
SED 1471 Transcript

EPISODE 1471

[INTRODUCTION]

[00:00:00] SPEAKER: Notifications have typically been an area of product were building in-house has 
been the only option. However, building a best in class notification system that delivers a great 
customer experience requires a significant investment when you start to learn complexities, like 
batching, cross channel orchestration, and user preferences. Chris Bell of Knock joins the show to talk 
through how Knock can solve the challenges with building an in-house product notification system and 
free up engineering time in the process.

[INTERVIEW]

[00:00:29] JM: Chris, welcome to the show.

[00:00:31] CB: Hey, Jeffrey, thanks for having me.

[00:00:33] JM: Yeah, it's great to have you. Notifications. So, I receive all kinds of notifications in my 
applications. I think about notifications on my phone, notifications that I see in the website of an 
application like on Instacart or on Facebook, and they seem fairly simple. There's a wide variety of 
notifications that can occur. Why is the concept of a notification a complex engineering problem?

[00:01:09] CB: Yeah, that's a great question. Just to start, I think a lot of people don't think of it as the 
complex engineering problem, really. But what we saw with notifications is, it's not just about the actual 
delivery of those notifications to the end device, right? It's not just about sending a push notification, or 
delivering an email or sending an SMS and calling one of those already established, like delivery 
provider API's, really where a lot of the complexity lies and notifications these days, is kind of just what 
you describe. It's about the orchestration of those notifications, and making sure that the right 
notification goes to the right person on the right platform to give them the highest chance of engaging 
with it and get them back into your product. That's where we see a lot of the actual challenges of 
building these notification platforms today.

© 2022 Software Engineering Daily 1



SED 1471 Transcript

So, myself and my co-founder, we worked at a company called Frame.io where notifications are 
basically integral to that platform, making sure that when someone left a comment on a video that they 
would get notified to bring them back into the product. But those notifications, they didn't just live on 
email, they lived in places like Slack, they lived in places like Microsoft Teams, or whatever that chat 
platform is that you're using, as well as like we had an iOS app, we had an Apple TV app, we had all of 
these different applications, and just making sure that the right notification went to the right place to 
make sure that person ended up getting back into the application was really, really crucial.

That's kind of the problem that we're trying to solve at Knock is not just about the delivery of those 
notifications, it’s everything that comes around it. It's all of the logic that's involved in basically taking a 
flow of information and making sure that the right channel gets notified, applying a user's preferences 
back onto it as well. So, making sure that like, if you tell us you never want to receive a push 
notification, you shouldn't be receiving that, right? That's really where a lot of this engineering challenge 
lies and it's kind of like, it's one of those problems where it's like, it's not just a hard-technical problem. 
It's one of those things that's kind of laborious in the sense where everyone's building the same 
technology. There's no real differentiation there for most companies, and it's not necessarily something 
that's like making their product better. It's something that they absolutely need to make sure that they 
can compete and make sure that they can have a great experience for their customers, and that's really 
where a lot of the challenge lies, and that's exactly what we're trying to solve here at Knock.

[00:03:38] JM: Okay, got it. So, it seems like notifications are fairly domain specific, like, depending on 
what application I have, there's going to be a very specific set of notifications that are going to be 
occurring. What can you generalize about notifications in order to build notification infrastructure?

[00:04:03] CB: Yeah, that's a great question. So, what we see as the building blocks that can be 
generalized are these components that you basically compose to be able to create these complex 
notification flows. So, things like a lot of applications need batching. You might leave 10 comments on 
something, and it's going to produce 10 notifications by default. But you actually want to say, “Hey, we 
want to collapse those into a single notification that goes out within a set window of time.” That's an 
example of one of the kind of like generalizable building blocks that we saw that we created around with 
Knock so that people can leverage those to not have to build that themselves.

© 2022 Software Engineering Daily 2



SED 1471 Transcript

Another example there would be like a delay, right? You might have an example of an invite email 
where you basically say, “Hey, Jeffrey, you've been invited to this product. We're going to wait three 
days and if you have not clicked on that invite email or accepted it, we want to send you a reminder.” 
It's like those kinds of building blocks that we're trying to abstract, and they're the parts that we see as 
incredibly generalizable, that a lot of teams are having to build themselves with – the one I just 
described there around like a delay is generally been built as like a cron job, but now you have to keep 
stating your DB. You're thinking about basically like, okay, for all these users that haven't received a 
reminder, we're going to do that. Again, it's just like, one of those wrote tasks that you're adding to your 
engineering team's backlog, and they're the kinds of pieces that we're trying to abstract, and make 
really, really generalizable for people to leverage here.

Another really good example is that application of preferences as well. So typically, that's not really 
domain specific. A lot of folks will just have like a generalized preference model that says, I want to 
receive emails, I don't want to receive push notifications. Maybe for this particular type of notification, I 
always want to receive it on this channel only, but I never want to receive it over Slack or something like 
that. Again, and that's one of those pieces that we've kind of abstracted away and included in the 
product. So, you just never have to think about building it again.

