landscape right now. What role can observability play in 
that component? And then as you're doing these things, I think, hopefully, scoping down your 
search space for the options out there for companies and products that are sort of optimizing 
trying to achieve these outcomes for you. And then making a decision from there. 

But I'd say, taking a step back from that, we're always constantly talking to companies out there, 
even if they're not actively looking for a tool today. We're trying to constantly talk to companies 
out there about this migration to cloud native, about what it means, about how we view 
observability, and perhaps how they could view observability just because I think it's a thing that 
it's going to take the whole industry many years to complete. And it's actually quite a complex 
move. So, we're more than happy to be helpful in the meantime even if a company is not 
actively looking for a tool today.

[00:41:04] LA: That's great. That's great. Obviously, I talked a lot about observability. I think 
observability is critical to building highly scalable, highly available applications. Whether you're 
using cloud native or not, observability is central. But definitely in cloud native applications, 
which is the way you need to be moving in the future. Observability is absolutely essential for 
understanding how your complex system that you're building in this cloud native environment 
interacts with its environment and knows what needs to happen and knows how to make 
everything. 

So, it's great talking to you. I very much appreciate your spending time with me today. Thank 
you very much, Martin.

© 2022 Software Engineering Daily 19



SED 1505 Transcript

[00:41:47] MM: Of course.

[00:41:46] LA: My guest today has been Martin Mao, the Co-Founder and CEO of 
Chronosphere. And Martin, thank you very much for joining me on Software Engineering Daily.

[00:41:57] MM: Thanks, Lee. I really enjoyed the conversation. And hopefully, I'll talk to you 
again soon.

[END]

© 2022 Software Engineering Daily 20


