
SED 1434 Transcript

[INTRODUCTION]

[00:00:00] JM: Retool is a company that allows customers to build complex internal tools using 
a high-level GUI. Users configure the relationships between these different tools, giving them 
the ability to build applications even without much background in engineering. Of course, having 
engineering expertise helps as users can write JavaScript to interact with the higher-level 
components. 

Snir Kodesh is the Head of Engineering at Retool. And he previously worked at Lyft as a 
Director of Engineering. He joins the show to talk about his work at Retool and how it compares 
to Lyft engineering as well as the lower level challenges of building the platform. 

If you're interested in sponsoring Software Engineering Daily, reach out to us at 
sponsor@softwareengineering daily.com. We'd love to hear from you and bring your message 
to our audience. We reach over 250,000 developers per month. 

[INTERVIEW]

[00:00:49] JM: Snir, welcome to the show.

[00:00:50] SK: Thanks for having me. Excited to be here.

[00:00:53] JM: Yeah, it's great to have you. So we've done a previous episode about Retool. 
And if listeners want to know some of the ground floor stuff on Retool, they can listen back to 
that episode. But I’d like to delve a little bit deeper into the engineering here. And I want to start 
by talking about your past experience at Lyft. And I just love to get from a high level how working 
at Lyft compares to Retool in terms of the engineering challenges. 

[00:01:22] SK: Yeah, absolutely. I mean, I think, obviously, building an incredibly low latency 
marketplace and building a software engineering platform really couldn't be more different from 
sort of a product standpoint, and certainly, from an engineering standpoint. They do have a lot in 
common in the sense that we want both to be incredibly performant. And the approach to 
engineering, obviously, is going to involve high-performance and low latency systems in both. 

© 2022 Software Engineering Daily 1



SED 1434 Transcript

But I think for Lyft, what I worked on was a lot of very large graph solves. So trying to be – In 
particular, in my role, which was in the marketplace function, trying to clear the marketplace, 
clear demand and clear supply with or the lowest latency and do that in a globally optimal way. 
So I'd say sort of one discrete difference there if you could probably infer is that a lot of ML 
models were involved in sort of the work that I did on Lyft to ultimately create an objective 
function push toward it. 

Whereas with Retool, we are fundamentally a platform. So we are sort of unopinionated and 
don't have nearly as much bias about what the objective function should be other than to make 
engineers more productive and accelerate development. Well, we're not trying to shove you in 
one dimension or one class of applications versus another. We're not trying to be overly 
predictive in what you're trying to do. Because at the end of the day, we don't want to make 
false inferences. And we don't have the same sort of profit maximizing function that Lyft might 
have. 

So very different engineering challenges in the sense that one is deliberately intended to be 
open-ended, in the case of Retool, whereas one is very opinionated from a company objective, 
in the case of sort of the marketplace functions at Lyft.

[00:02:54] JM: And when you think about the data model for Retool and the data structures, the 
primitives and you compare that to the primitives of Lyft, in Lyft, I think of rides, and drivers, and 
ETAs, and maps. In Retool, I guess I have a little bit less of an idea of what the core 
abstractions would be. Maybe Windows, or components. What are the core abstractions of 
Retool?

[00:03:32] SK: Yeah, so you got it completely right. And I think a lot of what I was mentioning in 
terms of constraints and opinions reflects in the data model. Where, exactly as you said, in the 
Lyft case, you have very sort of precise, specific objects that serve one particular function, right? 
Like a ride. Whereas with Retool, we have a notion of a page, which is much more abstract in 
terms of what sits within a page. We have components. We have queries. We have the 
metadata that associated within them. We have resources, which is the concept of where we're 
going and ultimately fetching data from. We have a bunch of audit events just to capture and 

© 2022 Software Engineering Daily 2



SED 1434 Transcript

understand how you're using a page so that we can ultimately serve audit logs to our 
customers. 

