
SED 1480 Transcript

EPISODE 1480

[INTRODUCTION]

[00:00:00] ANNOUNCER: While Kubernetes has many benefits, there is often a need for teams 
to deploy a monitoring and observability stack to troubleshoot issues that happen within the 
cluster and the applications themselves. ContainQ is an out-of-the-box solution that allows 
engineers to monitor the health of their cluster and troubleshoot issues faster. ContainIQ is 
unique in its approach, and that it was built with eBPF in mind, and is able to provide an APM-
like experience without being an APM. 

Matt Lenhard is the Co-Founder and CTO of ContainIQ and joins the show to discuss the future 
of K8s monitoring and observability, as well as the unique technological approach he is taking 
with eBPF. 

[INTERVIEW]

[00:00:50] JM: Matt, welcome to the show. 

[00:00:51] ML: Hey, Jeff. Thanks for having me. Pleasure to be on.

[00:00:54] JM: There is a wide variety of monitoring platforms. And for some reason, 
Kubernetes monitoring specifically is a domain specific monitoring challenge that is worth 
devoting an entire company to. Why is Kubernetes monitoring different than other kinds of 
monitoring? 

[00:01:19] ML: The reason we chose to focus on Kubernetes is really because it gives us a lot 
of the metadata we need for correlations. And that's because core to our product is eBPF. And 
we use that to parse out things like traces and metrics. And then we can use that data alongside 
the rich metadata Kubernetes provides to give you like a deeper insight into what's happening. 

[00:01:47] JM: Okay. Is there a specific activity trace or data management system that you're 
using to gather that monitoring data? Like, are using Prometheus? Are you using – I know you 

© 2022 Software Engineering Daily 1



SED 1480 Transcript

mentioned eBPF. Maybe you could talk a little bit more about the actual engineering 
breakthroughs that you're using to monitor Kubernetes.

[00:02:12] ML: Yeah, happy to walk through our architecture a little bit. I think that's the 
interesting thing. Most of the breakthroughs come from like the awesome work that people are 
doing on like the Linux Kernel. PCC Tools is another great platform as well for developing eBPF-
based programs. 

But I guess like the way we're utilizing is we basically look at every open socket on a given node 
and we parse out all of the socket buffer basically. And from that, say, for example like an HTTP 
request, we can see how long your applications are taking to respond to HTTP requests. And 
then we can associate that with the Kubernetes metadata. That socket's going to have two IPs, 
right? We can grab that IP. See which pod corresponds to that IP. And then we can give you 
information like, "Hey, on this given pod, it's taking this long to respond to TCP requests." Or 
parse out the actual like HTTP body and say, like, "This pod saw an elevated spike in 500 
errors." 

The core of the eBPF is really like tracing those networking calls, like specifically anything going 
over like the TCP sockets. And then we use the Kubernetes API, specifically like their Go client, 
which is like an awesome tool to work with, to grab a lot of information about like state and all of 
your pods. Really, like all of the kind of correlation metadata about your cluster. 

It's really broken down into like kind of the eBPF side of things, which is like a daemon set that 
runs on every node. Gets like the socket information. Or, sorry, network calls. And then a 
Kubernetes deployment that grabs a bunch of like metadata from the Kubernetes API. Like 
everything from like – Like I said like, pod information, to what pods belong to which 
deployment, which pods are active things, things like that. 

[00:04:13] JM: We've done some shows about eBPF. But can you just give an overview for 
what that is? 

[00:04:19] ML: Yeah. I think that the easiest way to think about it is – And kind of do like two 
really cool things with it. And that's you can hook into Linux system calls. Every time like a 

© 2022 Software Engineering Daily 2



SED 1480 Transcript

system call happens, you can grab like the arguments, the return arguments, which allows you 
to do like really cool things with like the kind of like underlying functionality of what's going on in 
the kernel. 

Another really cool thing you can do with it is like attaching to different sockets. Specifically, we 
attach to the traffic controller and we parse out everything going through the different sockets. 
And then you can add like uprobes to different like binaries and basically like grab the same 
type of like arguments as you would with like a kprobe system call. Really, it's almost like 
JavaScript event listeners in a sense. Every time this function is called, do X, right? 

[00:05:11] JM: Gotcha. What would some of the function triggers be in this case if you're 
building a monitoring platform? 

[00:05:18] ML: Yeah. I think a great example of this is Falco, which I think everyone should 
check out. It's like a security tool built like on top of eBPF. That's basically looking at the system 
calls that are happening on your machine. The processes like that are calling them. And then 
like should they be happening? 

