
SED 1476 Transcript

EPISODE 1476

[INTRODUCTION]

[00:00:01] ANNOUNCER: Streaming data platforms like Kafka, Pulsar and Kinesis are now 
common in mainstream enterprise architectures, providing low-latency, real-time messaging for 
analytics and applications. However, stream processing, the act of filtering, transforming or 
analyzing the data inside the messages is still an exercise left to the receiving microservice or 
data store, a custom programming exercise likely repeated over and over within an application. 

Stream processing tools such as Apache Flink and KSQL database have been around for half a 
decade, but their complexity has hindered adoption. Decodable's mission is to radically simplify 
processing on the stream with a SaaS platform based on Flink and only using SQL, which frees 
up developers to focus on what matters most. 

Eric Sammer is founder and CEO of Decodable, and joins the show to discuss the potential of 
stream processing, its role in modern data platforms, and how it's being used today.

[INTERVIEW]

[00:01:13] JM: Eric, welcome to the show. 

[00:01:15] ES: Thanks so much for having me. It's a real pleasure. 

[00:01:16] JM: Yeah, it has been a long while. Last time you came on, we were talking about 
Rocana, which is a previous company that you built. And since then, you've seen the world of 
data engineering evolve up close. And it's become quite crowded. And I think the area of focus 
for Decodable, which is your new company, is an area that's crowded as well, which is 
streaming data. 

And I think the streaming data systems today that get the most usage are probably Spark 
streaming, Flink. There's a variety of others. But streaming, also, it's kind of a broad term. 
Maybe you could focus in on what area of the stack you're focusing on with Decodable. 

© 2022 Software Engineering Daily 1



SED 1476 Transcript

[00:02:11] ES: Yeah, I think that's a great question. And I agree with you completely. I think that 
it's a really complicated and nuanced space with sort of different people with different opinions 
about how it should work, and different tech stacks, and probably, arguably, different products to 
sell. 

Our position here is that maybe it almost makes sense to start with what we're not. We are not 
trying to replace the messaging systems; Kafka, Pulsar, Kinesis, GCP, Pub/Sub, those kinds of 
things. Our position is that, increasingly, people know those systems. They work really well in 
most use cases. There's an ecosystem around them. And so, I think the most important thing for 
us is that people don't have to re-platform or any of those kinds of things. We think that 
messaging is, I don't want to say, a solved problem, but increasingly served by the systems that 
are out there. 

Like you said, the stream processing engines themselves. And I think you're right. Spark 
streaming, Flink. To some degree, we see some like K Streams or ksqlDB and like those kinds 
of things. Those things are out there. They are kind of painful in a lot of places. And so, our 
position is like a lot of people don't want to deal with checkpoint offsets, offset management, 
state management and sort of the operations of these things. Because these streaming 
pipelines do look more like micro surfaces than they look like batch data processing jobs. And I 
think that that's one of a couple of different dimensions in which stream processing is a pain, is 
that it sort of has like a higher order operational overhead to it. 

But our position is like, one, let's up-level it and get people out of thinking about the low-level 
details of like distributed checkpointing systems, and state management, and job control, and 
configuration, and task parallelization and those kinds of things. Let's make it a service for 
people so that they don't have to deploy a whole lot of software. 

And like, for better and worse, I’ll say, let's pick an interface for people that most aligns with the 
knowledge that they have. And rather than having people write sort of like DataFlow-style 
programs in low-level programming languages where they have to deal with serialization and 
like all these other kinds of details in addition to the business logic, let's just do it with SQL. And 
that does mean that there are certain things that are hard to express. Certain jobs basically that 

© 2022 Software Engineering Daily 2



SED 1476 Transcript

I think somebody wouldn't be able to accomplish. But at the same time, it means that mere 
mortals can build like the 80% of cases that are like filter, parse, transform, restructuring, those 
kinds of things. We tend to be the processing layer connecting all the source systems to all the 
destination or sync systems that allow people to self-serve. They don't have to know the guts of 
Flink or the guts of Spark and like all these other kinds of things. And we do that by kind of up-
leveling the developer experience to make it a little bit more tenable. 

I think Decodable is to stream processing what like GitHub is to Git, if you like that analogy. 
We're trying to sort of put like all the workflow and sort of like nice quality of life stuff around it in 
addition to just being the right way to run stream processing jobs. 