But each of these are really in some ways more of – Think of them, on some dimension, kind of 
like an interface that needs to be sort of instantiated by whatever a customer pushes onto them. 
Whereas you dif that against a much more sort of prescriptive schema in sort of the Lyft case. 
And of course, we take that to the limit, right? But part of what makes Retool really interesting at 
the end of the day is we embrace the concept of code within the confines of an application. So 
we want to give people just open-ended JavaScript that they can execute within, and obviously 
do that safely and do that performantly. But that's just another dimension of that sort of 
dynamism within a Retool application and within the Retool data model.

[00:04:52] JM: In the last episode, we talked about Retool pretty abstractly, as I mentioned. I'd 
like to talk about the architecture of a typical Retool app. When somebody makes an internal 
application, how that application is represented in-memory and on disk? And just how it's 
modeled?

[00:05:13] SK: Sure, yeah. So for starters, I think every application can fundamentally be 
represented as a graph, right, in terms of visually. Now that's not entirely how we store it on 
disk. I mean, I mentioned some of the data models that we construct, and there's obviously 
clear relationships between them that lend to that graph representation. 

But as an example, you may have sort of a central query as part of your application that 
everything is dependent on. And that once that query runs a whole bunch of components go and 
sort of visualize the result of that query in the UI. And so we would effectively have component 
and component metadata that associates to that resource and subsequent that query and that 
query metadata. And so you hopefully – As I'm explaining it, it's clear how sort of that that graph 
and that dependency graph is built around the implications of the app itself. 

So when you think about – And I’ve definitely listened to the last podcast. But just a little bit of a 
refresh, right? Fundamentally, what folks are doing when they come to Retool, they bring in their 
data sources, they write queries to extract information from those data sources. They connect 
those queries into components. Those components are then sort of organized into an app. And 

© 2022 Software Engineering Daily 3



SED 1434 Transcript

fundamentally, what that means is that they may register event handlers on top of them that 
then control other components, right? You sort of have this almost workflow being created with 
an application, but you can represent that as a dependency graph. 

And so we take our schema as sort of the more structured version of that, that maintains and 
stores all of its metadata. When we load it into the frontend, we're actually reconstructing that 
dependency graph for you in the application. And that's what ultimately allows the app to run.

[00:06:52] JM: Can you walk me through, I guess, the bootstrapping, the rendering of an 
internal app? Like how it gets pulled into memory?

[00:07:02] SK: In terms of how we – Sorry. Can I get a quick clarification on the question? Do 
you mean in terms of how we use, like, Webpack to bundle assets and load them, or something 
else?

[00:07:13] JM: Yeah. So like let's say I navigate to an internal applications page. And just walk 
me through what happens for that app to be loaded onto the page.

[00:07:26] SK: Sure. I mean, it's got several components to it. So for starters, we transform, as I 
mentioned, that schema into that graph, right? And we, again, bundle – We have all of our 
assets that map directly into those data models. We use Webpack to ultimately bundle them. 

When we load them into the browser, I think there's a couple of steps that are, I think, 
particularly compelling, namely how we sort of take templatized JavaScript, run it, which is done 
through sort of a sandbox where we share complete app scope. And that's our way of effectively 
having safe JavaScript run in browser fully sort of hydrate styles, themes, templates, everything 
else, run them in the browser. 

I’m not quite understanding the question around memory. So I might be sort of missing one key 
inside of what you're looking for. But I think that there is this really interesting component of 
Retool, which is people are writing active code. We are running it actively in the browser and 
sandbox. 

© 2022 Software Engineering Daily 4



SED 1434 Transcript

[00:08:19] JM: Yeah, I guess the question was – Just when I think about the backend 
representation of the app, I guess these apps, they're just always around. I don't know why I 
was thinking that. I was just thinking – For some reason, I was thinking like the the app was 
structured in a file somewhere and then there was a separate database associated with it. But 
of course, now I understand it's just running all the time. You just have an active app that's 
running all the time. 

[00:08:45] SK: To me, what's incredibly powerful, because as an editor, when you're building 
the application, you can fully interact with it, right? So it's almost this like real-time live 
programming environment. As you pull in a component, as you pull in a query, you press a 
button, you actually see the interactivity happen directly in the editor experience as opposed to 
publish that and then sort of load it separately [inaudible 00:09:08]. 

[00:09:09] JM: So once I have a loaded application, can you describe how information flows 
between the components of that application? 

