
SED 1466 Transcript

EPISODE 1466

[INTRODUCTION]

[00:00:00] JM: Real-time analytics are difficult to achieve because large amounts of data must 

be integrated into a data set as that data streams in. As the world moved from batch analytics 

powered by Hadoop, into a norm of real-time analytics, a variety of open source systems 

emerged. One of those was Apache Pinot. StarTree is a company based on Apache Pinot that 

provides fast, real-time data analytics.

Chinmay Soman joins the show to discuss Apache Pinot in relation to other real-time analytics 

platforms, and what StartTree has built on top of Pinot. 

We are looking for a salesperson. If you're interested in working with us to help sell podcast 

spots, then send me an email, jeff@softwareengineeringdaily.com.

[INTERVIEW]

[00:00:43] JM: Chinmay, welcome to the show.

[00:00:45] CS: Yeah, thank you. Thanks a lot. It's great being here.

[00:00:47] JM: I’m really thrilled to talk to you because we're talking about a system that I am 

fairly unfamiliar with, which is Pinot. I did a show about Pinot, it must have been three years 

ago. I failed to look up – I can't remember who I interviewed. It was a guy at LinkedIn who had 

done a lot of work on it. 

[00:01:07] CS: [inaudible 00:01:07]?

[00:01:09] JM: No. Not him. It was I think a guy with a European name. 

[00:01:12] CS: Oh, Alexander Pucher maybe? 

© 2022 Software Engineering Daily 1



SED 1466 Transcript

[00:01:15] JM: Yes. That's it. Alexander Pucher. I was very impressed with his knowledge of 

distributed systems and the analytics industry. But what I could not understand, and I think this 

was largely due to my lack of familiarity with the field at the time, was really what value Pinot 

brings to the world that doesn't exist or that did not exist prior. 

So I was exploring Pinot in the context of Apache Spark, but more from, I guess, Apache Spark,

Druid. What else is in this category? What's that? ClickHouse. Yes. Maybe what is commonly 

referred to as the open source data warehousing industry, right? 

[00:01:58] CS: That's a broad term. I think where Pinot fits in would be on a slightly narrower 

domain, which is on the real-time analytics side of things, right? So you can think of – You have 

your traditional big data warehouses, which is you have the verticals of the world, or the open 

source technologies using Presto, Hive, and so on. And those are great at doing what we 

traditionally refer to as batch analytics. 

So you have massive amounts of data sitting in your data lake. Most companies will just put all 

of the data in this data lake. And you want to do all kinds of analytics on top. You want to run 

your ML pipelines on it. You want to do interactive analytics on it and so on, right? So it's really 

good at doing that. 

What these systems are not optimized for is real-time analytics. And by real-time, there are two 

dimensions which are relevant here. So one of the dimensions is the ingestion latency. So how 

quickly can the data be queried once it's produced at the source? That's what we call as the 

ingestion latency. 

And as you may know, typical traditional data lake systems, the ingestion latency is typically in 

the order of multiple hours. It could even take a day. So data shows up a day later or many 

hours later and then you can query them. And you often want – There are many use cases 

where you want to quickly analyze the data as soon as it's produced, within seconds. And that's 

the ingestion latency.

And of course, the second dimension is the query latency. So you want to be able to query, do 

analytical queries on this data really quickly in the order of milliseconds. And a lot of this make 

© 2022 Software Engineering Daily 2



SED 1466 Transcript

sense when I go through the use cases. And that's where the real-time analytics domain stands 

completely apart from the big data analytics. 

So maybe we can jump into the use cases.

[00:03:57] JM: Yeah. So let's contrast what you just described with something like Snowflake, 

for example. With Snowflake, you have data that is produced – Let's say data is produced by 

analytics systems at a company like Uber or LinkedIn. You have vast quantities of data being 

produced, data streams being generated in rapid, real-time. They're probably being written to 

Kafka. And then you've got some kind of system that's like reading off of Kafka and throwing 

them into something else, which tends to be maybe S3. And maybe you're writing to S3, and in 

parallel, you're writing to some kind of data warehousing system. And then you've got like, I 

don't know, batch queries that are turning those raw data streams into materialized views that 

you're using in various systems throughout your company. 

And what you're saying is that, with Pinot, you unify a lot of that into one system where you can 

write very aggressively such that you can have closer to "real-time" analytics.