[00:06:11] JM: Okay, actually, I have built multiple products where I've had to build ad hoc notification 
infrastructure, and it actually is kind of a nightmare. Now, as far as what kinds of problems you can 
actually handle for the developer, there was this problem that Facebook had, maybe you remember this 
many years ago, where the user’s notifications would never show that they were empty. They never 
seem to be able to successfully mark all the notifications is being read. So, every time you would open 
Facebook, you would have a notification and it just turned out that there was some kind of complexity in 
terms of actually identifying what notifications had been consumed or not. I think, it was some kind of 
issue, communicating between the back end and the front end. But it just makes me wonder like, what 
parts of the notification infrastructure are you trying to handle? Is it mainly the back-end side of things? 
Are you also trying to handle like the front-end rendering side of things?

[00:07:15] CB: Yeah, that's a great question. By the way, we've definitely heard about that problem 
from some other folks as well. I think like, when you think about your Twitter DMs, they also have a 
similar problem, like, your badge count on iOS will never reflect the actual DM count. That kind of state 

© 2022 Software Engineering Daily 3



SED 1471 Transcript

synchronization problem is definitely difficult challenge across clients, and at scale, at the kind of 
Twitter, Facebook scale, I'm imagining that's like a lot more challenging to handle as well.

To answer your question, yeah, we are basically, we're trying to tackle notifications holistically. So, one 
part that we see as really integral to that kind of holistic solving here is actually bringing in that in app 
kind of stateful feed component as well. If you think about feed of notifications, you might call that an 
inbox or you might refer to that as you know – you might have seen it as like the bell icon where you 
click it and then you see a list of unread notifications, something like that. We actually have out of the 
box React components that you can drop into your product, and get up and running with a feed that 
we've already constructed for you, that you can just drop in, and it gives you kind of a real time enabled 
feed that you can just drop into your product, out of the box, and you have that. But we also have the 
API’s behind it.

So, if you don't want to use our components, you can also kind of power your own components through 
our API's and not have to build the API’s to actually power that, and all of the real time infrastructure 
that surrounds it as well. And then, on the kind of client state management side of the house, we give 
you a really simple interface where you basically have access to the total number of unread 
notifications, things like that. You can mark them as red, just like, basically, again, just taking away that 
kind of task of having to build out that part of your notification stack and doing in your product, whilst 
also understanding that a lot of the time those components have to be really customizable, because 
you want it to match your branding, you want it to match the look and feel of your product. But again, 
it's just like rote work that you have to do and maybe you don't have real time infrastructure ready to go 
just out of the box. You have to think about how do you handle that. It also just brings in all of these 
other challenges. So, we're just trying to make it absolutely straightforward to get going and power both 
your back end and your front end of your notifications.

[00:09:32] JM: So, maybe we can characterize a few different kinds of applications and talk about what 
it would take to build notification infrastructure for these different applications. So, maybe we could start 
with a consumer application. If you think about like an app like, oh, let's say Instacart or DoorDash, 
some kind of food delivery app, can you talk through – if I was building notification infrastructure for a 
food delivery application, could you contrast what that would look like if I was building it from scratch 
versus what it would look like if I was building it with your infrastructure at Knock?

© 2022 Software Engineering Daily 4



SED 1471 Transcript

[00:10:21] CB: Yeah, absolutely. So, I think if you're building that kind of infrastructure for a consumer 
base application, like Instacart or one of those food delivery services, basically, what you're having to 
do there is think about, well, let's think about the key events that are causing notifications, right? So, 
you've got pretty much when an order is placed, you probably want to send them a notification telling 
them the order is placed, and maybe that's a receipt, or some kind of email or something like that, then 
you want to tell them the driver is on the way, you want to keep them updated on that part, maybe it's 
something to do with the fact that they couldn't find all of your groceries. So, now we have to come 
back and actually start thinking about bringing them back into the product to make sure that you're 
picking substitutes or something as well. So, you've got that kind of engagement loop that you need to 
power.

And then ultimately, you've got the kind of the real time nature of making sure that they're aware that 
the driver is coming up to their door and nearby. You've got those kinds of events and this is how we 
like to start thinking about kind of notifications within products. There are key events that are driving 
those notifications. If we're building this out ourselves, well, first of all, we just identified a couple of 
different platforms where we need to start thinking about sending notifications to there, right? Maybe 
let's start with the fact that we need to at least send them emails, but we also know that they have a 
mobile app, and now that we need to start sending push notifications as well.