You could do like – You could look at open TCP connections. You could see which programs are 
being executed. You can really hook into anything that's happening. In a sense, the sky really is 
the limit. I would also tell people to check out like BCC tools. There's like a huge list of tools that 
they have that can kind of like get you started and show you like the possibilities of what you 
can do with eBPF. 

[00:06:02] JM: If you start to use eBPF to develop a monitoring platform, is a lot of your work 
just defining those custom triggers and the events that are going to occur as you're listening 
across your infrastructure? 

[00:06:20] ML: Exactly. The first step is to figure out the exact system calls you want to like 
hook into, right? At its most basic, maybe you want to hook the right call and parse out all the 
buffers going through there. Yeah, you need to identify like what information you want and like 
which calls you need to hook in order to grab that information. 

© 2022 Software Engineering Daily 3



SED 1480 Transcript

The next step that can be difficult, it was a lot of work for us, is getting it to work across a bunch 
of different kernel versions. Because support can differ basically depending on what kernel 
version they're using. 

There's something relatively new called core compiled once, run everywhere, which tries to 
solve a lot of these issues. But kernel support isn't great for that yet. So yeah, the step one is 
you know figuring out which system calls you need to hook into. Step two is figuring out how do 
I get it to work on like the widest array of kernels. 

[00:07:14] JM: Why is that important? I mean, isn't there a pretty standard set of kernels that it 
would run across? 

[00:07:21] ML: No. Because the structs change between kernels. System calls can change as 
well. There's definitely work that's involved getting it to work across like the different kernel 
versions. Like I said, there's a lot of work going in right now to kind of fix that problem with BPF 
type format and the core compile once, run everywhere. 

I mean, just personally we've had to do a lot of work to get it to work across different kernel 
versions. The verifier will also complain a lot of times on earlier kernel versions. Because every 
BPF program that's run is put through a verifier to check that like loops are bounded and the 
number of instructions. Something might run on 4-3. But on 4-2, the verifier is yelling at you. 
Those two things, like the verifier changing and the changes in system calls and structs 
basically leads you to a scenario where you can run into issues across different kernel versions. 

[00:08:20] JM: Can you tell me about how you fit into a more comprehensive monitoring stack? 
I imagine, there's a lot of your customers that use Datadog already. Are they willing to adopt a 
second monitoring platform? 

[00:08:39] ML: Yeah, that's a great question. I would say, typically, we've had customers 
migrate off of Datadog. But typically, we grab people before they start using something like 
Datadog. And like our, I guess, core value prop for a lot of them is, "Hey, you've got this 
microservice architecture. Currently, you've got some APM set up on – Or you're going to set up 
an APM on every single microservice." 

© 2022 Software Engineering Daily 4



SED 1480 Transcript

So maybe at a smaller company, they've got 10 to 15 microservices. They're going to have to 
instrument every single one individually with like whatever package manager they're using for 
that language. Well, with like ContainIQ, we're like, "Hey, here's this helm chart. Install once. 
We'll automatically collect all of the requests and traces like across your entire cluster." I guess 
kind of the selling point is like, if you have a lot of microservices, you can install once and set up 
to and having to install on every single one. 

[00:09:35] JM: So, do you have to compete with Datadog? Or do you feel like there is kind of 
room for a differentiation that can be expanded upon? 

[00:09:46] ML: Yeah, I think it's kind of building on top of like the move to microservices and the 
move to Kubernetes. If you can provide an out-of-the-box solution that instruments every 
microservice automatically, you're just going to save people a lot of time from having to set up 
like something like distributed tracing and Jaeger. And just by being kind of like Kubernetes 
native, you can just provide insights and have kind of a better UI and like an all-in-one view. 
That's a little bit better than like somebody that has to focus on every tool imaginable. 

[00:10:17] JM: If we go a little bit deeper into the deployment, if I’m instrumenting my 
Kubernetes cluster with ContainIQ, what's actually happening? Are you installing agents across 
the infrastructure? 

[00:10:32] ML: Exactly. There are three main agents. There's the eBPF daemon set. That sits 
on every node. That's a little bit more involved because like we have to install like the Linux 
headers on every node. We need like some elevated permissions as well. Then there's the – 
Like I mentioned earlier, the deployment, or there's a single replica deployment that's collecting 
all this like state information, as well as Kubernetes events and some like high-level metrics. 