[00:05:37] JM: Gotcha. These other platforms, like Kafka streaming, or Spark streaming, or 
Flink, they have years of open source work that have gone into them to make them resilient 
streaming platforms. Maybe the APIs aren't perfect. Maybe there's some issues with them. But 
they do work. Are you describing a system that's built on top of other streaming systems and 
just provides a SQL API? Or is this an entirely new streaming platform? 

[00:06:12] ES: Great question. I think that we are 100% standing on the backs of giants. We 
use very heavily Apache Flink. We're big fans of Apache Flink. Decodable's core engine is 
definitely absolutely based on Apache Flink because of exactly what you described. It's been 
beaten up by Netflix, and Lyft, and Uber and sort of all these different people who have kind of 
put it through its paces over a long period of time. 

And so, even though it's got its warts, right? It's a little bit hard to use, it's hard to deploy, it's got 
a bunch of different APIs and like these kinds of things, the engine itself is incredibly stable and 
does exactly what it purports to do, at least in most cases. 

The real challenge is the usability of it. And so, we are focused on the kind of abstracting the 
parts of Flink away that are a little bit challenging and patching over some of what we believe 
and what some of our customers believe are sort of gaps in functionality and those kinds of 
things. And sort of obviously stabilizing it, like those kinds of things. We're probably like your 
typical open core enterprise data company, if that makes sense.

© 2022 Software Engineering Daily 3



SED 1476 Transcript

[00:07:27] JM: It does make sense. Now, if you try to sell a new infrastructure product to an 
established market, it can be hard to ease your way into a trusted position. It's probably 
maximally hard if you're building a database. If you're building a streaming system, it's a little bit 
different, because at least people are standing up new streaming data pipelines all the time. 
Maybe they can try out your system. Maybe you could talk about the prototypical use cases that 
people are willing to try out for Decodable, where it makes sense. 

[00:08:10] ES: Yeah. I mean, absolutely. And I think you're on the money. You can have the 
best technology in the world. But if it's too painful for someone to try and sort of figure out 
whether or not it's right for them, it's basically dead on arrival. 

For us, one of the core tenants is that we sort of fit nicely into the larger ecosystem. And I think 
that that's really important. Sort of the existing way that people deploy and build these kinds of 
systems internally. 

One, that means that there can't be any proprietary formats and stuff like that. Specifically, as an 
example, if you already have Kafka deployed, which we love, and your data's flowing with like 
AVRO messages, or Protobuf messages, or JSON messages over those Kafka topics, you can 
add Decodable as effectively just another consumer. What you're sort of getting at, it's a little bit 
easier with streaming systems. Just another consumer off of that. And build your pipelines. See 
whether or not that makes sense for you. And if it does, you can sort of slowly replace some of 
existing pipelines. Or even just add to sort of the existing infrastructure by running those things 
in parallel maybe for certain users or use cases. And it effectively can coexist with more 
complex jobs that have to be written in a lower level API. Maybe you have to build Flink jobs for, 
I don't know, some really complex ML jobs or online training systems and things like that that 
are hard to express in SQL. Or where you just kind of have pre-existing code or libraries that 
you want to be able to use, maybe Decodable isn't like the right place to do some of that stuff. 
And we're okay with that. We love that. It's part of what we do. 

Typically, people deploy or use Decodable in two different cases. One is what I would call sort of 
the core main data platform, where people either don't have maybe Kafka deployed, or Kinesis 
or those kinds of things because they haven't kind of made that jump to either event-driven 
services or real-time data integration into data warehousing products and things like that. And in 

© 2022 Software Engineering Daily 4



SED 1476 Transcript

that case, they're going to use Decodable to connect directly to things like S3 and like all these 
other kinds of things. And sort of Decodable winds up becoming the place where they build kind 
of all their pipelines. 

The other use case – And I think this one we have seen more commonly. To your point, we don't 
have the trust of customers the way as a vendor yet, because we've only been around for about 
a year. And those kinds of things, you have to earn your place in the core data stack. And I think 
that's a healthy skepticism. 

