
SED 1461 Transcript

EPISODE 1461

[INTRODUCTION]

[00:00:00] JM: The terminal is a necessary tool for any software engineer. In order to work 

quickly, developers have always customized their terminals to work for their specific application 

workflow. Fig is a reimagined terminal product that adds autocomplete and an entire app 

ecosystem to the existing terminal that you're familiar with. In a previous show, we talked 

through the basics of Fig. In today's show, we take a deeper dive into the functionality and 

engineering behind the product with the founders of Fig, Brendan and Matt. 

[INTERVIEW]

[00:00:27] JM: Guys, welcome to the show.

[00:00:30] BF: Good morning. Thanks for having us on.

[00:00:31] MS: Excited to be here. 

[00:00:33] JM: We previously did a show about Fig. And I think it's worth starting off with just an

explanation for Fig, which is a way to extend your terminal with added functionality. Give a brief 

description for some of the functionality that Fig adds on top of your terminal.

[00:00:59] MS: Yeah. Our big hypothesis around the terminal is that it's this tool that people use

every day, but the interface has remained the same for the last 50 years. And so we started by 

thinking, “What's the kind of baseline thing that we can do to improve terminal workflows every 

day?” And we started off with autocomplete. So when you download Fig, currently, you can get 

set up with autocomplete, and it'll give you IntelliSense style suggestions the same way you 

would get code suggestions in VS Code, or another IDE.

[00:01:29] BF: So that was the first product we built. Really, that's what we tell users. And really

under the hood, we've built an API on top of the terminal. We’re thinking, “Let's say we were 

building the terminal from scratch today, what would it have?” And we were like, “Well, it'd be 

extensible.” Literally, every editor and every other tool out there is incredibly extensible. Has an 

© 2022 Software Engineering Daily 1



SED 1461 Transcript

API that you can build on top of. And you can build on top of the terminal on the shell. But it's 

really, really hard. 

And so what we've built with Fig is this API that allows us to build – Essentially, allows any 

developer to build a web app that can read and write to the local shell, that can position itself, or

in and around your terminal emulator. So it feels like you have the powers of a VS Code 

extension store. But it's attached to your existing terminal. 

So the first product we built was autocomplete. And that was just like a proof of concept that 

turned out to actually be incredibly value to user workflows in the terminal. But the next thing is 

we're going to build around sharing environments, sharing workflows across teams. Basically, 

we think of Fig as the sort of source of truth for your developer environment and your developer 

workflows in the terminal. And all of the products we're going to build, and we hope the 

community builds, are around like making you faster, or like helping you sort of replicate your 

environment onto a new machine.

[00:02:49] JM: The first feature of autocomplete – So if I have an autocomplete for my shell, 

let's talk a little bit about the engineering behind that. So I imagine it's actually a pretty complex 

syntax data structure, that you would need to build to have autocomplete work. Can you 

describe that data structure?

[00:03:13] MS: Yeah. I mean, so there's two sides of it. One is all of the infrastructure that gets 

information out of the shell and passes it through this API and exposes it to the autocomplete 

engine. And then the other side of it is the actual completion specifications that the 

autocomplete engine uses to generate suggestions. 

So I'll start off with the completion specs, as we call them. These are open source TypeScript 

files that define the structure of a CLI tool. So you go in and you say, “Here are all the sub-

commands. Here are all the options. Here are all the arguments.” And you can declaratively 

say, “This is the structure of a CLI tool.” 

But what's really cool about Fig is we let you go even further and write TypeScript generators. 

So functions that can run shell commands, or make web requests that can expand the list of 

suggestions and customize it based on the user's local device.

© 2022 Software Engineering Daily 2



SED 1461 Transcript

[00:04:03] BF: So to like hone in on some specific examples, let's take Git or NPM. So in our 

TypeScript schemas, what Matt was saying, called completion specs, we just think of it as a tree

structure. It's a super simple tree, actually. And every CLI tool either has sub-commands, has 

options, and has arguments. That's basically it. And so if you look at Git, what are the sub 

commands there? Check out, and commit, and push, and pull? All right? And we just have a 

tree, Git is at the highest level, and nested underneath that there are sub commands. And then 

underneath sub-commands and some options as well, you have arguments. 

And so an example for checkout is I type Git checkout and then a branch name, or commit hash

or something like that. And what Matt was just saying is, for certain arguments, we can actually 

provide not just check out and the sort of the things that we call part of the skeleton, the stuff 

that you already know is going to be there. For arguments, we can actually run a command on 

the device, get the output and show a list of suggestions. 