And then there's another daemon set that's like our logging agent that's collecting all of your 
logs as well. You can kind of get like in one view, like, "Hey, here's a request. Hey, here are the 
logs at the time of the request, or the in-context logs. And here was the metrics for this container 
or pod at the time of the request." And this all is rolled out as like either – You can install Helm or 
like a collection of YAML files. 

© 2022 Software Engineering Daily 5



SED 1480 Transcript

[00:11:30] JM: I understand. And once it's deployed, does the user define all the alerting and 
like outliers that would be triggered? Or are there out-of-the-box alerts?

[00:11:47] ML: Yeah. We're actually in the process of rolling this out now. Basically, rolling out 
like pre-configured alerts based on your historical data as well as like common Kubernetes 
events. So, like things like out of memory errors, or node CPU limit reached, or node memory 
limit reached. 

Funny enough, yeah, it's something we're like actively working on now, hopefully out in the 
sprint. Because it's definitely difficult for people to kind of figure out like good baselines to set 
like for their alerts. 

[00:12:20] JM: Do you have your own storage backend for tracking all the data that aggregates 
to monitoring issues and logging data? 

[00:12:29] ML: Yeah. We use Clickhouse for like OLAP database, which is it's been amazing to 
work with. Like just the performance of Clickhouse has been super impressive. And some of like 
the metric queries you can do with it just blows a lot of the other tooling like out of the water. It's 
great at aggregation queries. But yeah, so all of the metric crunching, looking at like, "Hey, 
what's the p95 latency for this endpoint over the past X minutes?" right? That's all done through 
Clickhouse.

[00:13:04] JM: Why did you pick Clickhouse? 

[00:13:06] ML: Funny enough, I started reading about it on like a bunch of Hacker News 
articles. That's kind of like what got me interested. And then I’ve read through a bunch of like 
benchmarks against some of the other time series databases out there. And I ran a few of my 
own. And it just seemed to blow everything else out of the water. The compression is amazing. 
The query latency was great. It was a breeze to work with. Yeah, kind of all of those things rolled 
up. It's what led me down that path.

© 2022 Software Engineering Daily 6



SED 1480 Transcript

[00:13:37] JM: Do you have a sense for how it compares to the other – I guess, I guess the 
biggest Clickhouse competitor is like kind of Snowflake, right? 

[00:13:51] ML: Yeah you see a time scale gets compared to them a lot as well. That's at least 
what all the articles seem to compare against Clickhouse. If you're Googling like the Clickhouse 
comparisons, it's generally against time scale. Yeah, any of the other like time series DBs, they 
get compared to a lot. Even something like a Prometheus and Thanos. And there's other time 
series based databases as well. But, generally, just from like reading blog articles, it seems to 
always be against time scale. 

And just from like the internal testing I did and some of the benchmarks I’ve seen other people 
publish, it seemed to do a much better job than most of the other tools on the market. 

I guess like the nice thing about timescale is that it's a Postgres extension. So you're working 
with something you might already be using in a lot of cases. Clickhouse, definitely – I mean, 
there's going to be some added overhead of managing another database. It's not easy setting 
up like replication and all that stuff. But I think the performance, it's definitely worth it if you're 
crunching a ton of data.

[00:14:59] JM: How do you decide when to perform operations such as like aggregations on – 
Or maybe you could just tell me some of the operations you're placing over the Clickhouse 
infrastructure. Obviously, you're logging a lot of events and monitoring data into the Clickhouse 
database. But what are some of the operations you're performing to do aggregations and rollups 
and create some meaningful value out of the high volume of data? 

[00:15:28] ML: Yeah. You can do some like cool things with like the newer materialized views. 
But for the most part, we're leveraging your stereotypical date trunk with like their quartile and 
like p95 functions that are already built in to give you most of the information you're looking for. 

A lot of the like aggregation type queries that we do, Clickhouse kind of just has the functionality 
built in. Whether it's grabbing the average for a metric over a given time period. Or it's day 
trunking all the metrics by minute and then getting like the p95 value for that metric by that 
minute. Most of the functionality you're going to need is built in, really. 

© 2022 Software Engineering Daily 7



SED 1480 Transcript

[00:16:18] JM: If you take the monitoring that I would have from just a Prometheus installation 
and compare it to what ContainIQ gives you, can you talk a little bit more about that 
comparison? 

[00:16:33] ML: Yeah, I would say the biggest difference is that we're capturing all of like the 
network requests inside of your cluster. You install ContainIQ and you can say, "Hey, what's the 
p95 latency for our auth endpoint in our Node.js application?" We can provide that with like a 
one line install. And we can do that across every single application in your cluster. 