Immediately, we have a couple of channels that we need to support. So, I don't know last time you spun 
up any kind of push notification infrastructure, but that's a stateful connection to APNS or FCM, 
Firebase Cloud Messaging as well. Now, we need to support that within our application, make sure that 
we're actually delivering those notifications to those end users can spin up the infrastructure to handle 
that. Now, on the other side, we might have to have some kind of event pipeline to basically start 
saying, when this event happens, we want to asynchronously deliver these notifications. Maybe that 
starts out as a simple job queue to actually do that. But then quickly, it can turn into like an event log 
service, like a Kafka or a Kinesis, or something like that as well to start powering a larger scale. And 
then we might have some more reminders for those users, maybe like 10 minutes away from when the 
delivery supposed to happen, we need to trigger a workflow that says, “We need to send them a 
reminder that their delivery is coming.”

So now, we might need some cron infrastructure as well or something so that we can run those kinds of 
scheduled tasks in the background. Now, all of those things might sound quite straightforward when 

© 2022 Software Engineering Daily 5



SED 1471 Transcript

you're getting started. But again, when you're building your startup, you don't necessarily want to be 
focused on this part, like this notification infrastructure side, I think, really, you're wanting to be focused 
on like differentiating parts of that product, which is really the customer facing like UX and UI around 
these kind of delivery services. That's the part that you should be focusing on as a team and not having 
to split up all of these extra pieces of infrastructure to handle notifications. If you contrast that with what 
you can do at Knock, well, you can start plugging in Knock really, really easily. Basically, we take your 
events that are happening in your product. You send us over an API call that map's that event into what 
we call a workflow with a Knock, and that workflow can trigger notifications that end up at different 
places. Again, that might be your email, that might be push notifications.

But then let's add in another dimension where let's say you want to start sending customer’s SMS for 
some of these really urgent notifications as well. Well, if you're doing that yourself, that means you're 
going to need basically another delivery service. Maybe that's Twilio, and now you're actually calling 
another API in some of that notifications code that you've written. Whereas in Knock, you're basically 
just adding another step to these workflows. You give us your Twilio credentials, we're going to manage 
all that delivery on your behalf, we're going to make sure that those messages get reliably delivered to 
your end customers as well. And again, it's no extra work for your team. We've just handled all of that 
part for you. Those reminder messages. There's no cron infrastructure, there's no push infrastructure to 
set up. Everything is just taken care of.

[00:14:38] JM: You've described a lot of back-end infrastructure there that you're using to support your 
notification infrastructure. Can we talk through some of the infrastructure decisions that you've made to 
support that back end? Can you just talk about your basic approach to what you're using for compute 
and caching and storage and just give me the rundown of your infrastructure?

[00:15:05] CB: Yeah, absolutely. So, we broadly separate out our system into two pieces. One is a 
control plane, where you are kind of managing all of these notifications that you're creating. And the 
other is a data plane, which is effectively the execution engine for our notification kind of infrastructure. 
So, that kind of stateful workflow engine that we have.

Broadly, the way that we deploy right now, we deploy on EKS, everything's in Kubernetes. We use 
Kinesis upfront to make sure that we can handle busy traffic, which is really, really important for us. And 
then all of our back-end services are written in Elixir. Elixir is a functional language that runs on the 

© 2022 Software Engineering Daily 6



SED 1471 Transcript

Erlang virtual machine, if you're not familiar with it. And that's where we actually execute all of our 
notifications. We have pretty good amount of caching that we introduce for some of our feeds, and 
some of the more kind of stateful red components here, where we're using Redis for that right now. And 
then all of our kind of database layer, we use a combination of both MongoDB for lots of unstructured 
data, and then we use in a lot of Postgres, as well, for a lot more of this kind of relational data that's 
been stored here.

Our infrastructure is set up so that we can horizontally scale really easily across these clients. One 
thing that's really, really important for us is, you might be a small startup sending like 100 notifications a 
day, or you might be a huge company sending us thousands and thousands of notifications a second, 
ae need to be able to basically support that at scale. And then a lot of the rest of the infrastructure is 
really leveraging a lot of the kind of niceties of Elixir and the Erlang VM as well. So, the way that we 
actually execute on notifications is, every notification is modeled as a process in our system. Processes 
in Elixir are basically, they don't map to a thread. They're very lightweight, VM managed processes. 
They're extremely lightweight, and in fact, you can run millions and millions of them on a single like 
MacBook. All of our notifications are modeled like that and they're stateful processes that can be 
started and stopped.

So, if you imagine it more like an actor model of how these things are modeled, that's kind of maps one 
to one with how we think about notifications. We think that Elixir is a fantastic fit for building what we're 
building. Erlang was kind of developed off of telephony systems in the ‘80s and ‘90s, and I think when 
you think about like, kind of notifications, we actually call our back-end service for sending notifications 
switchboard. So, it's a very good analog for what Erlang was developed for and these kinds of 
processes that can terminate really gracefully, they can handle their own state, they can be retried. And 
we have all of these nice attributes based in the system, and this really good concurrency model just 
because we're leveraging Erlang and Elixir out of the gate.