So for Git checkout, when the user types Git checkout space, we're running at the current 

working directory the user is in. We run Git branch. We list out all of the branches that are 

available to the user. We pass them, and then we render them as suggestions for the user. So 

although it sounds like, “Oh, this is some crazy data structure,” we've deliberately spent a ton of 

time making it ridiculously easy, because we want to build these completion specs for every CLI

tool out there. In fact, we didn't even want to build it. We want to automate the construction of 

them and then make it easy to enrich. So yeah, simple tree structure, which maps out a CLI tool

and allows you to enrich the suggestions for arguments as well.

[00:05:43] JM: So with the example of Git, if you wanted to automate the creation of 

autocomplete functionality for Git, how would you automate that system? 

[00:05:58] MS: So Git is a bit of a tricky case, because as far as I understand it, the Git CLI tool 

is written kind of in in C with no CLI framework or anything like that. But where automation can 

come in, is if you're using like a CLI framework like Cobra, or oclif, or Commander.js, we can 

integrate at the framework level and use the information there to automatically produce 

completion spec.

© 2022 Software Engineering Daily 3



SED 1461 Transcript

[00:06:22] JM: Got it. So can you give maybe another example or two about how you might be 

able to auto generate the autocomplete functionality over-time?

[00:06:33] BF: Sure. So, Figs, CLI tool is built in a framework called clap in Rust. And basically,

a framework for building a CLI tool is you shouldn't have to deal with all of the parsing 

infrastructure yourself. A framework is coming in and it’s able to – You essentially say, “Here's a

sub-command. Here's an option. Here's an argument.” The framework does all the parsing for 

you. 

So we integrate with cloud. Fig has built in integration with cloud. And every time we compile 

our CLI tool, we then have a command that is just part of the clap integration. It's called Fig Gen

Fix Spec. I know this is getting a little bit meta. So maybe we can use like Docker as another 

example. Docker, we add a command. They use Cobra, which is a Go lang framework for 

building CLI tools. We add a command, Docker Gen Fig Spec, and it just spits out the full Fig 

completion spec for it. Like we do all of the passing for you. That's it. And you're ready to go. 

Like suddenly you have completions for the entire CLI tool. 

What it doesn't give you is some of the sort of argument completions I was talking about. So it 

can't tell you, “We search over the Docker – Like, registry for Docker images.” It can't do that. 

Because like someone has to be able to say, “Alright, this specific argument is a Docker image, 

or whatever, or Docker container.” Someone has to manually add that. But at least we get 80% 

to 90% of the way there.

[00:07:56] JM: Tell me about the runtime of Fig in the case of autocomplete. So as I'm typing, 

what is happening behind the scenes and what's being generated in-memory? And I guess, 

yeah, what's being queried on disk?

[00:08:10] MS: Yeah. There's a lot of moving parts to make the seamless autocomplete 

experience that we hope users get. It starts off in the shell. We have different integrations for 

zsh, fish and bash, that will send the working directory the text that the user has typed in their 

shell, the process IDs, information like that, and that gets passed to a MacOS app that's 

responsible for hosting a web view that is the broker for this JavaScript API that we've built 

autocomplete on top of. So all of this information is getting passed to the autocomplete engine. 

© 2022 Software Engineering Daily 4



SED 1461 Transcript

And then on every keystroke, the autocomplete engine is responsible for providing a new set of 

suggestions. 

[00:08:52] BF: One thing I'll add quickly is everyone thinks of the terminal as something that's 

fast. And so Fig needs to be fast as well. So as Matt said, like, we need to know what you've 

typed, what your current working directory is, what the process ID is, where the cursor is. We 

need to get all of this information. We need to do that super quickly and efficiently. And then we 

need to send it to our autocomplete app and then generate the suggestions. So we've spent a 

ton of time making sure this isn't a lag on your terminal experience. This isn't a lag on your 

computer. Like we're not consuming a ton of memory. We like really, really want to make sure 

this is fast and just not in your way, like an Electron app is. We’re deliberately built natively to 

avoid performance issues.

[00:09:36] JM: And remind me what this autocomplete functionality is written in?

[00:09:42] MS: We have kind of two components. There is a native component that is written in 

Rust, a mix of Rust and Swift. And then there is the user interface kind of application layer that's

written in TypeScript.

[00:09:55] JM: Got it. So I assume that the choice of rust is just for high-performance.

[00:10:02] MS: Exactly. Yeah. I mean, we're doing kind of low-level systems type of stuff. And 

this is an area where Rust really excels. Because, originally, we'd written this systems 

integration in C. And it worked. But it was a pain to maintain. There were weird issues that the 

memory safety of Rest really helped resolve. So we're happy that we did that rewrite.