Kind of the metrics we provide are like a nice to have on top of that. So you can see, "Hey, 
what's the – We're seeing a spike in p95 latency for this end point. Was there also a 
corresponding spike in CPU or memory?" But the core value we're providing is we're capturing 
every single network requests. We're rolling out like even MySQL and support for Postgres 
queries as well so that you can basically time every request in your cluster, whether it's internal, 
external, pod to pod, whatever it may be.

[00:17:30] JM: Have you had any interesting challenges around monitoring really, really big 
Kubernetes installations? Like, really, really wide platforms? 

[00:17:41] ML: Yeah, we have I guess more than issues with like network throughput. People 
who are just had – I mean, had a ton of requests going in and out of the cluster at any given 
moment. And I actually found like something related to like the wake-up time of like in the core 
of like lib eBPF that we had to kind of like configure a little bit. And actually, like right as we were 
getting ready to patch, somebody else opened a patch for it. 

Yeah, the hardest thing is we're capturing all of these – If you're capturing every single HTTP 
request or like SQL request and like large clusters that are seeing a ton of activity, it's very 
difficult in the beginning for our tool to be able to keep up with those requests. And so, we had to 
mess around with, like I said, the wake-up events with like the size of the buffer when we're 
pushing all of this out to user space. There's a lot of kind of optimizations that went into that. 

© 2022 Software Engineering Daily 8



SED 1480 Transcript

And fred, who's like one of our engineers, and he does an awesome job with a lot of the BPF 
stuff. Like he's even got like a calculation now like how many cycles does it take the process, 
like per byte of TCP traffic. 

[00:19:00] JM: Does the work that you're doing feel hard enough to be defensible as a 
company? Do you feel like what you've built with eBPF is so difficult? Or maybe you can 
enumerate some more of the difficulties that it's not going to just be built into whatever name 
your AWS monitoring service? 

[00:19:28] ML: That's a great question. I think what we built is definitely hard. There's a ton of 
smart engineers out there. And I think most people – With enough effort and bodies thrown at 
something, really, anything is kind of possible. I don't want to toot our own horn and say that 
nobody could replicate it. But, I mean, it did take a lot of work. Really, again, I want to give a 
shout out to Fred. He's like our kernel engineer. And he's made a ton of progress with me on 
this as well. 

I definitely think we're ahead of most of the other tools out there other than maybe something 
like Pixie. But we kind of have to take advantage of like the – Kind of the, I guess, like lead 
we're building and what we're building here so that we can maintain it. 

[00:20:14] JM: It feels like UX is often a differentiator in these kind of tools, or developer 
experience. Have there been opportunities where you've made the developer experience really 
shine? 

[00:20:27] ML: Yeah, I think it's core to what we're building, because I believe that if you focus 
on like a singular problem, you can do a much better job solving it. And so, by focusing on just 
Kubernetes clusters, we can do a better job solving monitoring for that. 

With a tool that does everything, it's just going to be more confusing to use, harder to 
understand, more cluttered, and can't provide like as many out of the box like sane defaults, 
because they're just handling too many use cases. And so, we're singularly focused on just this 
one use case, Kubernetes. And we try to do everything that you're going to need for your 
Kubernetes cluster, whether it's metrics logs, traces, latency, events. Try to really give you 

© 2022 Software Engineering Daily 9



SED 1480 Transcript

everything you'll need like out of the box. And I think like the core reason we can do that is 
because we focus in on this one specific use case. 

[00:21:26] JM: I mean, there's entire companies devoted to each of those categories; metrics, 
logs and traces. We can focus on distributed tracing, for example. I know how difficult it is to 
build distributed tracing infrastructure. How did you build that almost as just like a feature? 

[00:21:44] ML: Full disclosure, I’m sure the tools that focus only on that one specific thing 
probably have like deeper functionality in that given, I guess, like set of features. They're going 
to be deeper in like the kind of one specific thing. But like what we're really focused on in a high-
level is like here's one helm chart. You install it. And we get you most of what you need without 
any of like the configuration. It's not going to be like maybe as deep feature-wise. But we try to 
get you like the core value without like any of the upfront instrumentation work. 

[00:22:25] JM: There's two questions I want to ask. One is around features. And one is around 
architecture. How do you think the monitoring features that you'll need to build will change? And 
how will your internal architecture change? 