Typically, what people do is they will go to one team within a larger organization and they say 
like, "Hey –" And it's typically a team that already knows SQL and those kinds of things. And 
they'll say like, "Hey, why don't you try this for a couple of your pipelines and see if it works? 
Because it does sort of naturally fit in. And if it does, then we kind of like spread you know 
horizontally to other teams. And eventually, we may earn our right to be like the core artisanally 
crafted critical data pipelines that carry like every financial transaction in a bank or something 
like that." But it does start with basically the end consumers, right? The data science team, or 
maybe a product recommendation pipeline, or like those kinds of things that sort of are more on 
the consumption side than the production side in the streaming capacity. And then we sort of – 
Like I said. We kind of earned the right to move from there. 

And this allows people to kind of see it in action. And in fact, the business is designed around 
this. We have a free tier. So you actually don't even need to call us. Like, sort of stand up a 
pipeline and just see if Decodable works for you. And if it does, great. If it doesn't, we'd love to 
learn why. But it's not going to like bring down your entire bank, or your entire insurance 
company or something like that.

[00:12:21] JM: In building Decodable, you have to build connectors to mediate the streams. 
Basically, it's the interface between different sources of data, like, messaging services, and 
storage services, and databases and the streaming data pipelines. There's such a plethora of 
connectors that you potentially have to build to pull from these different places. I mean, there's 
entire companies built around data connectors, the Fivetrans and Census' of the world. How do 
you avoid getting mired in the connector problem? 

© 2022 Software Engineering Daily 5



SED 1476 Transcript

[00:13:05] ES: Oh my goodness. This is like a hot button topic even within Decodable about 
where do we need to build, versus where can we actually leverage something that's kind of 
already in place. I think you're 100% right. The short answer is that we focus primarily on like 
what we think of as the tier one systems is the messaging systems. And the reason why is a 
couple things. One, increasingly, database vendors and service providers, like SaaS businesses 
like Salesforce or Marketo and like those kinds of companies, are basically gaining first-class 
support for things like Kafka and streaming systems because they're sort of starting to become 
lingua franca for the way that people think about the network of data. 

There are definitely people still think like the data warehouse is sort of the nexus of the world. I’ll 
be honest with you. I think it's one big consumer. But it is just one consumer off of a lot of the 
streaming infrastructure. That might be another discussion. We build, first and foremost, the 
connectors to the messaging systems, Redpanda, Kafka, Pulsar, Kinesis, those kinds of 
systems. 

Our second ring of connectors where we're sort of starting to get more involved is the change 
data capture world and like being able to consume CDC streams and produce into database 
systems. And there, I’ll be honest with you, I don't think we're ever going to be the company that 
has the long tail of like Oracle 7, and mainframe connectors and those kinds of things. 

We're very purposely being thoughtful about the kinds of systems. For instance, Postgres, 
Mysql and Mongo, Cassandra is probably easy to understand. You start maybe Oracle. But as 
you get into the like more and more like either traditional database vendors and then legacy 
systems, I think, to your point, we avoid those like as much as we can and rely on the fact that 
there are other companies that will build those connectors, because it is high-value. It's just not 
our business. Build those connectors and they will produce that data to the messaging systems. 

And so to us, the messaging systems are becoming sort of the central universe of those things. 
And certainly, Confluent, for instance, has done an excellent job of building a lot of those really, 
really complex connectors. We don't want to compete in that space. Like you said, there's other 
people who have done these kinds of things. 

© 2022 Software Engineering Daily 6



SED 1476 Transcript

Now that said, I mean, you mentioned Fivetran. You mentioned Census. There's like Hightouch 
and like all the reverse ETL people and stuff like that. I think that those things are a little bit 
challenging because they effectively avoid the messaging systems. And I think that that's 
actually a mistake. I think the fact that like Fivetran wants to produce directly into the data 
warehouse means that all the microservices and all of the operational infrastructure basically 
doesn't get access to that data. And it still needs to be sort of like somehow made available to 
the places where the operational systems get that. 

And similarly, with the reverse ETL world. I really wish that Census and Hightouch, for instance, 
would support getting data from messaging systems, versus the data warehouse. Because a lot 
of these operational systems like microservices, for instance, that need to produce usage 
information about billing, need to talk to Salesforce. Forcing that through the data warehouse 
puts this sort of like, one, it's really expensive compute. And two, it puts the system that doesn't 
have the same kind of SLA into the hot path. 