[00:04:52] CS: That's right. Yeah. Pinot was built for working well with the streaming systems 

like Kafka, right? So that's a great example where companies are just pretty much all the data, 

all the events, are written to Kafka. And then they can be immediately ingested and queried via 

Pinot. That is correct. It was built specifically for the real-time aspect of it.

The Pinot also supports a component where you can bootstrap large amounts of data from 

something like S3 and then load them into Pinot as well. So it actually has that lambda 

architecture where you can get data from your real-time sources, get data from your batch 

sources like S3, GCS, or HDFS, and then put all of them under one logical abstraction. 

For the same schema, you can have data source from S3 as well as Kafka and query that as 

one giant table, all right? Typically, how people use this is let's say you have a new use case 

and you want to analyze something like trips in case of Uber. You would put the last, let's say, 

three months or one year of data from HDFS into Pinot. And at the same time, you can have a 

real-time stream of trips coming into Pinot as well, which is ever-growing, and then query this as

© 2022 Software Engineering Daily 3



SED 1466 Transcript

one logical table, right? So this really hides the complexity of the lambda architecture from the 

user's point of view.

So this is where it sort of stands apart. Most data warehousing systems are able to do batch 

ingestion easily. So get data from S3 or HDFS, but are not able to – Are not really optimized for 

getting events from Kafka and be able to query them as soon as they are produced. So that's 

really where it stands up. 

[00:06:46] JM: You know, what you've implicitly highlighted here is just how much data 

engineering innovation LinkedIn did. I mean, I think about the data engineering innovation at 

LinkedIn. You've got, obviously, Pinot, because we're discussing this. But more importantly, 

Kafka. At least more importantly today. Kafka, Samsa, which is probably underrated. 

I don't know if you've heard these. But a few years ago, I did three shows. This was like my 

favorite piece of sponsored content that I’ve ever done. LinkedIn paid me some money to do 

three shows with LinkedIn engineers. And it was a blast. I did three engineers in one day. Sorry.

Three interviews in one day. I think it was about Kafka infrastructure. Like, the actual 

engineering of Kafka. And then something else, just various data munching, and engineering, 

and stuff. And LinkedIn just did so much in data engineering at a very interesting time in the 

evolution of the world of data engineering. 

Okay. So you were at LinkedIn. Let's see. I have your LinkedIn profile right here. So you're at 

LinkedIn from 2012 to 2014. Oh, no sorry. Earlier. You were there from 2011. Oh, Voldemort 

also. Voldemort was like key-value store, right? 

[00:07:51] CS: Right. Yeah, I started out in that project. The same person who wrote Kafka 

actually wrote all the model before that, Jay Kreps. And it is a key-value store meant for tracking

things like number of likes, number of shares. Where you don't necessarily care so much about 

consistency, but you really want to be highly available. That was really the premise of the 

system. So it was optimized for AP. So availability and partition tolerance within the CAP 

theorem. 

[00:08:21] JM: I love Jay Kreps. And I think he might dislike me, because I criticized him on 

stage for changing the license of Kafka. 

© 2022 Software Engineering Daily 4



SED 1466 Transcript

[00:08:29] CS: Oh my God. That's – 

[00:08:31] JM: Wasn't that a huge mistake? That was the biggest mistake he's ever made, I’m 

pretty sure, as far as I can tell. This is a guy who does not make mistakes. And he made one 

very big mistake. 

[00:08:41] CS: I mean, you have to think about – His passion right now is the company that 

he's building, and obviously the license plate is a big deal – The Confluent license is definitely 

something that they want to control as a company. But Apache Kafka is still Apache Kafka. That

hasn't really changed, right? I think what has changed is the other parts, which are owned more 

by Confluent. And that sort of makes sense. It's meant for the likes of Amazon shouldn't just 

come in and start serving it out on their own without really being part of the community. I think 

it's more catered towards those kind of things. 

And since we are a company around Apache Pinot, we sort of have similar thoughts about the 

Apache Pinot open source makes sense. That will never change. But some things are more 

proprietary, and that should be a different license, in my mind. So I’m with Jay on some of those

things. 

[00:09:39] JM: But this is the whole fundamental mistake, is when you change your license, like

Confluent did, you're implicitly saying, "We don't have a product development workforce.' You're

saying that our only product is going to be Confluent in the associated services. And somehow, 

AWS, with their random team that's working on Kafka, is going to be able to compete with an 

entire multibillion-dollar company that's devoted to building a platform on top of the queuing 

system. It's just not a realistic paranoia. It kind of undermines the confidence of the company.