[00:10:22] JM: If we broaden the conversation to talk about the API – So you have an API that 

allows people to build their own applications on top of Fig. Using the autocomplete as an 

example, can you talk about how the API works?

[00:10:42] MS: So our goal is to abstract away a lot of the complexity of the terminal and the 

different shells that a user might be using and expose a very simple clean interface that people 

can build on top of. And the way it works is pretty much the way that any NPM or TypeScript 

package would be installed. So you just Yarn install kind of our Fig, the autocomplete – Or 

© 2022 Software Engineering Daily 5



SED 1461 Transcript

sorry. Our Fig JS API. And then there's different functionalities that are exposed, like the ability 

to run a local shell command, the ability to receive events from the shell. You can position the 

window next to the cursor or as part of the sidebar. And you can also insert text into the active 

terminal session.

[00:11:22] BF: It sounds so strange saying this over like a podcast. If you go to fig.io, you can –

If you've never seen Fig before, it's just not something you can describe. It's literally a floating 

window on top of your existing terminal. Like we haven't built a new terminal here. We integrate 

with iTerm and your native MacOS terminal, with VS Code, with Kitty, with Alacritty. We 

integrate with all of your terminals. But we do it in a way that's at the operating system level, as 

opposed to like being our own window. 

And so what our API is doing is effectively abstracting away all of this operating system 

integration that we've done, and terminal emulator integration, and shell integration, and CLI 

integration, and just exposing it as this very nice JavaScript API essentially, which as Matt said, 

can let you run a shell, command can position the window, can insert text, and can like receive 

these hooks or events from the shell as users are making changes. 

But if you literally just go to fig.io and you'll see the demo on like the front of our website, even 

the first blog post we've written, the like launching Fig blog posts, shows you all of the 

capabilities of the API. It's like super weird to explain over a podcast. It will make a lot more 

sense when you like look at this demo video. And it's like really cool. Honestly, we're obviously a

little biased, but we think it’s pretty cool.

[00:12:41] JM: Let's say I wanted to build my own Fig API app and I wanted it to publish 

collections of my terminal commands, like sequences of my terminal commands to – I don't 

know. Maybe take sequence – But that’s a stupid example. But take sequences of my terminal 

commands and, at random intervals, push them to another terminal and execute them in that 

terminal. Can you talk about how I would build that?

[00:13:19] MS: So right now, just to clarify, this Fig JS API is not public yet. We're focusing on 

building some first party applications that use it so we can stabilize it and make sure it works for 

a bunch of different use cases like this. 

© 2022 Software Engineering Daily 6



SED 1461 Transcript

But what it sounds like kind of long term, like the app you've sort of defined is like a way of 

saving a list of commands that you can execute anywhere. So it's sort of like a workflow. And 

this is something we actually experimented with ages ago when we were in YC. We had this 

idea of Runbooks that lets – Say you have a deployment script or a readme to set up the 

development environment. These types of collections, like we want to be able to host them 

through Fig so you can share them across your team or, again, build your own app that uses 

them as a standalone thing.

[00:14:08] JM: Okay. Got it. Well, maybe we can move on to talking about more recent 

functionality, specifically the stuff we were talking about before the show. So you have some 

new ideas around how you're going to change Fig into more of a platform for basically terminal-

based development. Can you explain where you're going with the project and the work around 

configuration files?

[00:14:42] BF: Sure. So let's take a step back. Let's come back to super high-level. Like what is

Fig? What are we trying to do here? And essentially, Fig makes you more productive in the 

terminal. That's our end goal. And just what’s so fascinating is the terminals barely changed 

since the 70s. And yet every single developer, hardware engineer, software engineer, data 

scientist, uses it like every day, every week. Like it's a core part of their workflow. And yet, it's 

really hard. Like it's this – Everyone remembers the first time they use the terminal. And it is just

ridiculously hard. Key bindings are different. It's this black screen. You can't use the mouse. 

Like most of the time, you can't use the mouse. It's just really intimidating. And so what we're 

trying to do with Fig is make the terminal easier and more accessible for beginners, make it 

more efficient for advanced engineers, and then make it more collaborative for teams. 

And so what we realized early on is there are so many pain points in the terminal. Like, we 

cannot solve them all ourselves. So Matt mentioned like the API is in public right now that we've

built. But we want to make that public as soon as possible. I would say that in the next couple of

months, it'll be like – Definitely, within the next couple of months, it'll be live and open. And 

people can start building it. Maybe by the time this podcast is announced, like it'll almost be live.