And so, while these people have the connectors, they're not necessarily accessible to the 
community of people who need to build those kinds of applications, these operational systems, 
microservices that are event-driven. Like I said, certainly, a lot of this data does go into the data 
warehouse. I think I’m not anti-data warehouse. I’m just saying that like I think that operational 
systems, which, again, like a lot of the Salesforce, Marketo, Eloqua push notifications to 
customers and like updates around account information and those kinds of things. What you 
want is central governance. What you don't want is like central database. And I think that, 
increasingly, that becomes a challenge. 

One, we try and limit our development of connectors to what we think of as being sort of critical. 
And I do think in five years – I think Salesforce, for instance, just started supporting Kafka. I 
think in five years, every one of the producers of data will natively support Kafka or something 
like it. I think all the consumers will natively support Kafka or something like it. And I think the 
database warehouse vendors, like Snowflake, and BigQuery, and like Redshift and all these 
other folks already have some capacity to ingest from things like Kafka. Apache Pino and Druid, 
for instance, and a lot of the new-breed low-latency analytical systems which we love already 
support native consumption from Kafka, or messaging-like systems. 

© 2022 Software Engineering Daily 7



SED 1476 Transcript

And so, I truly think that we are already where the world is going to end up in a couple of years, 
where the connectors become less and less important because everybody is starting to sort of 
think about this as change events or append-only events on streams. But I think we watch this 
stuff closely. We build connectors. 

For instance, we have like an S3 connector, because it's just so common. But like I think we're 
really thoughtful about where we do this. And because we don't have any of those proprietary 
formats, your entire Kafka connect ecosystem and all these other kinds of things already work 
with Decodable. We've managed to leverage what the community of people around these 
systems have already done. 

[00:19:12] JM: You are managing the data pipelines yourself on your own server infrastructure. 
Correct? 

[00:19:22] ES: That's right. Yeah.

[00:19:22] JM: Can you talk about the server abstractions that you're using to host the data 
pipelines. Like are you using Fargate containers or EC2 instances? Give us a context for the 
infrastructure.

[00:19:37] ES: Yeah. I mean, I’ll tell you, it's a bear. We spent a lot of time thinking about this 
problem. Under the hood, there's a couple things that we need to do. We need to make sure 
that people get sort of the right kind of quality of service for each one of these pipelines. We 
need to be able to handle certain kinds of failures and limit the blast radius of those failures 
because these are low-latency streams. 

Under the hood, Decodable is sliced up into cells. And each cell is limited to a certain number of 
customers. And so, basically, we sort of always play with these numbers. But let's assume, for 
instance, that we never let more than 50 customers into a cell. Under the hood, the cell is 
basically a set of Kubernetes names and spaces that form like a boundary of low-level access 
control that correspond potentially to node groups, or they could be shared over physical 
machines. 

© 2022 Software Engineering Daily 8



SED 1476 Transcript

In AWS, for instance, we happen to use EKS, because EKS helps us sort of like deal with some 
of those kinds of things without sort of a whole lot of engineering effort. And then we pack 
tenants or customers into those cells. When you start up a connection or a pipeline in 
Decodable, what we're actually doing is allocating dedicated containers for that. 

Startup can actually take a couple of seconds because we're sort of actually spinning up 
containers for that. And that cell is all the way down to the Kubernetes level of control. We have 
the ability, for instance, to say, "This cell is on this Kubernetes cluster." Because like I said, 
there's a control plane to the cell and the data plane to the cell. And each one of those 
corresponds to a Kubernetes namespace. 

And then we can decide what cells or what namespaces are pinned to what nodes. And in 
certain cases, we can actually pack multiple cells onto one Kubernetes cluster. Or we could 
decide that this cell is so important it gets its own Kubernetes cluster. So that we're actually 
resilient. Or at least we limit the blast radius to the Kubernetes control plane and etcd and sort 
of like all the stuff that happens with Kubernetes. 

And then the Kubernetes cluster is basically a one-to-one relationship with the low-level VPC 
infrastructure. For instance, this gives us the ability to decide, A, how many tenants do we pack 
into a cell? B, whether or not that cell is on a shared Kubernetes cluster or a single cell 
Kubernetes cluster. And C, what nodes that corresponds to? And D, the L2 network segment 
that those nodes sort of like have access to. 