[00:10:13] CS: Yes. It might appear that way. But keep in mind, most of the innovation is still 

happening in the open source Apache Kafka, right? As far as I see – And same thing with a lot 

of the innovation is being contributed back to open source. And every day we take a really hard 

look at what feature goes well. And the principle is community comes first. 

If something is good for the community – For example, the Zookeeper-less Kafka would be one 

example. On the Pinot side, we added a feature called Upserts, which allows you to upsert data 

© 2022 Software Engineering Daily 5



SED 1466 Transcript

for an analytical database, which seems trivial if you're coming from the OLTP database land. 

But it's really hard to do in case of analytical databases. 

And so this is a really fundamental feature that we supported, we added in the open source 

land, right? But there are some things which are just proprietary which might be needed for big 

companies or some of the specialized use cases. There might be more product focus on some 

of these components, which are not in the open source, right? 

And I don't want to speak about Confluent. I’m definitely not in the position to do that. But my 

feeling is it is a complex problem, right? We need to, as a company, be able to control the 

roadmap and things like that. But at the same time, it should also be source available so that 

other people can at least – If they want to, they can still run it on their own. 

It's a tricky position of how you want to influence the roadmap for these products. How do you 

want to grow the community around these specific proprietary components? And at the same 

time, make sure you have an edge in the market. So it's not an easy answer. 

[00:12:03] JM: It is an easy answer. There's no reason to change your license. You're a 

technology company. You can pivot. You can do new products. It doesn't make any sense. 

[00:12:11] CS: Okay. All right. Again – 

[00:12:15] JM: It's a topic for another show. I’d love to have that conversation with Jay or 

somebody else. But I’ll just say publicly on air, Jay, you're an inspiration. I love you. But you 

made a bad decision. 

[00:12:26] CS: Fair enough.

[00:12:28] JM: And no hard feelings, I hope. Okay. Let's talk more about like real-time analytics

and stuff. This is a pretty critical idea. Like, the fact that you can generate data on the fly and 

write it very quickly and read it very quickly. 

I’ve done enough shows with various distributed systems to know that this is not easy to do. 

Actually, you know what I’ll say, is it's not even that hard to do, I think. Conceptually, it's 

© 2022 Software Engineering Daily 6



SED 1466 Transcript

obviously possible. What I find interesting about LinkedIn and the stuff you guys built is, really, 

what you had to do is just lay out the spec, right? You just had to say, "This is what we need." 

And it's very interesting you were able to define the spec, which is effectively we need a system 

where you can write quickly and read quickly, basically. And once you define that system, 

there's a whole lot you can do there. You can build what would commonly be called a data 

analytics or data engineering data warehouse thing. But it's actually like kind of novel to even 

think about as like a transactional database. I don't know if you can actually do that as a 

transactional database. But what you're defining there is a very interesting set of distributed 

systems properties. 

[00:13:34] CS: Right. Yeah. In hindsight, it looks like we sat down and we wrote down all the 

spec. But I think the reality is things organically happen. So we started out with massive 

amounts of data coming from Kafka. Kafka really took off in LinkedIn bringing in events of all 

kinds; application logs, system logs, business events that were being produced by all kinds of 

microservices. And then there was a real need to start analyzing this data as soon as it's 

produced, right? 

A good example was people you may now, which was as soon as some things happen if 

someone likes a profile, or visits a profile, or even the analytics around your posts, those are 

real-time events. So you post something on LinkedIn. You want to see how it's trending within 

your network. And specifically, what categories of people are watching the content? 

So as soon as the events are being produced, you want to be able to group a breakdown of 

these views over a different industry, or geographical locations and so on. Same thing with ad 

analytics. The ads being shown on LinkedIn, you want to be able to see in real-time how 

effective it is. And who's clicking? How many people are viewing? What is the ratio? And so on. 

So all this data was already in Kafka when these questions were being asked. So it was natural 

to say, "Hey, we need something that can ingest from Kafka at a very high rate and be able to 

query very quickly." 

And at the time, there was no need for a transactional semantics. When Pinot was originally 

built, it was not – In fact, it was designed to be not a transactional system. And a lot of the 

assumptions in the system were made to make it very simple. Events come in and they are 

© 2022 Software Engineering Daily 7



SED 1466 Transcript

append only. And most of the segments that are created in Pinot are immutable, right? So the 

data never changes within Pinot. That makes it a simple system to operate and at scale. 