So we've built this API. And now we want to start solving problems with it. And we also want to 

enable the community to solve problems with it. So let's look at some of the problems. 

© 2022 Software Engineering Daily 7



SED 1461 Transcript

And then let's look at how we think about solving them. The first problem is, I have no 

confidence when I'm typing in the terminal. It’s this black box. I'm like literally typing. The cursor 

isn't even blinking. It's just like this block cursor. Really intimidating. We build autocomplete to 

solve that. It gives you the confidence that what you are typing is correct. And for advanced 

engineers, it’s purely a typing shortcut. It's like you can type faster. 

Cool. Okay. So that's one problem. What are some of the other problems out there? And the 

next big problem we've identified is around your developer environment. And so these are what 

people call your dotfiles. It's like your bash RC or your Z shell RC. If you need to customize your

terminal, which you have to do when you join a new company, you often have to add 

environment variables, or you have to – Like you need to download certain scripts and source 

them in your terminal before it opens up. Like that all happens in this thing called the bash RC 

or the Z shell RC. Think of it as just your configuration for your terminal. Most people are 

probably somewhat familiar with it. 

And the thing is like that's also really hard. Editing your dotfiles is like really difficult. Most of the 

time when you edit settings in a web app, you have this nice GUI and it has little suggestions 

and descriptions. In bash RC and Z shell RC, it's a plain text file that has to exist in a specific 

location on your device that has no instructions around it. It is just like it exists. 

And so what we want to do is sort of think through what are the pain points developers face 

around their dotfiles. And we've sort of isolated four pain points. One is the actual editing 

experience. Like it’s, as I said, plaintext file. It's really, really tough. How do I make that easier? 

Two is how do we make the discovery of things to add to your dotfiles easier? What does this 

mean? Well, a lot of people want to customize their prompts. A lot of people want to customize 

their color scheme. People want like specific aliases and other workflows to be embedded. Like 

there's no real centralized place to go and do that. There are some tools like Oh My Z shell. But 

even then, as I just said, editing your dotfiles is cumbersome. And Oh My Z shell, it's like the 

easiest of them all. But it's still like a little strange. And so how can we make the discovery 

aspect of adding new tools that you just randomly find on Hacker News to your terminal 

environment and like develop a workflow easier? 

Then three is, once you've made these changes, what happens is you forget to like sync it to 

some centralized place. So you go to a new computer, and you just have to set it up manually 

© 2022 Software Engineering Daily 8



SED 1461 Transcript

from scratch. So it's how can we sort of sync the changes that you make on one device to a 

new device, to another device you have, or to at least some source of truth in the cloud? And 

then finally, there's the replication process of, “When I go to a new machine, how can I just set 

up my environment, like my dotfiles, exactly as I had them set up on my other device?” 

And we can talk about a little bit more. But basically, we're making it ridiculously easy to edit 

your dotfiles. Like, we do it in this nice keyboard-driven GUI that's as fast, if not faster than 

before, but gives you those instructions that you expect from a sort of web-based like app. 

Discover – Like we're going to build a plug install. Like we have actually built this plug install, 

we're going to launch it within a week, around discovering new additions to your terminal. Three 

is syncing. It's like we will handle the sync. We’ll automatically sync it to your devices. We’ll 

automatically sync it to the cloud. And four is replication. Well, if Fig sort of open source cloud 

hosting of your dotfiles is the source of truth, then replicating your dotfiles onto a new machine 

is as easy as downloading Fig and just logging in. And it just suddenly syncs.

[00:19:47] JM: Could you put more context around why some of those features are useful? Like

why do I want multidevice syncing for my terminal data? Why is that so important?

[00:20:02] MS: This is important because having a consistent developer environment means 

that you can get up to – You can be productive on any machine that you're using. Developers 

have this tendency to be power users. They customize their workflow. They have special key 

bindings and aliases. And having to set that up on every device that they go to, especially if it's 

not replicated across devices, means that there's inconsistencies from one machine to another. 

So something that works on your local device might not work on your remote machine, or if you 

use a Cloud IDE. And so we think that consolidating this information, and making it really easy 

to edit, but also to sync everywhere will supercharge people's terminal experience.

[00:20:43] BF: An example is if you go to a new computer – This is like not even a technical 

example. But say you're used to using a specific shortcut that you have on your phone, or you 

have in your computer, and you go to another device, and suddenly that shortcut is missing. 