And so, in like an on-demand tier, we may pack many, many tenants together and they might 
share infrastructure. In the case of like sensitive customers, either for security reasons or for 
performance reasons, that might be a one-to-one-to-one-to-one mapping, where basically a 
single cell gets a dedicated L2 segment. And we attach other things to the notion of cell, for 
instance, credentials. We don't share credentials across cells. In, God help us, the terrible case 
where there's like a security incident, they're basically trapped within a cell. And they can only 
sort of operate within a cell. 

Over time, we've talked about, for instance, like do we allow the data plane to run under the 
customer's vpc versus ours? And like maybe we've run the control plane. We've talked about 

© 2022 Software Engineering Daily 9



SED 1476 Transcript

sort of different permutations of that. And there, that's just the place where we sort of listen to 
customers and sort of learn how they want to think about it. But we have a bunch of different 
levers about how densely we pack the cells. How many cells do we have? And we've designed 
it to be relatively cheap to provision additional cells, right? 

I mean, I said, it's as cheap as multiple name spaces on a kube cluster. That's like the two-
minute explanation of what the underlying infrastructure looks like. And that architecture, for us, 
has proven to be really resilient to like weird jobs that do terrible things that can control the 
outbreak of those kinds of things. Now, we have a much easier problem than low-level Flink, 
and Spark and those kinds of things. Because the only jobs that customers can express are via 
SQL. And we know what those operators look like. And we know how to control those things. 
There's not arbitrary code. And so, as a result, we have like already gotten around like a bunch 
of things where like somebody writes like a weird UDF or something like that. We don't really 
have those kinds of problems by design of like the product that we give out to people. That 
actually allows us to avoid a host of really, really complex problems in a multi-tenancy capacity. 

[00:24:37] JM: Has the tires really been kicked on the system? Have there been some really 
large data workloads that you've thrown onto the system to see how it works?

[00:24:46] ES: Yeah. I mean, obviously, we do sort of the normal sort of enterprise burn-in 
testing and performance testing and those kinds of things. We also do regular things. Like, we're 
constantly like upgrading the underlying infrastructure and stuff like that, patching for security, 
updates and those kinds of things. Like at any given moment, there's always like a node 
restarting, or joining, or leaving a cluster or something like that. We do continuously deploy and 
sort of have different deployment gates as different versions of the runtime of the system make 
it out there. And then we obviously have customers that just beat it up with running lots of small 
pipelines, a small number of big pipelines, different combinations of those kinds of things. 

And we do have different levels of sophistication of customers because, like I said, one of the 
things we're trying to do is make it easy for people to build these pipelines. If somebody has 
been building pipelines with like Airflow, and DBT, and Snowflake, they probably don't have low-
level knowledge of like Flink, and streaming and those kinds of things. And so, sometimes we 
get some like pretty wacky SQL that does some really interesting stuff. 

© 2022 Software Engineering Daily 10



SED 1476 Transcript

And I got to tell you, on the whole, we have seen the system be pretty resilient to this. And to be 
fair, a lot of that is the hard work of like the Flink community in dealing with those kinds of 
failures. I don't want to be unfair to the team. Certainly, the team at Decodable does an awful lot 
of work around state recovery, and job recovery, and sort of retry mechanisms, and like all sorts 
of deep tuning. But like that's our business. That's our value to people. 

And so, if we're going to be good at what we are trying to be good at, it really is incumbent on us 
to be able to respond to those kinds of failures. We've seen – The unit of work for Decodable is 
the task, right? A pipeline is allocated in a certain number of tasks, or maximum number of tasks 
from the user. So you might say, "I’m going to process this amount of data. And I want to allow 
up to 10 concurrent tasks." And then the query engine is going to decide if it can parallelize up 
to 10 tasks. And if so, which operators get assigned to which nodes in that job graph? 

And in those kinds of cases, we are able to sort of deal with about 80,000 to 100,000 events per 
second per task, or about 8 megabytes to 10 megabytes per second per task, whichever one 
you hit first. If you have like small events or large events that can change performance 
characteristics, obviously, the SQL can change performance characteristics. But that's sort of 
like our sort of what we think of as the unit of work. 