[00:09:17] SK: Yeah, for sure. So, again, I think this is where that dependency graph really sort 
of takes hold and where a lot of its power is sort of exhibited. So fundamentally, like at the core, 
we have our queries, right? Like, I think, everything, for the most part, originates off the queries. 
I suppose you can build a static application that doesn't have an interesting data source 
associated with it, something like a static table. But most applications sort of originate with 
queries. 

And I think, again, what's really interesting about our query structure is this is one of the 
dimensions in which we make sort of hard things simpler, right? So as an example, you can 
trigger actions off of a query success. That might mean you run another query. That might mean 
you mutate a component. That might mean you run some arbitrary code. But you basically get 
sort of guaranteed delivery of, "Hey, when this query succeeds, or alternatively, when it fails, we 
sort of commit and promise to take subsequent actions. And that's where we really just sort of 
like traverse the dependency graph and say, "Okay. Well, it's something. It's a state machine," 
right? 

© 2022 Software Engineering Daily 5



SED 1434 Transcript

We say, "Hey, when this particular component completes its operation, assuming one forked for 
success, one forked for failure, take these sort of next subsequent events" But we just pass sort 
of the data directly through effectively global state. And you can mutate that global state. You 
can change it. But what's neat, again, is all components reference sort of just through variable 
naming other objects in the graph and are able to extract metadata directly from the APIs that 
those other objects expose. Does that sort of answer the questions? Does that help at all? 

[00:10:45] JM: Yeah, yeah. absolutely. So maybe you could give me an example, like a chain of 
components in a typical application where data would flow between them.

[00:10:55] SK: Sure, yeah. So, yeah, I’m thinking of an app that I sort of built internally here. I 
feel comfortable sharing that and we really like to protect what our customers do for the most 
part. And I don't know how much I can share there. But I built this app that effectively runs our 
Q&A process for engineering, and to some degree, for the company. And so you can view it as a 
mix of, say, like a Slido with Reddit where people can show up and sort of upvote comments. 
You can sort of see that the state of questions that are in effect. 

And so, firstly, you have sort of a submitting query. And unfortunately, I don't think we're 
recording video here. But I’d love to sort of demo it. As you submit a question, you automatically 
effectively take a post action. But that post action is represented in the form of just a query that 
writes to some table in some database. We then have a list view that is effectively constantly 
looking for state updates against that table. So as soon as that write query succeeds, we go and 
we refresh. We trigger a refresh on the list view table. That goes and runs a separate query 
against that table to retrieve data to publish and populate and effectively hydrate the list view. 

So now you submit a question. You start to see it instantaneously generated because we're 
triggering the select query on successfully writing to the table, right? Writing to disk. And so you 
have one query that is a write on its success. We go ahead and repopulate the list view. 

Same sort of thing for upvoting where you interact with the button, right? That button, sort of on 
it, we register an event handler on that button. That button then has a effectively a dependent 
step to running a query that populates the up vote. We have some sort of logic there for basic 
validation, ensuring that people can't sort of update multiple times over. And then that triggers, 

© 2022 Software Engineering Daily 6



SED 1434 Transcript

again, sort of a write to disk, which of course, delightfully, as you probably can infer, triggers the 
list view to once more sort of refresh its local state. 

And so you sort of – The query is ultimately the way in which data is flowing between these 
components. But the triggers for what is causing them to refresh, which is really sort of 
important from a performance standpoint, you don't want your list view constantly pulling your 
API or your data store directly is what really sort of makes it magical. 

In this case of this application that I built, I wanted the scrappiest thing. So I’m just dealing 
directly with disk. You can imagine that for most people. There is some sort of front, right? 
Whether that's sort of a GRPC endpoint or some sort of RESTful interface to sort of help 
manage traffic, Etc. But most people don't want to just be writing directly to disk. But for me, 
internal use case is something that I want to do just in a really scrappy sort of way. And that's 
sort of how the data flows between the different parts of the application. 

[00:13:28] JM: And with that application, can you give me a sense of some of the backing 
services, the, like, database services or infrastructure that underlies it? 