You feel it. It feels weird being on that new device. And so how can we literally take your 

environment and workflows everywhere you go? Like, it is actually a painful thing. 

© 2022 Software Engineering Daily 9



SED 1461 Transcript

And with cloud IDEs and SSH-ing into remote machines, you're not switching physical devices 

all the time, but you aren't going to new machines every time you SSH every time you set up a 

like an IDE in the cloud with GitHub Code Spaces, for instance. So with that trend, continuing, 

like we think this is going to continue to be a big problem.

[00:21:26] MS: Also, you can see that this is a pain point for developers if you just go to 

github.com and search dotfiles. It's very common to see developers create an open source 

dotfiles repo where they sync all this stuff manually using Git. But then you have to remember to

pull down the changes on your machines. And there's a little bit more overhead when it comes 

to replicating and syncing this stuff.

[00:21:51] JM: What have been the biggest engineering problems in developing the syncing 

functionality? 

[00:22:00] MS: I think to start off, like a tricky thing, in general, when dealing with the terminal is

backwards compatibility. We are trying to create new interfaces and affordances on top of a 

technology that hasn't been updated in a long time. And so we need to be really flexible, 

because our schema needs to support all sorts of different CLI tools, and plugins, and 

configuration languages. So I think that that was kind of an early challenge of like how can we 

create a schema that represents plugins and dotfiles that's flexible enough for basically all of the

complexity that people put in their dotfiles currently? 

But then kind of from a specific implementation perspective, we wanted syncing to be seamless 

and instantaneous. So the way this works currently is you can edit your dotfiles anywhere using 

fig. And then changes are automatically reflected both in every terminal session on your local 

device. But in any terminal session or – Yeah, in any terminal session that's on a remote 

machine or another computer as well. And we do that using WebSockets. So anytime that there 

is an update, we send out this ping to all of the devices you have set up with Fig, and then they 

can automatically be updated without you needing to manually pulldown changes or configure 

anything.

[00:23:09] JM: Gotcha. So the engineering around the syncing process, are you moving that 

config data to like a database in the cloud? Or are you just copying the configuration files and 

© 2022 Software Engineering Daily 10



SED 1461 Transcript

storing them in an S3 bucket and then replicating them elsewhere? Or what's the engineering 

behind that? 

[00:23:34] MS: That’s a great question. So what we've done is we have this higher level 

abstraction over what ends up in your dotfiles. We call them blocks. And so a block could be an 

environment variable. It could be an alias. It could be a function. It can be a custom script. And 

when the user edits their dotfiles using Fig, they're ultimately creating these blocks. 

And what's cool about this kind of higher-level abstraction is it means you can define a block 

once, and depending on differences between shells, or environments, those blocks actually 

might be compiled down to the shell script differently because there's some syntactic 

differences between zsh, or fish, or whatever. 

And so what we do is we store this higher-level representation. And then whenever you need to 

download your dotfiles to a new computer, we compile this representation down to the shell 

script based on certain parameters you might send. So say, you only want certain blocks to be 

sourced in an interactive login shell, or if you only want them to be sourced on Linux, we can 

dynamically generate the dotfiles depending on these different variables.

[00:24:36] JM: So when you think about how this functionality changes the workflow of a 

developer in the terminal, what's the biggest value add?

[00:24:48] BF: So in the really early days of Fig, actually, when we did our first podcast, we 

were building a ton of tools, and they're all separate. And so you can think of this today as like 

there are hundreds of CLI tools out there. And what we found is users would download fig in 

early days and they would open up one of the apps and they'd be like, “Oh, this is really cool.” 

And then they'd never go back and use it. 

And so what we're thinking with this sort of new reimagining of Fig and how it works is we're big 

on just simplicity. There's one thing that you need to know to do anything to do with Fig. And 

that's the Fig command. Literally, you just run fig. It's going to open up this nice UI. It's all 

keyboard-driven. And it can sort of speak to your terminal. It's a Fig app at the end of the day. 

So that's the one command we want you to know as like Fig. 

© 2022 Software Engineering Daily 11



SED 1461 Transcript

And what we sort of want to train the behavior is, if you want to make a change to your 

configuration, you want to edit your dotfiles, you want to update the path, you want to install a 

new plug in, you want to add an alias. Like, literally, anything to do with your environment or 

your workflow, just type Fig. That's like all you need to do. 

And so the cool thing about that is, well, once you started typing fig for editing your dot – Like 

your shell configurations, like what else can we build that would be exciting for individuals, or for

teams, or for enterprises that you're already using Fig every single day. So what else can we 

do? So examples are around secrets. Let's say you have some secret that you want to host. 