So the initial adoption of Pinot was around analytics where consistency is not very important. 

But then over the years, especially at Uber, people really started caring about consistency. 

Because within LinkedIn, if your number of likes on a post are 10 versus 12, who cares? But in 

Uber, they really started to care about the demand supply ratio of drivers and riders within a 

specific geographical region, or the sales, or the gross bookings that we're having within specific

areas, right? 

And they really started to care about consistency of data in that case. And uber is really 

interesting, because a lot of the data keeps changing, keeps getting updated. So if you do a trip,

the cost of a trip might actually change over the next few days. 

So then we started to – The new requirement came in, where not only should you be able to 

write data fast enough and query data fast enough, but the data itself must be consistent. So if 

you're updating the data, it should be reflected in your queries. Otherwise you're just going to 

double count and get inaccurate results, right? 

The transactional semantics really came in from companies like Uber. I guess the meta point 

there is the spec or the requirements actually happened organically as the problems became 

more and more complex for us to solve. 

[00:17:05] JM: Let's kind of fast forward a bit. You've got a super interesting background. And, 

actually, I was looking for LinkedIn for the first time right before the show. And we can definitely 

do additional shows. You've got so much experience. You have three-and-a-half years at 

LinkedIn during some of the most critical times of the company. And then almost six years at 

Uber, which is incredible. And then you leave Uber and you started StarTree almost 

immediately. So you are relentless, which I love. 

Let's get to StarTree pretty rapidly. Just talk briefly about like your experiences at LinkedIn and 

Uber and how that took you to – I’m sure you had a bajillion business ideas. Or at least more 

than one business idea. Why did you think StarTree was the best way to go? 

© 2022 Software Engineering Daily 8



SED 1466 Transcript

[00:17:50] CS: Right. So let me start with LinkedIn, which really opened my eyes to distributed 

systems. You're right, that was a fascinating time. I think, at the time, we saw that the big data 

problems were all showing up across multiple areas, real-time analytics, batch analytics, stream

processing, messaging. And at the same time there's not many open source solutions out there.

So it was a fantastic time and place to be in LinkedIn to get to work on all these things. 

As you already mentioned, it was the birth of Kafka, Samsa, which is a stream processing 

engine. And I was intricately part of that team, and also things like Apache Pinot. It gave me a 

very good foundation of, I would say, real-time analytics, which is not just Pinot, but also 

includes Kafka and Samsa. And these are all the moving parts of the very complex real-time 

analytic problems that we need to solve. 

So with that good foundation, I was, again, fortunate to be in a good place at Uber, which really 

pushed the need for real-time analytics, much more so than LinkedIn, to a point where if some 

of our analytical pipelines were not performing well, we would actually lose a significant amount 

of money because of that, right? So the analytics done at Uber was really business critical. And 

it was not good to have in that case.

At Uber, I started with just building a system to compute metrics, business metrics, at scale, 

right? You can do slice and dice your different metrics, like number of trips, gross bookings and 

so on, and slice and dice by geographical location, or obviously time, the type of device that 

you're using, and then so on, right? 

And pretty soon – Initially, the system was used by execs and PMs to do future planning and 

think about financial incentives. And which areas do we need to invest in more? But pretty 

quickly, we got into fraud detection. We got into real-time incentives for drivers. And then, of 

course, doing things like search calculation and so on. 

What we saw at the time is analytics was going from an offline good to have use case, to a 

much more business critical user-facing use case. We saw a good example being restaurant 

managers, where the analytics on the Uber Eats deliveries were being exposed directly to the 

restaurant owner. That's very transformational for such restaurant owners, right? 

© 2022 Software Engineering Daily 9



SED 1466 Transcript

Initially, if you can think about how analytics was done a couple years back, someone internal 

would run complex queries, generate reports, and then share reports to the restaurant owner. 

And the restaurant owner only got to know what happened a day later or almost a week later. 

With real-time analytics, the restaurant owner knows exactly what is happening at this point in 

time. How many inaccurate orders, or missed orders, or menu popularity is true for that point of 

time? And that's being powered by Apache PInot today. 

And another example being Orders Near Me feature. If you use Uber Eats app, you will see an 

Orders Near Me of like what is the most popular items being ordered around me in that 

particular geographical region. And this is something also being powered by Pinot. 