And so, you can imagine people who show up with like a hundred tasks or a thousand tasks 
deep pipeline, really put some pretty serious work on the runtime. But myself and some of the 
other folks on the team have quite a bit of experience running Kafka, and Pulsar, and Kinesis, 
and Flink and those kinds of things at scale. And so, we have some pretty good idea about 
where things break down, and why, and what to look for, and the leading indicators and stuff like 
that. We've gotten pretty good at running Flink both at Decodable and from some of the 
previous places that we've worked to see the stuff at scale. 

[00:28:25] JM: SQL is great. But there are probably a lot of people that have defined their 
pipelines imperatively. Is there some complexity or communication difficulty in defining for your 
users kind of the spec for how to define everything in SQL? 

© 2022 Software Engineering Daily 11



SED 1476 Transcript

[00:28:48] ES: Yeah, that's a really good question. I mean, I think it depends on the audience. I 
think you're right, in that a lot of the more sophisticated shops who have been dealing with 
streaming for a longer period of time may already be thinking in like Apache Beam, or Flink, or 
Spark, or K Streams. And honestly, I think of those things are working for people, and they don't 
have challenges. Maybe we just don't try and convert those people. I think if they see value, 
then they decide. 

And I think, as a vendor, I don't know that it's my business to sort of convince somebody that 
they're doing it wrong if they built some code that works for them. And maybe this is just a 
function of like us being an earlier stage company. There are so many people who are not the 
people that you're describing. That we already sort of have our hands full with just making them 
successful. And these are people who sort of start thinking about the world from the SQL 
perspective. 

I do think, as we grow, we will encounter more people who say, "Well, I have to do this in like 
imperative code," in whatever weapon of choice they have, Beam, or K Streams, or Flink, who 
say like, "I have to be able to do this." That we may sort of gently say. And in fact, I think we've 
had some of these conversations where we kind of go like, "What did that job do?" And they're 
like, "Well, I filtered this and I transformed these fields." And you're like, "Okay. Do you really 
need to do that?" And they go, "No, not really." And so, there might be some amount of coaching 
people to rethink how they think about these pipelines. 

To that end, we've come up with like a catalog of patterns that we see most commonly. And they 
use the verbs that the engineers, or the DIV engineers, or the application engineers use. This 
catalog, I think it's 12 patterns. And they're things like filter, enrich, trigger, aggregate. And like 
they can be sort of composed in sort of different ways. 

And so, we sort of mapped out this catalog, and we said to people, "Well, if you need to filter 
and aggregate, here's what that looks like in SQL and in Decodable." And in a lot of cases, 
people say, "Oh, that makes sense." And they go and they do it. There are occasionally cases 
where people have imperative pipelines mostly because one small part of that pipeline is really 
complicated and really domain-specific. And then the rest of that pipeline is like the filter, 
transform, enrich. Basically, the simple stuff that can be expressed easily in SQL. 

© 2022 Software Engineering Daily 12



SED 1476 Transcript

And for those people, I think there is a little bit of education to say, "Well, what if we actually split 
this into two pipelines with a stream between them so that the simple stuff is simple and the 
place where you truly need to do something really, really complicated." 

For instance, if you were a real-time delivery company doing sort of like location prediction or 
sort of delivery prediction or something like that in terms of time, that's probably a thing that's 
like hard to express in SQL. But a lot of the feature extraction for that could be SQL. And so, 
that's a case where we go like, "Well, maybe we split this in two," and we sort of like leverage 
Decodable for like the simple stuff that it's not differentiated. And then for the crazy stuff that is 
like specific to your business, we don't want to get in the way of that. And for that, you just drop 
down basically into Flink, or Spark, or K Streams or whatever is that you're using. And that has 
actually resonated with people. Resonated – Listen to me. I’m like a terrible CEO now. That 
makes sense to people. And I think that they kind of go, "Oh! So then like I actually don't have to 
deal with all the details." 

We'll continue to see whether there are more cases that we can absorb. But ultimately, we want 
to be in a position to help people not try and convince them. Not start like a religious war about 
the right way philosophically to think about their pipelines. 

We have found, like I said, enough people are sort of aligned to the way that we think the world 
works. And admittedly, what we think is based on our own experience sort of running these 
systems for like internal use cases and stuff like that at companies, like, consumer, businesses, 
and enterprise businesses and stuff. And so, to some degree, we're sort of building the kinds of 
systems that we would like to be able to use at some of those companies. And I think that lands 
well with people. Not kind of like being pushy about what they use the product for. But it's a 
really interesting question. And I think we'll have to continue to see how that develops, though. 
Good stuff. 