You currently don't put secrets in your bash RC, or maybe you do and you’d be like very 

protective about it. But if you want to make a change to a secret, you often have to go to 

someplace in the cloud, or you have to change some other file. Why can't we host secrets? Why

can we make it easy to not just edit your shell configurations, but your vim configuration, the CLI

tools that you have installed on your computer? Like any other sort of – Your VS Code 

configuration, for instance. Like, those are all part of your developer environment. 

And then same with workflows is like what if I want to – I've run the same command 50 times in 

a row. I want to make it faster. Like we can prompt you to go to Fig and sort of say, “Hey, you 

know what? Here's some bit of code that I need to reference in the future or that I want to make 

faster.” Fig can just be the source of truth for that workflow. 

And what's really interesting is this applies for individuals, but it also applies for teams. So you 

join a new company, and you're like, “Oh, crap, what are the CLI tools I need to have installed? 

What are the onboarding steps I need to do? What are the environment variables I need?” Like 

it can all be hosted in a team apart of just running the Figg command. 

So we really see – As I've said a ton of times, do you think of Fig as this he source of truth for 

your developer environment or for your develop a workflows? the more stuff you put in there, 

the more it makes sense to keep putting more things in there? I know, that sounds a little weird. 

But yeah, the idea is like you start by editing your dotfiles, which is a really common workflow for

a ton of developers. And then you can just keep layering on more functionality. Because no one 

wants to have 500 different CLI tools and 500 different apps. If we can just be this one thing 

that's really safe, really secure, and like you sort of associate your developer world with, like, we

think that's a really compelling pitch.

© 2022 Software Engineering Daily 12



SED 1461 Transcript

[00:27:59] JM: Have there been certain workflows that you focused on, like you could think 

about data science workflows, or DevOps workflows? And I would think that by focusing on 

those prototypes, you could design, or think about, or ideate around what kind of added terminal

functionality you should put in? Have you gone through any of those exercises?

[00:28:27] BF: So, yeah, I think we've got – Our entire life, the past a little while, has been 

going through every workflow. And the interesting thing is there are just so many, and they're so

particular, two different types of developers. And we want to solve all of them. And I think in the 

early days of Fig, we tried to do everything. And we ended up doing 50% of a good job of 

everything. And so what we decided to do since is let's just focus on a few really cool workflows 

and absolutely nail them, and then go to the next, and then go to the next. 

So some examples are the JavaScript community. NPM is really popular CLI tool and Yarn. 

Like, how can we make those – Just the experience of using NPM and Yarn as good as it 

possibly can be. But we have completion specs for NPM and Yarn. But like what are you 

actually trying to do? Most of the time you use NPM, you're installing a new package, and you 

are like running some scripts that you have in your package dot JSON. Maybe you're doing 

something with like the NPM package registry for like a private cloud thing. Maybe you're 

logging in. But most of the time, you're installing something, or you're running a script. 

So for the running the script, we show you, what are all of the scripts that are available in the 

package dotJSON? You do NPM run space. We just list out all of those scripts. As I said earlier 

on, we give you the confidence that, yeah, when I type NPM run Dev, this specific repo has a 

script called Dev. Another cool example with NPM is installing packages. When I type NPM 

install, like, “Oh crap, I'm installing Redux Thunk. Okay, is it Redux-Thunk? Is it Redux Thunk 

with a capital T? What is it?”

We when you run NPM install space, we actually just search over the NPM registry, the 

package registry. So we just show you live. It’s as if you're searching in the browser like Redux 

Thunk and you're getting the name. But it's happening as you are typing in the terminal. The 

workflow we've saved is going to the browser, getting the exact name of the package, and then 

pasting it into your terminal. Like that all now happens as you are typing, which is super cool. 

You type and you can see. It's like debounce search over the registry. It's super cool. 

© 2022 Software Engineering Daily 13



SED 1461 Transcript

This applies to pip. Pip installing something for Python. Like, I use Django, and I need to run 

some – I think it's like pythonmanage.py. Like that's a really specific workflow in Python. But we 

offer like special completions for the Django users. And these things apply to package 

managers like Brew, CLI tools like Cargo for Rust, and like each one for each language. And 

then finally, there's Git, probably Git and CD are probably the most use CLI tools. So with Git, 

you have a really specific workflow, you add a file, you check out a branch, you add a file, you 

commit the change, you push the change. We just make those experiences and that sort of 

small workflow as fast as it possibly can be and still discoverable and still easy.