What I saw was the role analytics was playing is getting more and more critical for the success 

of the business. And the requirements for these analytical systems were also getting more and 

more complex. We went from internal analytics. Internal analytics is where the data scientists or 

engineers, which are like hundreds of them, will be querying your system. Versus external 

analytics, where all the restaurant owners, which is half a million of restaurant owners, or 700 

million LinkedIn users, were directly querying your analytical database. And those are external 

analytics. 

I think that's where we saw there's a real change in how real-time analytics systems are being 

positioned in a company's technological stack, right? So it was clear that you need a solution, 

which can sustain tens of thousands of QPS for an analytical database, and query latency 

within, let's say, millisecond P99. That’s the scale we started to see within LinkedIn and Uber. 

And, again, this might seem trivial if you are dealing with MySQL and Postgres. They already do

that. But for analytical databases, that was never the case. They were always mostly positioned 

as an internal tool rather than an external-facing tool. So that's where we saw there's a real 

opportunity in Apache Pinot to be the analytical database that can support such external or 

user-facing analytics. 

It was an obvious choice for me at the time to see – LinkedIn and uber saw this before other 

companies. But every single company is going to need this at some point of time. So if you talk 

about personalization, every single company will need to personalize the user experience. And 

© 2022 Software Engineering Daily 10



SED 1466 Transcript

if you really drill into personalization, it will turn pretty quickly into, "We need to do analytical 

queries per user or per segment of users at scale," right? So it boils down to, again, external-

facing analytics. 

So that was the motivation behind, "Let's build a company around Apache Pinot and then make 

it available for those who cannot run this on their own, really." Right? So that's how StarTree 

began. The mission of StarTree being to make Apache Pinot an easy to use experience for all 

kinds of companies.

[00:24:07] JM: What's the best way to productize something like Pinot? I’ve already pointed out

my critique of the contemporary theory around building an open core company. What's the best 

way to productize this stuff from your point of view? 

[00:24:22] CS: Yeah, that's a great question. And then again, this is something – 

[00:24:25] JM: By the way, I was looking at your Crunchbase. This is totally unrelated. I was 

looking at Crunchbase. Bane is doing a great job. It's kind of random. But Bain does really good 

investments in data infrastructure and related highly technical engineering evaluations. 

[00:24:40] CS: Yeah. I think it's part of the new line of thinking. It was not traditionally investing 

in such companies. But recently, I think they are looking at the core technological companies 

that can, as I mentioned, be transformative for a lot of these businesses and customers. But, 

yes, it's great to have them back us up. It's a good company for sure. 

Regarding the product angle, that's a great question. I think we have – This question, debate 

over it every day. It is a hard question. With open source technologies, as I mentioned, every 

day we have to think about, "Hey, we are building this new feature. Where should it go? Should 

it go in the open source land? Or should it be sold as a paid feature?" And this is one angle. The

other angle is everything is in the open source. And then customers will pay you for support, 

which is also fine, right? 

And then we are still early in this journey. The way we are thinking about things is community 

first, right? So if a feature is going to benefit a large section of the community, that's an easy 

answer. Upsert was an example where it's just contributed back to the open source. 

© 2022 Software Engineering Daily 11



SED 1466 Transcript

And then where we focus on the product side is how do we make it really easy for people to use

Pinot, right? So that includes deployment, and installation, ingestion of data. If you have played 

around with Pinot, there's a lot of things that you need to deal with for getting data into Pinot, 

right?

For example, the data from Kafka may not be in the right format. And it might be highly nested. 

It could be some of the columns are missing. The time column may not be in the right format 

that you want and so on. And you have to use a bunch of things to get it easy to query within 

Pinot, right? So this includes Pinot has all these inbuilt tools to simplify ingestion. But you need 

to be able to configure it accordingly. 

So there is a little bit of a ramp up on new engineers or people like data scientists to start using 

Pinot. As a company, we focus on making that experience really easy. How can our data 

scientist who has no knowledge of ingestion transforms within Pinot still be able to use that and 

be able to do his or her job, right? 

In some sense, we want to get Pinot out of the picture and focus on the problem. The problem 

being your data is in Kafka and you want to get this metric out. What is the easiest way to get 

that? Or you want to serve a personalized feature to the user from your complex data sitting 

across S3 and Kafka, what's the best way to get there, right? The product angle is to tie up 

those loose ends and then give a higher-level abstraction to the users, if that makes sense.

[00:27:38] JM: Yeah, definitely. How would you compare your approach to – What's the Druid? 

Imply. 