[00:17:58] JM: The usage of Elixir, I guess, I'd like to go a little bit further into that. I can kind of imagine 
the usefulness of that, because it's kind of a routing problem. Every time that a notification gets issued 
to your back-end infrastructure from whatever company is plugging into your infrastructure, it has to get 
routed to the right client, or clients. And Elixir, Erlang are generally used – the cases I've seen them 
used as in telephony type applications, like WhatsApp, or historically in other telephony, like, obviously, 
it came from Ericsson, historically. And then also just in Pub/Sub contexts where you need low latency, 

© 2022 Software Engineering Daily 7



SED 1471 Transcript

highly reliable Pub/Sub systems. So, I can imagine you have a notification and that notification may 
need to be sent to multiple clients, or routed to multiple clients of the same user or different users, and I 
guess maybe you could give a description of why Erlang is a particularly good language choice for this 
application.

[00:19:22] CB: Yeah, absolutely. I would say one thing about the Erlang VM, which is called the BEAM, 
the virtual machine underneath is basically going to manage the kind of the execution of those 
processes against the underlying resources of the system. And I would say, that allows us out of the 
gate to basically have a really simple concurrency model where again, we can kind of think about the 
fan out of these notifications to – it might be one request comes in and needs to end up notifying like a 
hundred different users or maybe it's higher than that, any kind of – each one of those users and each 
notification that's been executed there, we represent as its own processor on the Erlang VM. Basically, 
what that allows us to do is get very high concurrency, allow us to safely kind of execute all of these 
processes where they can fail independently. But that's not going to crash the system, those things can 
fail, and not actually have any larger repercussions based on the supervision model that Erlang and the 
system underneath is called OTP, which actually gives us really nice guide rails and guarantees in 
terms of making sure that we are isolating failures, we're making sure that the system can keep running 
a very high load because of the virtual machine and how it's managing, switching and priority between 
different processes as well.

There is a fantastic talk called the Soul of Elixir and Erlang by Saša Jurić, that was at the GOTO 
Conference. So, it's just like, probably gives the best example of like, why you might want to consider 
the use of Elixir in your systems. I've actually been an Elixir engineer for probably six or seven years at 
this point, and I actually don't think there's been a better application for what I've been writing than the 
Knock in terms of like the use of Elixir here, and the fact that we do have this very high concurrency 
kind of kneading system, and we get the benefits of that through the Erlang VM plus all of these other 
niceties. Plus, we get this like really nice way to express our logic, and I would say, ultimately, that is 
the other part here. Yeah, we have the semantics of the actual underlying VM and what's happening. 
But on top of that, we also get this really nice programming language that makes it a real joy to think 
about kind of data coming in the system, the transformations of that, and then the side effects of that 
being the delivery to these end providers and such.

© 2022 Software Engineering Daily 8



SED 1471 Transcript

But we find it to be a really lovely way to kind of express this logic and execute and write our workflow 
engine, which ultimately is really the heart of what we're doing at Knock, just because you can express 
all of these different ways of thinking about like an event leads to these different steps that gets 
executed. So, one of those steps might be a batch, one of them might be, “Hey, we need to delay this 
notification for some amount of time, and then we need to pick it back up and send out an email.” But 
we don't want to send that email if someone has their preferences turned off. There are just all of these 
kinds of problems that have folded inside of this, that we feel like writing it, and Elixir gives us a really 
expressive way of writing this kind of state engine effectively.

[00:22:28] JM: Can you walk me through the lifecycle of a notification? Like let's say, I'm on that food 
delivery app, and a notification is being sent from the food delivery company that my order is being 
picked up from the restaurant. Walk me through the lifecycle of that notification and where it hits your 
infrastructure? Where it's being stored, et cetera?

[00:22:57] CB: Yeah, sure. Knock is an event driven system, again. So, everything that happens here, 
you basically model off of that event being triggered in your system. Let's say that the food is picked up, 
let's just pretend that we know how that that happens in whatever food delivery service that we've 
already built, and then what you would say at that point in time is, you'd basically make an API call to 
Knock that says, “Hey, Knock, we want to say that this food has been picked up, we have a notification 
workflow that's associated with that event”, and then we tell Knock about who needs to be notified for 
that event happening. So, who is the actor of the event? Who performed it, and then who are the 
recipients of that event? And then we might want to pass some arbitrary data across as well, that helps 
us in our notifications that have been sent out.

Maybe in this example, it's like an order number or some information about that order, or who the driver 
is or something like that. So, that's what we do there. We make an API call to Knock, then that API call 
is going to hit our infrastructure, we validate, and make sure we haven't seen that before. We make 
sure that your API key is correct, and such and things like that. We're going to queue that in Kinesis, to 
make sure that we're not going to be overloaded on our site, and we basically want to respond to you 
as quickly as possible to make sure that getting a low latency there. As soon as we can put it into 
Kinesis, it basically gives us guarantees around retries, and making sure that we can reprocess those 
events if something happens down the line.