[00:31:14] JM: What about the workflows for crypto developers or Web3 developers, whatever 

you would want to call them?

[00:31:25] MS: There are a bunch of CLI tools that are specific to Web3. And I believe that we 

support a few of them. I'm not exactly sure the name.

[00:31:36] BF: Yeah, we can look them up. It’s the same idea. NPM is used by the JavaScript 

community. And there are tools that are used by the crypto Web3 community in the terminal. 

And we support those tools. And we support descriptions for the tools. And it hasn't been a 

focus for us as a team. But the beauty of what we've built is all of this stuff is open source. And 

so what we found is there's a JavaScript developer out there who uses Git, who uses CD, who 

uses NPM, who uses Brew. They like use all these tools, and they go, “Wow! This experience 

for these five or six things is just phenomenal. I want this experience for my CLI tool, for my 

developer workflow.” And it's all open. And it's ridiculously easy to build like a completion spec. 

It takes two minutes from – Like, literally, you go to your computer now, fig.io/docs, you will like 

run through the instructions, you can have a completion spec, like mini completions for a new 

CLI tool up and running in literally two minutes. It's crazy quick. 

And what we found is a lot of developers love using Fig. And then we're missing just one little 

thing. But it's so easy to contribute that they just go and contribute themselves. And then it's 

open, and they push it to the public repo with Fig/autocomplete. And then the whole world gets 

to take advantage of this one tiny little workflow that's useful to the one person. It turns out it's 

useful to hundreds or thousands of people.

© 2022 Software Engineering Daily 14



SED 1461 Transcript

[00:32:52] JM: So when you pull back and look at the progress you've made, since we last 

spoke, I think it was like a year ago or so. When you think about how your vision for the product 

has changed, what have been the most notable evolutions or developments?

[00:33:13] MS: I think a key thing has been a shift from GUI-first to CLI-first. And so what this 

means is, originally, installing Fig meant pulling down a MacOS app. But we want to go cross-

platform and we want Fig to be everywhere. An easiest way for Fig to be everywhere is just 

whatever package manager you use, pull down a CLI tool, and then boom! Your setup. 

So this has kind of changed how we think about the product. And so it means moving some 

logic to the cloud, some logic to a daemon that's constantly running on your device that can do 

this sort of syncing of configuration files. But that's been kind of a key change in how we think 

about the tool.

[00:33:55] BF: Just to clarify. From the engineering perspective, we are now CLI-first and like 

very – Previously, it was a lot of clicking around. Yeah, we want to go across platform. But the 

way we thought we do that was a desktop app. Now it's a CLI. Still, from the user perspective, 

though, when you download Fig, we have simplified it. As I said, you just type that Fig command

and the whole world opens up in this sort of nice GUI. So it is actually more heavy GUI than 

ever, but it's keyboard-driven. It's super-fast and keyboard-driven, but you get the output and 

display of a GUI. So it's as fast as the CLI. It's as fast as the terminal. But you get this rich 

display of a GUI. 

And yeah, that hasn't changed too much. It's just more of the engineering implementation. The 

reason why it's taken us so much time is we have to integrate at the operating system level. 

Like how do we get the cursor position in your tersminal emulator when we don't own the tumble

emulator. It's like it's a really hard challenge. And then the terminal emulator level, when you 

switch tabs, how do we know you’ve switch tabs? Like we need that information. When you 

open up a new pane in iTerm, if you use tmux, we need that information. 

At the shell level, if you use bash, or Z shell, or fish, they’re different shells, they have different 

hooks available, we need to do those integrations. And then as I said, we work with hundreds of

CLI tools. Each of those CLI tools has really specific workloads that we want to absolutely nail. 

And so, yeah, honestly, the vision has stayed the same way. We want to be this app ecosystem 

© 2022 Software Engineering Daily 15



SED 1461 Transcript

on top of the terminal. The engineering infrastructure has taken a ton of time to get really right. 

But now it's fine. Like it feels super stable. We have these integrations. It's very, very scalable. 

Now, honestly, we're just executing on the vision that we've always had. So the vision really 

hasn't changed too much. It's like we want to make you and your team more productive in the 

terminal. And we've built the infrastructure that makes it ridiculously easy to do.

[00:35:44] JM: And we talked a little bit about difficult engineering problems. But I'd like to get a

better sense for what the canonical problems of building a novel terminal extension have been. 

What have you guys struggled with more broadly?

[00:36:04] MS: So I think, in general, the main difficulty is none of this is greenfield 

development. Everything we build has to deal with the baggage of 50 years’ worth of changes in

programming languages, changes in – What type of computers people were using. There's just 

a lot of cruft that gets built up. And I think that that's honestly kind of the main challenge, is like if

you were sitting down and building something from scratch, like it is easy to do lots of new stuff. 