[00:33:43] JM: When you look at the way that teams are structured these days, the breakdown 
between data engineers, and data scientists, and ML engineers, there's kind of, I guess, a 
shifting of responsibility that is happening as tools get higher level and easier to work with. And 
I’m wondering if you feel like Decodable reduces the workload on the data engineering teams. 

© 2022 Software Engineering Daily 13



SED 1476 Transcript

And maybe you can just talk about how – Well, I mean, I think not just Decodable, but 
companies like Fivetran that reduce a lot of the effort that previously would have been the 
responsibility of the data engineer, how responsibilities shift in the data teams. 

[00:34:34] ES: Yeah. I mean, our two communities that we think about are the application 
developers building like event-driven microservices. And like you're talking about the sort of like 
analytical data teams that are the data engineers or analytics engineers, data science, and sort 
of like increasingly a bunch of different specialized functions there. 

My sense is that this isn't necessarily about putting people out of jobs. It's not that we think that 
like data engineers shouldn't exist. And in fact, the thing that, for instance, we do – And I think 
the thing that Fivetran does and companies like that, although I won't claim to be an expert on 
their business. The thing that I think they're doing is they're actually removing the burden on the 
central data platform team, the people who know the lowest level sort of details about database 
infrastructure and the state management and sort of like those kinds of things about like job 
recovery and those kinds of things. 

I still think that tools like Decodable, Fivetran, sort of Airbyte, that whole ecosystem of things. 
Some of which are optimized for different use cases. I don't think we actually necessarily 
compete with like a Fivetran or an Airbyte. But I really think what we're doing is we're allowing 
the data engineers and that sort of like whole cluster of folks to be able to do more in the same 
amount of time. Because it's not like there's like a fixed number of pipelines. 

I think the work of the data engineering team sort of like grows to fill the capacity of like what the 
business can throw at it. I would argue that for every data engineer you hire, you find like 10 
new things that you want to do with data. Or sort of like all the customers that are on the other 
side of the data engineers, whether it's data science, domain experts like who aren't maybe 
even engineers who are sort of like the data engineers are fulfilling the building of different kinds 
of like data products for, I don't know, civil engineers or for whomever it is that they're sort of 
supporting, or the business users beyond that. My perspective is that what we are doing is we're 
making them more efficient. 

© 2022 Software Engineering Daily 14



SED 1476 Transcript

Now, I think there is something interesting that sort of happens. One of the things that we had a 
conversation about just the other day at Decodable is there was a time where an application 
developer could not do anything with the database without a DBA. And like I don't know exactly 
when it happened. But I don't know a lot of DBAs anymore, except for like in sort of like the 
most high-demand sort of database systems. 

I think, increasingly, we've actually changed the way applications use things like Postgres and 
MySQL, mostly the operational database systems, where like people spin those things up on 
their own and do relatively simple operations. But they do a lot of them. I don't think that data 
engineers are going to get squeezed the way that DBAs got squeezed by the development of 
systems like Decodable. Because I don't think data engineers should be or even are in the 
business of building these maintaining like Flink runtimes and like dealing with like class or 
nonsense. I think they prefer to spend more of their time building pipelines and thinking about 
how data is used, versus building data infrastructure. 

Now, maybe I’m wrong about that. But my experience has been that, at many of the typical 
Fortune 500 businesses, they'd rather be thinking about banking, and insurance, and retail than 
thinking about messaging systems and stream processing engines. And so, I think our job is to 
make them more productive versus like limit the work that they do. 

And I think we're actually doing that. I mean, I say that reluctantly, because vendors always 
think that they're helping people. But I think, practically, on the ground, data engineers can do 
more, which means that all of their customers downstream that the teams that they support can 
do more. And I think that that is – I mean, that's the goal, right? That's, to some extent, the effect 
that we're trying to achieve. And if they spend less time on what I would call undifferentiated 
scut work, right? Like cleaning up data sets is not the thing that makes Lyft or Uber Uber. It's 
really the marketplace of rider-driver pairing systems, and customer safety systems, and rider 
prediction systems and those kinds of things that make them who they are. 