[00:22:40] ML: That's a great question. I can talk you through like our product roadmap a little 
bit. But kind of the next step of things we're building is like profiling. Like using eBPF. And then 
like eventually being able to hook into the different run times to get information on maybe the 
framework you're using and pulling out interesting information from that. If we – Like a high-
level, could hook into like the function entry or exit in Python. We could see every function call. 
And how long that specific function took to execute? 

And so, I think there's an added overhead with that. But there's some really cool things you 
could do with that where you could tell people latency for each function call in a given pod over 
time, as well as like, in some cases, even like the arguments of that function call. I think that's 
kind of like the pipe dream, is we could do that. We could associate it with like all of the other 
metadata we're collecting. 

In the near future, we're really focused on adding like profiling and like flame graphs, again, 
using eBPF. So that you can – You install something into your cluster. And we're automatically – 

© 2022 Software Engineering Daily 10



SED 1480 Transcript

Based on the config options, going to be profiling whatever applications you want us to do. And 
so, again, getting you like that kind of core value without any of the instrumentation work of like 
you don't have to install the profiler in your application, download that NPM package. We do it 
automatically.

[00:24:19] JM: Can you tell me more about your own deployment? What your infrastructure 
looks like? And are you using Kubernetes yourself? Or are you managing to use like a lot of 
serverless functions? Or just tell me what a typical deployment looks like. 

[00:24:36] ML: Yeah. On our end, we're using Kafka for like our kind of ingestion and ETL 
pipeline. All the information we're getting from our users gets dumped into like various Kafka 
topics. And then we have kind of like two main consumers, one for alerting, one for kind of like 
dumping that data into the various data stores and some light ETL operations. And so, those are 
in Go. 

And then our backend is like a Node.js backend. Pretty standard and express. React on the 
frontend for like all of the visualization. Postgres for like transactional type queries. Think like, I 
don't know, user management and state updates. Like, which pods are active? And how the 
conditions changed? And then Clickhouse for metric aggregations, log storage and retrieval. 
Yeah, any like analytic type query. 

[00:25:41] JM: Can you talk me through the data flow between a metric logged on the user 
side, stored in Clickhouse and then sent to a dashboard? Give me the end-to-end data flow. 

[00:25:58] ML: Yeah. I guess like the first step is our agent like collects one of the metrics or 
traces. We will associate the Kubernetes metadata with that. In the trace example, we'll say, 
"Okay, this is the IP of the connection. What pad belongs to that IP?" And then we can attach 
like the pod, the service and deployment that belongs to it. That gets sent to our systems, or our 
producer, which based on where the data is coming from, dumps it into like the corresponding 
topic. 

Then like I said, we have the two consumers that pop the data off that topics. One of them is 
Go-based. One is a JavaScript-based. The Go-based one is used for like alerting. And so, it will 

© 2022 Software Engineering Daily 11



SED 1480 Transcript

basically pop the metric data off and say like, "Hey, does this match any of the alerts they've set 
up?" Whether that's like a log alert. It's like, "Hey, has this log line occurred greater than X times 
over the past Y minutes?" It's a metric. Like, it's your stereotypical like threshold or percentage 
change-based alerts. Or if it's a trace, it's calculating like the latency. 

On the other end, we've got the other consumer that dumps it into the storage systems. Based 
on the topic it's in, we know what to do with the data. If it's like coming off of trace topic, we can 
you dump it into like the trace table, essentially, in Clickhouse. If it's like a state update, which 
would be like, "Hey, this pod was deleted. Or this pod had its CPU limit changed. Or like its 
condition went from this to this." That will get sent to like Postgres where we'll update the like 
state of that pod currently. 

A lot of the flow comes from basically which topic it's coming off with. And then the consumer 
has logic built in to say, "Based on that topic, what should I do with it?" And, yeah, then like the 
node express backend was querying all of that data. I guess, one thing I missed earlier too is we 
have like a go-based microservice that sits in front of Clickhouse for like all of the Clickhouse 
queries. And it communicates with GRPC to our node app. 

From like a user's perspective, say, for example, you search, "Show me the p95 latency by 
minute for our /auth /whatever endpoint." That will send the request from React to express node. 
And then that will open up like a GRPC connection with our Clickhouse operator, which 
communicates kind of like the query of what you're looking for. And then the Clickhouse 
operator will ping Clickhouse and say like, "Hey, here's the data they requested." It returns it 
back to node, which returns it back to the frontend.

[00:29:08] JM: What are the areas of the architecture that have the most load placed on them 
that that to scale the most regularly? 