But when backwards compatibility is a core constraint, you need to be more thoughtful in how 

you develop things.

[00:36:38] BF: People download fig, and in the early days, it would just break. Fig wouldn't 

work, or it would slightly change one of their settings, which was really important to them. And 

yeah, we've just been working on integrating with everything, which is important to us. 

Backwards compatibility is really important. And now that we're finally getting to the point where 

most people download Fig, and there are zero problems whatsoever, now we can like really 

start scaling it. 

So yeah, integrations is just – We want them to work everywhere. That's the thing. It's like you 

shouldn't have to choose, “Should I use this? Or should I use Fig?” You can use whatever the 

hell you want. Fig is going to be there. We've integrated it.

[00:37:18] JM: do you guys have a system for detecting bugs and pushing them to you guys? 

Like crash tool management or something?

[00:37:30] MS: So, testing has become really, really important, because there just are so many 

variables at play when you're building a desktop app. Like you're not insulated from the user's 

© 2022 Software Engineering Daily 16



SED 1461 Transcript

local machine. And especially when you're a terminal extension, where people do all sorts of 

strange things in their dotfiles, you have to plan for everything. So we have a pretty 

comprehensive system of dotfile tests that basically set up development environments with 

various different dotfile plugins, like Oh My ZSH, or Starship, or pure, and various permutations 

that we've seen in the wild that have historically broken Fig’s integration. And then anytime 

we're making changes to our shell integration, we run a test suite across all of these different 

environments and make sure that the events that we expect to get are still working. So that's 

improved the stability a lot. And then in terms of crash reporting, we use Sentry, but we really, 

really make sure that we don't track any kind of user data. These are just reports about like if 

something like crashes and panics, it will send us back the results.

[00:37:30] JM: I guess to wrap up, I'd like to get a sense for a little bit more about how 

engineering has gone and like some of the, I guess, like cloud services you've used to build the 

new syncing systems. And if there's any other engineering internals you could talk about? I 

guess we explored that in some detail in the last episode, but maybe we could revisit the 

engineering and go a little bit deeper.

[00:39:06] MS: Yeah. Originally, Fig was primarily a desktop application. We didn't have a huge

cloud component. And so our stack was pretty simple. It was just a node server, I think, on 

Heroku, hooked up to Postgres database. 

As we've started to expand out what we do on the backend, we've evolved the system slightly. 

We're still using node and TypeScript on the backend. Still using Postgres. But now it's become 

a more core part of our stack. So on top of Postgres, we use Prisma as an ORM. And I think 

we've moved from Heroku to render for most of our hosting just for convenience sake. 

[00:39:45] BF: GitHub actions, CI/CD.

[00:39:46] MS: Yeah, we use GitHub actions for CI. I'm trying to think of anything else that 

would be interesting. Like, I really like where our stack is at. Originally, we had a bunch of hacky

prototype code. And I think that that's kind of been a big change over the last year as we've 

matured the product and stabilized a lot of the early engineering decisions. And so now 

everything is a combination of Rust for low-level system stuff. And then TypeScript React for 

kind of the application layer. And we are hiring engineers both for Rust roles and for full stack 

© 2022 Software Engineering Daily 17



SED 1461 Transcript

backend roles. So if you're interested, you should check outthink.io/jobs and see if you might be

a good fit, because we would love anyone who's interested in terminals, in low-level systems 

programming, and just making the developer experience seamless. So just come check us out.

[00:40:34] BF: One thing Matt also didn't mention is we, as I said earlier, integrated the 

operating system level, terminal emulator, shell level. So we have to write in the language that 

those tools expose. So to integrate with some terminal emulators, we can do it in Rust, or we 

can use like accessibility API's in Swift. And with other terminal emulators, we have to use 

Python. And with some other ones, we have to use some other accessibility API's. With the 

shells, we have to integrate in bash, in fish, in Z shell, in those languages. So we are using – As

I said, we want to work everywhere. And if we need to integrate with Tmux, we're writing in the 

Tmux conf, like whatever configuration file you need to make sure we can get the integration 

done.

[00:41:15] JM: Cool. Well, guys, thank you so much for coming on the show. It's been a real 

pleasure talking to you.

[00:41:19] MS: Likewise. Thanks so much, Jeff. 

[00:41:21] BF: Thanks so much, Jeff.

[END]

© 2022 Software Engineering Daily 18