[00:27:43] CS: Imply? Yeah. Imply – And first of all, Druid and Pinot are quite similar in terms of

architecture. Also, the focus on low query latency, obviously, some of the things are different. 

Pinot was more optimized for user-facing external analytics. Whereas Imply focused – I guess 

the focus was more internal analytics. 

Between imply and StarTree, I think the approach is, again, very similar. They're community 

first. So most of the things – Make sure the open source project is successful. And as soon as 

that happens, obviously, the large companies are going to run there on their own. But a lot of 

© 2022 Software Engineering Daily 12



SED 1466 Transcript

the small companies and even non-technical companies will need paid support to reuse a 

managed service. The approach is very similar across both these companies. 

I think where the differences lie are in the use cases, as I mentioned before. Pinot will focus 

more on personalization, feature store for ML, large scale user analytics. That's really the focus,

right? And our selling point would be one click experience for any user, whether it's an engineer,

whether it's a data scientist, whether it's an exec, or a PM to be able to do this quickly. I think 

that's really the selling point. So we're not catering specifically for engineers. That's really the 

philosophy behind StarTree. 

[00:29:12] JM: How does the go-to-market compare then? The customer base, are they 

similar? Are they overlapping? Do they want both StarTree and Imply? 

[00:29:27] CS: Well, no. You will either have Imply or StarTree, right? The way I think about it is

companies will think about their hardest problems, right? If the hardest problems are 

personalization, that's a hard problem. 

Let's take an example of personalization, right? So in case of, let's say, LinkedIn, LinkedIn uses 

Pinot to personalize the news feed that you see on your LinkedIn homepage. And by that, I 

mean, there's a lot of relevance and ranking that goes on behind the scenes. And it's using 

Pinot to do things like how many times has a given user seen this news item in the last 14 days 

or so? And that becomes an input for the real-time ranking. As things are changing, as user are 

viewing stories, the news feed keeps evolving. And this is a way of personalization. 

Another way could be financial incentives for Uber drivers, right? You have all the features from 

drivers being collected in real time, as well as historical features. And you use those features to 

make decisions around how much incentive should we give to a driver for them to continue 

driving for Uber? Or how much discount should we be giving for eaters to be able to continue 

using Uber Eats, for example? 

And for these features, you're really looking at massive amounts of data, all the Uber drivers, 

and riders, and trips, and everything, and you want to do them at scale. Every time an eater 

even opens the app, you want to be able to run these queries, which translates to multiple tens 

of thousands of QPS. 

© 2022 Software Engineering Daily 13



SED 1466 Transcript

In the end it boils down to how much QPS you're doing. What is the complexity of queries? And 

what is your low query latency requirements? And I think that's where companies will make a 

decision on using Pinot versus other solutions. 

For these large-scale use cases, they are going to opt for Pinot, because the other solutions 

don't compare in this spectrum. Also, the good thing about Pino is if you can do the complex 

use case, you can also do the simple use cases, which is the internal analytics. Our pitch is 

really Pinot is the solution you need for real-time analytics. 

[00:31:51] JM: I have this theory. You know the Michael Stonebreaker idea, the age of one size

fits all is over? Have you read that paper or at least seen that paper? You get the idea? 

[00:31:59] CS: Yeah, yeah, of course. Yeah. 

[00:32:00] JM: I feel like we're going through like the age of one six fits all is over 2.0. Basically,

the same thing is happening for data warehouses. You want domain-specific data warehouses 

these days, right? 

[00:32:12] CS: Yeah. True. And I didn't mean to say we position Pinot as the only analytic 

system. Just to clarify, you do need your Snowflakes. And you do need your Hive, and Presto, 

and Tableau, and Looker, and all these things are needed. By all means, I mean to say, Pinot 

will replace them all. 

But where we are focusing on is there is a big gap in the real-time data analytics component, 

right? That's the gap we are trying to fill. So we are not going after the batch analytics 

workloads. The stuff where all your ML pipelines run, or you're generating reports for your 

interactive analytics, or ad hoc analytics even, where your data scientists are trying to do big 

data exploration on massive amounts of data. All those things are definitely needed. 

What happens typically is once you do all these data explorations, you start thinking about, 

"Okay, I have these features. Or I have these metrics that I want to compute in real time." And 

that's where, suddenly, you see a lack of a cohesive platform or a system to be able to do that. 