© 2022 Software Engineering Daily 9



SED 1471 Transcript

And then basically, what's going to happen inside of our infrastructure is that notification that you 
invoked there, that is going to have what we call a workflow associated with it. That workflow is 
basically going to get loaded from our system. We keep those in memory in a cache, and then we're 
basically going to per recipient that you've told us to notify, we're going to execute that workflow for 
each recipient. What that means for us is executing our workflow engine, going through all of the steps, 
you might need to hydrate some extra data in there, because notifications end up being pretty stateful, 
especially when you start thinking about things like batching and if we were going to collapse those 
notifications together, we might need to know about previous attempts that you've tried to do within 
some timeframe to say like, “Hey, these are all connected together”, and then we're going to execute it. 

Ultimately, if there are what we call messages, which ends up being the actual notifications that you 
receive on your devices that need to get executed there, we are going to load the templates that you've 
already preprogrammed into Knock around those notifications, because what we actually try to take 
care of and Knock is like, there's two sides of this problem. There's the infrastructure side, which is just 
like purely executing your notifications, and then there's the kind of like, management side of all of 
these notifications as well. So, the templates that are associated with them that a lot of the time, your 
engineers are having to manage that in their back-end code base. But we actually hoist that out of your 
back-end code base, we keep it in Knock, we allow you to version control those things, we have a git 
like model for making sure that everything's version controlled. Everything's isolated between 
environments, so that you can basically make sure that things that you're doing in your development 
environment don't affect your staging environment, so you can really confidently make changes to your 
notifications.

Again, it's kind of, the goal here is to take work away from engineers who are a lot of the time often 
having to manage those notification templates. And ultimately, that's work that we believe is kind of 
wasted for engineers to be doing and should be owned by other members of the team, like product 
managers, or maybe its growth marketers or something like that.

So again, going back to the execution of those, we’ll then fetch all those templates, we’ll execute the 
templates on your behalf with the data that you passed in, and then we'll then queue messages for 
delivery to those end providers that you've configured for us. Let's say that you're using SendGrid for 
your emails, so we might then effectively generate an email that's going to go to that end provider to 
SendGrid, that tells you about that, that your food is on the way. And then maybe you also set your 

© 2022 Software Engineering Daily 10



SED 1471 Transcript

preference to say, “Hey, I also want to receive SMS as well.” So, we're going to make sure, see if that 
recipient has a phone number associated with it. If they have a phone number, and they've opted in to 
receive SMSs, then we're going to actually call and queue another message that's going to go to Twilio 
to their SMS delivery product as well.

And then on behind the scenes, we're storing a lot of state here, we're keeping all of the logs that are 
generated along the way, so you have fantastic introspection into what's happening. In Knock itself, you 
can literally see from your API log that's come in, so that actual API call that you made all the way 
through per recipient and see every single step on the workflow that's executed. So, Jeffrey, let's say 
that you opted out of receiving SMSs, we'll show you a diagram, and we'll show you a logline that says, 
“Hey, Jeffrey never received an SMS because he opted out of receiving them.” And we keep all of that 
logging information for you and we give you this really, really easy way to introspect the system, and 
these kinds of workflows that have been executed. And ultimately, that notifications that have been 
generated at the other end, as well.

We'll also then keep all of the logs that are being executed against those delivery providers. So, you 
can see the exact call that we were making to that delivery provider, you can see if that call failed, you 
can take action on it if it did fail as well, and that's kind of what we're keeping behind the scenes. A lot of 
that kind of state is saved in both databases, back into Kinesis queues, logs out in S3 and various 
places as well.

[00:28:42] JM: All the layers of reliability and failover, it seems like there's some redundancy of storage 
and where you're putting the notifications. Now notification is not that big, but I imagine if you're 
handling a lot of them, then it could add up. Do you have like a garbage collection mechanism where 
you wipe out old notifications?

[00:29:07] CB: Yeah, we do. So, we've been relying pretty heavily on partition Postgres tables for the 
time being, and then that gives us a really easy way to just kind of drop old tables and make sure that 
we can purge those messages. And then we're looking to basically back those up into S3, so that we 
have a permanent store of it if we ever need to it, especially for those more kind of privacy aware 
customers in the kind of banking or maybe it's healthcare kind of space. So, making sure they have 
access to that data for over a year or so if they need it. But yeah, we keep everything for at least a 
month in what we call like a hot storage in a database, and they're in partition tables.

© 2022 Software Engineering Daily 11



SED 1471 Transcript

[00:29:46] JM: Got it. Alright, so we talked about kind of a consumer application. There are other 
applications where the notification load could be much more severe, like a monitoring application, for 
example, like an infrastructure, something related to monitoring your infrastructure. If there's a high 
volume of notifications per user, does that increase on load? Does that lead to any added complexities 
for the notification infrastructure?