And so, I think, over time, we'd like to be in a world where people don't have to build at that 
level. If we can make the current work, which feels like assembly code more like C code or even 
more like Java or Python code, I think using that as an analogy. Of course, if we can make their 
jobs a little bit easier, then we see that as a net win. And I think that that's what's happening. 

© 2022 Software Engineering Daily 15



SED 1476 Transcript

And I think we will see more interesting applications of data hopefully for the better of retail 
users or insurance applicants and so on and so forth. I think that we're on sort of a healthy path 
to be able to support them and make them more productive. 

[00:40:31] JM: As we begin to close off, just to drive home the point of what you're building, can 
you walk me through the life of a SQL query executed on Decodable?

[00:40:42] ES: Yeah, absolutely. I mean, at Decodable, there are really two different things that 
people wind up doing. One is they configure connections, either source connections or sync 
connections to like a Kafka topic, or an S3 bucket or something like that. Once that's done, what 
people get is a stream. And that stream sort of feels like basically a Kafka topic that can be used 
by any number of connections or pipelines within Decodable. And then they write their chunk of 
SQL. And a pipeline is a single insert into select from SQL statement, which in turn compiles 
down to a Flink job. And I say compile those down to sort of in the loosest sense. There's quite a 
bit of like SQL parsing and planning and those kinds of things, some of which we leverage the 
pre-existing some Flink code, and Apache Calcite and those kinds of things. 

But eventually, we have a catalog. Basically, a metadata catalog similar to like the information 
schema inside of like a Postgres, or a MySQL or something like that that tells us about the 
streams, and their schemas and all these other kinds of things. And so when you click save, 
what we're actually doing is we're loading that metadata. We're doing the parsing and planning. 
We are looking at the metadata we have about streams. We're doing schema mapping and 
compatibility checks to make sure that, for instance, we will not let you save a SQL query that 
references a column that doesn't exist in a stream, or thinks about it as the wrong data type, 
those kinds of checks. 

And once we have made sure that all that is true, we actually store that SQL plan, that that 
query plan along with a whole bunch of like metadata. For instance, we extract the streams that 
you've referenced for dependency information and lineage information, those kinds of things. 
And either activate that pipeline. Or once if it's running already, you can deactivate it and stuff 
like that. And what deactivation or start stop is, is actually launching it. 

© 2022 Software Engineering Daily 16



SED 1476 Transcript

Once it's saved and planned, we know that that's sane, and it's always going to work. And when 
you activate it, that's when we actually launched the job and actually start producing things. And 
that's where you get into the low-level detail of launching the underlying Kubernetes containers 
and doing any state restoration. If that job is being restarted, we'll load in all sort of the previous 
state information and resume from the last offset that we processed. And we do all the exactly 
once processing shenanigans. There's lots of idempotency that sort of like we have to handle 
there around job recovery and recovering from sort of the right places and bringing in sort of any 
state around aggregation functions, and enrichments, and window functions and those kinds of 
things. 

But the net result for somebody is that they type some SQL, they hit activate and data starts 
flowing. And then once the pipeline's running, there's a whole bunch of infrastructure about 
getting metrics off of it to make sure that it's healthy and what the performance is. When you log 
into Decodable, you see things like events per second and bytes per second, in and out and like 
those kinds of details that tell you more about your pipeline. And you'll continue to see more, I’ll 
just say, stuff from us to tell you about things like data quality and those kinds of things from 
pipelines in the future. We don't do enough of that just yet. But we'll do more of it. And then it's 
kind of off and running from there. 

That's sort of the life cycle of building and deploying a pipeline with Decodable. There's all sorts 
of different ways that you can do it by the application, or via APIs, APIs or you know 
declaratively in some files and stuff like that that feels more like kubectl if you're a Kubernetes 
person. But we try and make it as simple and error-proof as humanly possible. But that's it.

[00:44:41] JM: Awesome. Well, that seems like a good place to close off. Anybody building 
streaming data pipelines should obviously come hit you up. And thanks for coming the show 
again.

[00:44:50] ES: Thanks it's a real pleasure. Long-time fan of the show. Really excited to get a 
chance to talk to you about it. Appreciate the time.

[END]

© 2022 Software Engineering Daily 17



SED 1476 Transcript

© 2022 Software Engineering Daily 18