[00:29:16] ML: Yeah. The biggest concern for us is always the consumers, right? Because if we 
see a spike in consumer lag, that means that we're not ingesting the data fast enough. That's 
my biggest worry, right? If I get an alert about consumer lag, that's what's waking me up in the 
middle of the night. That's my biggest fear. 

© 2022 Software Engineering Daily 12



SED 1480 Transcript

In terms of like the outside of that, like the Clickhouse operator, like the Go microservice I was 
talking about earlier, that's another big concern. Because all the inserts go through that as well. 
We need to be able to scale up insults if we're getting push – Or insert. Sorry. For being pushed 
out of data. Measuring like the latency there as well is like super important. 

The actual like aggregation queries, we don't see a ton of latency issues there. It's really on like 
the kind of insertion and consumption of data. We have to be the most careful about. 

[00:30:19] JM: Are there places where you feel the infrastructure is potentially subject to bugs? 
Like are there some particular areas of the product that you worry bugs might emerge in? I think 
there's like – Every product has its domains where bugs are prone to cropping up. Are there any 
places where you have some canonical bugs that keep coming up? 

[00:30:49] ML: I mean, every software's got bugs, right? Part of what we're working with. But, 
yeah. I would say the hardest bugs to deal with are the eBPF-related functionality in other 
people's clusters, because it's not something that like we have direct insight into. And there's 
just some, there's changes between kernel versions. Last week, we spent a few days getting it 
to work on like 4.19. And it's hard to do when you don't have direct access. That's something 
that like we've definitely, I guess, fixed a bunch of bugs there before. But it's almost not even on 
new functionality. It's more so getting it to work across like every kernel version. 

Most of our ingestion pipeline has been relatively tight, because we spent a lot of time on that, 
and a lot of code reviews. Maybe like your standard bugs in the UI and in node. But the biggest 
ones being bugs that happen on other people's infrastructure because they might have a very 
weird setup, right? They're using a CNI that no one else uses. And they're using this weird 
kernel version that's like super old with a different CRI than we're used to. 

We're actually focusing now on building out a bunch of tools to test across like the myriad of 
different configurations you could have. We have a Kubernetes cluster that has multiple different 
– Each node is like a different kernel version. So that we can like install our daemon set across 
all of them and make sure it works everywhere. 

© 2022 Software Engineering Daily 13



SED 1480 Transcript

[00:32:29] JM: Is there a feedback loop between monitoring data in ContainIQ and being able 
to trigger changes across your infrastructure? Like spinning up a new container in response to 
some alert that emerges from ContainIQ? 

[00:32:48] ML: No. But it's something we've been asked for and something I’ve been thinking 
about a lot, specifically around like latency. We're collecting the latency for all of your 
microservices, whether it's like SQL query, or it's a HTTP request. Where we send that data is 
configurable. It would definitely be possible for someone to install us, export all of the latency 
information and use that with alongside like the cluster auto scaler or some auto scaler to either 
auto scale the number of nodes or pods based on that latency information we're collecting. 

With the metric information, a lot of that's like already possible. But I think for people who are 
looking to auto scale based off of latency, it's definitely something we could do. You just have to 
hook us and do like another system.

[00:33:41] JM: As we begin to draw to a close, what's the biggest challenge you're 
encountering right now building ContainIQ? 

[00:33:51] ML: I’ll give you kind of a jokey response than a real one after. I think something that 
we're showing with now is keeping up with all the feature requests from like users. It's like, "Hey, 
I would love to have this as well." Just keeping up with user requests and keeping our current 
users happy. And that's something near and dear to me, because I’m a people pleaser. So, just 
making sure like everything's working and everyone's happy. I think that's always going to be a 
struggle for me and a struggle for us as a company is just pleasing everybody. 

From a technical standpoint, I think one of the coolest problems we're solving right now is we 
are basically parsing out SSL connections. Say, you have encrypted traffic between pods. 
Something we're now able to do is – In one of two ways. Either adding a uprobe to open SSL to 
hook into their write functions when they are encoding the packets. Or if you're using like 
ephemeral keys for like the actual encryption, we can pin those keys and use that to like decrypt 
the traffic. 

© 2022 Software Engineering Daily 14



SED 1480 Transcript

Yeah, in summary, the technical answer is parsing out socket buffer from SSL connections. And 
the personal answer is just keeping up with all the different user requests. 

[00:35:13] JM: Cool. Well, thanks for coming on the show, and it's been real pleasure. Best of 
luck with ContainIQ. 

[00:35:19] ML: Thanks so much. It was great meeting you and talking to you, and really 
enjoyed the conversation.

[END]

© 2022 Software Engineering Daily 15