[00:30:19] CB: For us, yeah, sure. But we think of that as a job of like something that we're providing 
for you and we see that as a core competency of our service, like, we need to be able to handle a great 
deal of load, that's just part and parcel of operating a piece of infrastructure like this. So, it's definitely 
part of the kind of responsibility of me and my team here to make sure that we can scale up that 
infrastructure, we can support really high volumes of messages over time, and make sure that whether 
you're an infrastructure company sending us millions of events, or whether you're a startup sending us 
hundreds of events that turn into notifications, we can execute that. What that means for us is putting 
some customers on kind of dedicated shards, and making sure that we can scale them differently, 
depending on the load.

We run a classic kind of multi-tenanted SaaS app, where we have the ability to do that. And again, it's 
like one of those things where we have to provide that service and we have to be up. If you're going to 
depend on us, we know that notifications can be something that's on the revenue path for a lot of these 
businesses, right? They can be really critical. You can stop sending notifications, and you can see your 
engagement drop, or you can stop sending notifications, and you can see your NPS score dropped, 
because people like I never received them, or I receive too many, and they can be a real liability on the 
business. We know that and we want to make sure that if you're using Knock, you trust us, and that we 
have a fantastic amount of uptime to support whatever load it is that you are calling us with and making 
sure that we can do that reliably at the scale we're doing today, and a scale way into the future as well. 

We've invested a lot of time and energy, so far, in load testing our service, making sure that we have a 
lot of headroom to make sure that we can scale up and down and really elastically in terms of taking in 
this kind of, it can be incredibly bursty traffic, because ultimately, we don't know what you are going to 
call us with as the end customer. Again, in that kind of infrastructure example that you gave, we 
actually, we have a couple of customers who are using us for that or looking to use us for that as well. 
They could be sending us like thousands of events and a lot of those, we need to basically drop 

© 2022 Software Engineering Daily 12



SED 1471 Transcript

because maybe they’re dupes or maybe like you got throttled in terms of like – Jeffrey, maybe you say, I 
only ever want to receive one alert per hour or something like that, we would handle that logic for you 
and make sure that we're dropping any events that shouldn't lead to notifications if it's within that 
window of time.

So again, really, from the get go for us, ever since we started this company, I think about it as having 
two real big problems to solve. One of which is the kind of management side of these notifications and 
the other is just, yeah, making sure we're building like highly reliable, scalable infrastructure to support 
the load that can be coming and that we obviously as a young startup, we hope comes and that we're 
already seeing today, and that we hope just keeps growing and growing into the future and making sure 
that our servers can support that at whatever scale that is of the businesses that we're taking on.

[00:33:30] JM: When you look at the opportunities in where to go from notification infrastructure, what 
are the additional product verticals you expect yourself to be able to go into?

[00:33:48] CB: Yeah, it's a great question. When we started out building Knock, we did a lot of 
customer exploration. We talked to a lot of people along the way, and I think one thing that was really, 
really interesting is, you hear some teams that are leveraging these kind of more traditional marketing 
tools in order to power their product notifications. But one thing that we think a lot about is the kind of 
unification of customer messaging. So, what does that mean? Well, I think in most SaaS businesses, 
and most startups and maybe a lot of consumer companies as well, you kind of have this divide 
between the marketing team who are sending out various messages to your end customers. Maybe 
that's about growth marketing, and getting people in and sending them promotions, things like that. And 
then you have your kind of product centric notifications that are going out to notify people about the 
events that are happening, and more of the transactional notifications.

But one thing that we keep thinking a lot about is, I think you see this in some of the like best in class 
companies out there where they're actually kind of thinking about that holistically, where it's not a 
separation of messaging, it's just a single bucket of messages that are getting delivered to a customer 
with basically a prioritization of those messages to make sure that you're not sending too many. If 
someone starts opening your emails, maybe start sending them more. So, we really think about the 
pushing into this kind of broader space of customer engagement and customer messaging, as being a 
real opportunity for us. And coming at it from a different perspective than the marketing teams 

© 2022 Software Engineering Daily 13



SED 1471 Transcript

necessarily, and all those marketing products like Braze, Leanplum, and folks like that, and more 
coming at it from this perspective of unified customer messaging that your product team is owning, and 
you're really thinking about the best interest of your customers, making sure you're not sending them 
too many messages, making sure you're approaching them on the right channels, making sure you're 
kind of delivering these messages at the right time, so that you can get higher engagement and 
ultimately deliver higher customer satisfaction as well.

[00:35:53] JM: If you look at developer tooling, as a category, it's a very good category to be building in 
because users rarely churn and the spend of a user just grows over time. Do you have any 
commentary on selling to developers?

[00:36:15] CB: Yeah, I have lots, yeah. I think your points are really well taken there. Like we love 
being a developer tool. It was one of the reasons, as well as the problems that we saw that we wanted 
to build this business and that I feel like building usage-based products is really awesome. Your 
customers succeed, and you succeed. That's fantastic, right? I think selling to developers is a really, 
really interesting problem. I'm an engineer, I've been an engineer. I'm an engineering leader now and I 
think about the tools that I buy, and the things that I think are really great out there, and that's exactly 
what we're trying to do with Knock. I talk about this as like, you can have a fantastic product, but if it's 
developer focus, unless it passes that like smell test for engineers, they're never going to adopt it, as a 
product.