© 2022 Software Engineering Daily 14



SED 1466 Transcript

Traditionally, yes, people have been using – I’ll give an example, right? Before we adopted 

Pinot in Uber, the way they we're doing metrics was to pre-compute everything. They know 

what metrics they want to serve. Then they hired a bunch of engineers to go write these stream 

processing pipelines that will crunch all the data and then pre-compute metrics across different 

segments, right? And then these metrics were basically simple aggregations over different time 

buckets. Like, 5 minutes, 15 minutes, 30 minutes and so on. And then they build a query system

on top to be able to combine all these buckets based on the given time range. So they really 

build all these complex moving parts to solve a real-time analytics problem. 

And what we're saying is, with Pinot, all these complexities will go away, right? You just need to 

point to your input Kafka database. And you don't need any precomputation. You don't need an 

additional investment in data engineering for real-time problems. You can just query the data on

the fly. I think that's really – It's actually not a generic problem. It's a very specific real-time 

analytics problem, which we are trying to focus on. 

[00:34:42] JM: Okay. Yeah, that makes complete sense. But, really, the thing is, like, you've 

said, that Druid is effectively a competing system with Pinot, right? 

[00:34:51] CS: Yes. Right. 

[00:34:52] JM: Are you sure about that? Does Druid really have the same spec as Pinot?

[00:34:52] CS: Yeah. I mean, at a high level, Druid can consume from Kafka. They both support

analytical queries. It is meant for – There is some overlap, of course. It's heavily optimized for 

internal analytics and be able to serve such queries over fresh data, right? The freshness, query

latency, those things are similar. 

I think the parts where they don't overlap are the external-facing analytics. That's where, I think, 

Pinot was built from the ground-up for supporting these massive QPS and low-latency queries. 

There is a performance difference. There is also a difference in some of the use cases. 

For example, we recently added geospatial indexes to Pinot. Now you can do geospatial 

queries directly in Pinot. Or the fact that upserts are now available in Pinot, which is not the 

case in Druid. So you can actually have data, which either have duplicates or have updates in 

© 2022 Software Engineering Daily 15



SED 1466 Transcript

them and be able to get consistent query results out of Pinot. That's actually not true in Druid or 

Clickhouse. There are definitely a lot of the feature differences as well as performance 

differences. 

But if squint your eye, and at a very high level, they're all trying to do t he same thing. They're all

trying to give you ability to run analytical queries on fresh data. That fact doesn't change. They 

are all competing in that domain. 

If you want to build a dashboard, a simple dashboard that plots metrics for your real-time data, 

you could actually build with any of these systems. But now the question is you know you want 

to now expose that dashboard to your end user. Can that be supported on Druid and 

Clickhouse? Probably not. Because now you suddenly grow from hundreds of QPS to 100,000 

QPS, because you have directly enabled it for your end user. And that's where I think you need 

to make the right choice of what is your end audience for your real-time analytics. 

[00:37:03] JM: All right. Well, we only have like 10 minutes left. But I’d love to do another show 

as soon as possible. Let's close out with some like macro level stuff. You saw the whole 

streaming versus data warehousing thing, which surprised us all, right? 

I mean, I don't know about you. I thought streaming systems were going to be the new hotness. 

It appears they're not. Nobody's using streaming systems. Most people today probably have not

heard of Apache Beam.

[00:37:29] CS: Yeah. I wouldn't say nobody's using it because – I mean, for example, Lyft and 

Uber both are using Beam to a certain extent. You're right, though. It hasn't uh replaced the old 

systems, if you may. I think that hasn't happened. In that sense, you're right. And I can talk 

about my thoughts on why that is the case. But did you have any other question there? Sorry to 

cut you off.

[00:37:58] JM: Well. No. No. I mean, I just find it – It's really interesting. I feel like streaming 

systems will have their day in the sun. Maybe it's that company, Materialize, right? Isn't that an 

interesting – Wait. 

[00:38:10] CS: Yeah. Materialize is making – 

© 2022 Software Engineering Daily 16



SED 1466 Transcript

[00:38:13] JM: Wait. But Materialize, they're not open source, right? 

[00:38:16] CS: No. No. They're not.

[00:38:18] JM: That's crazy. Wait. They have a GitHub. Wait. Materialize cloud is now available.

They have a GitHub. But is it open source? 

[00:38:25] CS: Last I checked, probably not. But I could be wrong. I think they are trying to 

make the stream processing a one-click magical experience for the users, right? So you don't 

need to write code. You can basically write a query to do – 

[00:38:41] JM: Yeah. I don't know. Whatever. It's not good marketing. It's not good marketing.