I think about the companies who are kind of like best in class here in terms of excellent developer 
experience, and that's the kind of bar that we're looking to hit and what we're trying to do here. So, what 
does that mean? Well, for me, that's like, I think there's the obvious ones, like fantastic documentation. I 
think you've seen like people like work OS, you've got your stripes, people like that who just do a really 
good job of the writing that's around their documentation, and also the guides, and also the level of 
effort that's actually involved there. Making sure that the SDK examples are excellent. It's really easy to 
toggle. Then you end up with all these like really nice details where maybe your actual API key is pre-
populated in those examples to make it really easy to run it, things like that. And then I think about 
having fantastic tooling on top, I think, the first example that comes to mind to me for this is like planet 
scale with their CLI tool, just like so, so good and really hits the nail on the head of what engineers want 
and how they want to interact with the service and what they need to get their jobs done.

© 2022 Software Engineering Daily 14



SED 1471 Transcript

And then I think the other pillar here for me is like, fantastic SDKs, as well. That means like well tested, 
really well documented SDKs that make it really easy to contribute to, if you want to, but they're very 
easy to get going out of the box, they have like a very sane API design that makes it really 
straightforward to get going as well. Again, I think the canonical example in this category is obviously 
Stripe. We wall continuously point to Stripe and I probably have done for like the last decade, and I will 
keep doing that because they do such a good job in terms of how they think about building for 
developers and the products that they're creating. I think at Knock, we’re really trying to embody a lot of 
those ideas and really make it part of our DNA from the get go, where we’re kind of poring over the API 
design that we're introducing. We're making sure like we're being really thorough and thinking about 
consistency across our API endpoints and documentation and just all of these parts of the experience 
because ultimately, yeah, we're selling to those engineers, and they need to trust us. We want them to 
feel like it's a delightful product to use in terms of the problem that it's solving. I think if you read some 
of like, the commentary that we got from some of our existing customers on our recent product release, 
I feel like we had a lot of love for the way the API's are designed, the way the SDKs are so easy to use 
as well.

I feel like we're on the way there, but it's this is whole part of the challenge of building a business in this 
kind of category. Just making sure that you are absolutely crushing the developer experience and 
thinking about it day in, day out across the team, no matter who it is on the team and what they're 
doing.

[00:39:59] JM: We've talked to some engineering decisions. Can you give any examples of some very 
difficult engineering decisions that you've had to make that we haven't talked about?

[00:40:09] CB: Yeah, absolutely. I think like the difficult ones for us, I think a lot about building an early 
stage infrastructure company as like one of the biggest difficult decisions that we made. The part that 
comes to mind for me around that has just been the tradeoff between time to market and reliability and 
scalability, right? In terms of, you're building a company, you're building a new business, you don't 
necessarily know how far it's going to go. You don't know what stage you're going to get to. But also, 
when you're building an infrastructure company, you don't want to like half asset it, so to say. You want 
to make sure that you're building on a really good foundation that can scale and that you are kind of 
taking into account, what's going to happen when you get those huge customers? How are you going to 
shard? How are you going to manage this platform?

© 2022 Software Engineering Daily 15



SED 1471 Transcript

So, I think that tension, and that tradeoff between time to market and scale has been probably the thing 
that we have not labored over, but just like, has been one of those really hard decisions about what do 
you do now? Versus what's the tradeoff for that decision for where you're going to go and when you're 
going to end up, right? We try to capture a lot of those early decisions in a decision log, where we know 
we're making a tradeoff for something that we've adopted now versus something that we know that 
we're going to need to swap out down the road. And then also, understanding what the headroom is for 
how far that's going to take you before you know you need to swap that out. And then prioritizing in 
terms of just like, we can get to this point on this technology, but we know beyond that, we're going to 
need to make a different decision, or we're going to need to shard that in a different way or whatever it 
might be, and knowing when you need to prioritize that and keeping track of those has been a really big 
thing for us that we've really tried to adopt early as part of the culture. Again, we kind of did this riff off of 
the decision log idea and keeping track of all of those things. So, everyone on the team knows why we 
made those tradeoffs and knows why we made those decisions and knows where the kind of the 
headroom and at the end of that scale journey is for those pieces and tools that we've made.

I know that's slightly vague. But I would say that that has been the biggest thing that we've kind of 
wrestled with so far in our journey to get to where we are, and be in market with sending a ton of 
volume and notifications.

[00:42:31] JM: That's interesting. It's kind of abstract. What about, do you have any anything like closer 
to the metal that was difficult?

[00:42:38] CB: I have loads of stuff to say about this, honestly. As a young company, that was like 
spinning something up, I think people have railed on the idea of using Kubernetes as an early stage 
startup a lot. But the amount of ops and infrastructure work that comes off of that decision is actually 
pretty phenomenal, in terms of – we adopted K8s because we wanted a good foundation that we know 
we can horizontally scale, and we know we've had experience as a team operating that in the past. So, 
we didn't feel too bad about like using it again here.

But just that zero to one experience of, we wanted to Terraform all of our infrastructure from the get go 
so that we had a really good infrastructure as code story for when we went out and did our security 
work. And then we knew that now we need a way to, maybe we need to access one of those boxes, but 

© 2022 Software Engineering Daily 16



SED 1471 Transcript

everything's in our VPC. So, we need a way to like SSO in we want to set up everything on AWS with 
best practices out of the gate, the learning curve for Terraform ops, and Infra is so steep. It's so much 
work that we had to do to just get something that was good, working, and allowed us to deploy. I think 
the investment there for us was really worth it, because it allowed us to very, very easily go out and get 
our kind of SOC 2 certification based on how our infrastructure was set up for security best practices 
out of the gate.

But just the level of effort, and the amount of time that it took just to have something that was working, 
and that we could build on top of was an enormous, and I think a lot about like, as an early stage 
company, again, that isn't your priority. But when you're an infrastructure company, it kind of is. You 
want to make sure that what you're running on is good, it's easy for you to scale, it’s well provisioned, 
it's really secure. So, you've got all of these things to think about, and I don't know, I'm not the biggest 
fan of doing that kind of work, especially around like Terraform and ops. I am really thankful that we had 
some great contributors in there as well, because I was also like, trying to be heads down building the 
application at the same time. But yeah, it was definitely a challenge in terms of just getting to market 
with that and basically setting ourselves up for the future and the level of investment there, for sure.

[00:45:00] JM: Did you use like a managed Kubernetes system like AWS EKS or something?

[00:45:07] CB: Yeah, we use EKS to do – but that takes away some of the management part. But 
there's still a lot of work in terms of VPCs, in terms of just making sure everything's provisioned 
correctly, making sure that you've got good security best practices out the gate. IAM is a whole pain to 
actually be thinking about like, least privilege, making sure you're doing all of that. So, we used a lot of 
managed services along the way, because we're a really small team, and we don't want to be running 
databases and running clusters too much, but there is still a degree of stuff that we had to do there. I 
don't think that this necessarily goes away entirely with anything you're doing with serverless, as well. 
There are still challenges and making sure that you can kind of think about spinning up and deploying, 
and all of the rest of it, the CI/CD processing just getting everything down. So that, as an early stage 
team, velocity is the thing that you should be aiming for. Your ability to ship product is like, it's the 
heartbeat of the company and anything that slows that down for engineers is a bad thing. So, we spent 
a lot of time on that kind of CI/CD story, making sure our tooling was really good, invested in that early, 
so we can get to market quickly and keep iterating as quickly as possible.

© 2022 Software Engineering Daily 17



SED 1471 Transcript

[00:46:31] JM: Any closing thoughts? We've talked through a lot of different elements of Knock, what 
else would you like to share?

[00:46:39] CB: I would love to say that, I think, this notification problem, if you're experiencing it today, 
and you're looking at like a build versus buy, definitely, I think there's a lot of companies out there who 
will not treat this as a build versus buy decision right now, and will absolutely just go ahead and build 
something inhouse. I want to say as someone who has run a team that has had to manage this, and 
has had to build that system inhouse, it starts off easy, it's a ball of mud that you're going to just keep 
slapping things on to, and we really believe that you should have a little look before you make that 
decision at some of the tools out there in the space. We think that Knock can be a really compelling 
offering just in terms of you not needing to build a notification system, giving you fantastic abstractions 
so that you can just make API calls, and that's the end of your kind of journey of thinking about 
notifications. So, definitely have a look there.

The other thing I'd love to plug as well, just while I'm here. I do a lot in the Elixir community. I think it's a 
fantastic community that's still fairly under the radar, fairly underrated and the power that it kind of 
brings to the table. I think Elixir is a really great tool for writing companies like this and for writing 
systems that need to be reliable, scalable, and just really lovely to maintain as well. So, there's a 
conference coming up called EMPEX MTN that I am hosting. It's May 6th in Salt Lake City. We'd love to 
see folks there. If you're thinking about Elixir, or like you're interested in it, we've got a fantastic lineup 
of speakers. So, we'd love to see more folks from other communities coming and dipping their toes into 
the Elixir world and playing around with the language and hope to see more people there as well. 
Thanks.

[00:48:29] JM: Awesome. Chris, thanks so much for coming on the show.

[00:48:31] CB: Thank you very much, Jeffrey. It’s a pleasure to be here and really great conversations. 
So, thank you.

[END]

© 2022 Software Engineering Daily 18