[00:38:45] CS: We have been down that road. In fact, a system that we build, AthenaX, in Uber.

You should definitely check that out. Bad name. It's a terrible name. But that was one of the first

systems to actually do – 

[00:39:01] JM: It sounds like a pharmaceutical drug. AthenaX. 

[00:39:05] CS: It's also confusing, because there's Amazon Athena, which is pretty different 

than what we are trying to do. But we started out with the goal of making SQL as a first-class 

citizen. And our end vision was this is going to replace everything. If people can write SQL – 

And here's a Kafka topic, write the SQL, and I’m done. We really thought this is going to 

dramatically change things. 

And then Uber, a lot of things did dramatically change because of that. We saw engineers and 

operators. Uber operators are people who don't necessarily have engineering background. They

were able to write complex pipelines with using SQL, because everybody knows SQL. So we 

did see a lot of that improve significantly. 

But it's an 80-20 rule. A lot of the common problems are in the 80% of the problems. But the 

remaining percent are just SQL may not be enough. It's just too complex to author in SQL. And 

then you have to bring in all these other technologies to solve the problem. That's one. 

© 2022 Software Engineering Daily 17



SED 1466 Transcript

We also saw push versus pull analytics, right? Streaming is more push analytics, where you 

have data continuously coming in. You do some processing. You make a decision. And then 

you take an action based on that decision. This is what I refer to as push analytics. 

The problem with push analytics, it works great when there's not much state to reason about. If 

you are maintaining a state for like 30 minutes – You're getting data in. The state stays there for

minutes, and then you flush it out. That works great. But if your state grows to let's say one 

week, these systems suddenly don't appear as useful. Either they are too costly to operate, or 

they just don't work for such a massive state when you want to make a decision. And that's 

where like you need things like Pinot, where Pinot can handle a lot of state. And a lot of these 

same queries can be executed in Pinot to more like a pull analytics. You put your data in Pinot 

and you pull your insights out of Pinot, right? I think you need both. 

For things like fraud detection or alerting system, you need push analytics, because you need to

continuously process the incoming events, look for anomalies. And then as soon as you see 

something, you trigger it. So you take an action. That's why you need the push analytics. 

And then on the pull analytics side, this is where your dashboards come in. Massive state. It's 

not continuous. It's based on your applications or user interactions. And that's why you need 

Pinot. 

But none of these will replace, as I mentioned, the batch analytics, which is much more 

complex, right? You need running regression analysis on something like this is just unthinkable 

right now. And it has to do with how easily can you store petabytes of data in your streaming 

systems. How easily can you run complex computation in your streaming system? I think it is 

still growing. And one day, it might come to a point that everything is streaming. But not today. I 

think we have ways to go for that reality to happen. 

[00:42:22] JM: Okay. Well, we're very close to the end of our time. Any last reflections on 

building a data engineering product in 2021 in two minutes or less?

[00:42:36] CS: Yeah. Obviously, lots of options out there. There's not one thing out there. We 

need to focus on the right value for the customers, right? A, for any of these products, open 

© 2022 Software Engineering Daily 18



SED 1466 Transcript

source is key. Making it extremely easy for a large community of users is very important in my 

mind. If you make your open source project successful, the company will naturally follow 

through. That's one. 

Focusing on data quality, consistency, these are the problems which have traditionally been 

ignored in data engineering. I think those are the new things that are not exactly new. But on the

real-time data engineering pipelines, I think that's the new focus. We do see that for renewed 

interest and accurate real-time analytics, which was never the case before. 

And then third, it is going to take time for – All these systems are immature, in my mind. They're 

all starting out new. If you think about MySQL and Postgres, it took them decades to get to 

where they are. And my thinking is the real-time analytics system is still young. We still need to 

make significant investments no matter what open source technology you're talking about to be 

able to get to the majority of something like MySQL or Postgres. I’ll end with that thought. 

[00:43:57] JM: All right, man. Well, until next time. I had a blast. I look forward to learning more.

We should do the next one in person.

[00:44:01] CS: Yeah, definitely. I would love that. I’ve been a fan. I mean, obviously – 

[00:44:05] JM: Oh, no way. No way.

[00:44:07] CS: I should have started out with that. 

[00:44:09] JM: No, no, no. 

[00:44:09] CS: I definitely enjoy hearing about all your stories. It's fantastic. Very, very happy to 

be part of this.

[END]

© 2022 Software Engineering Daily 19