[00:13:40] SK: Yeah, absolutely. I mean, in the case of my application, it's, again, pretty 
simplistic. I mean, it really is just Retool at a database, which on the one hand is really simple. 
On the other hand, it's quite powerful, right? I effectively was able to proxy for a full stack 
application just by having a database provisioned in a table that I could write to. 

Now, again, I think for most folks, that's not the case. You want to sort of have that intermediate 
step of service that services basically. And that could really be anything. Again, I think for me, 
again, it's a Postgres table. But that could be any type of data store. And in the case of me 
wanting to insert some API for rate limiting, or security, or validation, or ACL checking and 
ensuring sort of auth and permissioning, that could be a Flask service on the backend. That 
could be a GRPC endpoint. Again, that could be really anything. 

And I think if you look at sort of the set of services that Retool supports, it is quite expansive, 
including sort of services like Twilio, and Stripe, and Slack. And so there's a lot more that on a 
sort of any API that's really exposed, we can pull into Retool and make available. 

© 2022 Software Engineering Daily 7



SED 1434 Transcript

So when I build an app in Retool, is it connecting to – Does it need to connect to a database 
that I have already defined or is already on my infrastructure? Or can I just ad hoc, spin up a 
database through Retool? 

[00:15:06] SK: Yeah, that's a phenomenal question. So we're actually actively – We have a path 
that we've been working on for the last several months to actually provision and have sort of a 
fully managed solution. Best case scenario, it's super early stages. But your mind is going 
exactly to the right place. 

I think for the most part, people have already sort of connected. And at sort of an organizational 
level, right, per enterprise per company, you sort of have the set of resources that are available 
to you. And then from an org management perspective, you can sort of allow certain groups or 
certain collections of users to have access to those. So maybe you don't want to give everybody 
in your organization write access to your core central data store. That would be pretty intuitive. 
But maybe there is sort of a secondary data store that you're okay opening up access to. And so 
you can do that. 

So I guess what I’m saying is, today, the common path is that people connect proactively. And 
sort of one of the first steps of making Retool extremely powerful is that resource connection. 
And we, as a company, care a lot about sort of the quality of our connectors and how easy it is 
to connect to a resource, because it's such a powerful precursor to seeing how valuable Retool 
is. But we do have a solution, which again is more in line with how I built my my scrappy internal 
app, which is effectively, "Hey, you can sort of fully provision and fully manage a Postgres 
database directly through Retool." That's not live. For those listening, we're excited to get you all 
on board to that. But not quite live yet for everybody. 

[00:16:27] JM: Not to open a can of worms, but how much mileage is there in that product 
strategy of spinning up infrastructure? 

[00:16:35] SK: Well, it's not. I mean, it's still abstracted, right? I think that, for us, we can use 
best-in-class tools. We can basically have a new RDS cluster per customer who wants to use it. 
It's not that we're sort of doing it fully end-to-end behind the scenes, if that's what you're asking. 

© 2022 Software Engineering Daily 8



SED 1434 Transcript

Because I think that that, while very interesting, is sort of a solved problem. But I do think, 
especially if you look at sort of earlier stage startups, I mean, this is sort of a canonical path of 
development. The first thing you do as a startup, someone who found a company several years 
back, is almost define your object model. And there's no reason why you couldn't do that from 
within Retool. And we could sort of give you a best-in-class experience there. 

And that would be a very clear natural segue to then building internal apps on top of that, right? 
Said differently, I think part of the reason why internal tools are almost sort of like a lagging need 
in most companies, and oftentimes they build an approach when it's too late when the company 
already sort of has needed those tools for so long, and they canonically fall under sort of tech 
deb or product deb, is because you decouple, right? You define your object model. You never 
think to build an internal tool on top of it. 

Retool bridges that world. It makes it really easy once you have an object model to just 
represent it to screen and sort of introspect it, engage with it, right? And that then allows sort of 
support processes to take hold. So I actually think, like, it's probably less right if you, I don't 
know, pick a logo from our website. If you're DoorDash, you're probably not going to be 
provisioning new databases from within Retool. And that's okay. But I think if you're if you're 
earlier in your journey, you may very well. And I think that could be interesting. But to be 
determined, right? We're still early in that exploration.

[00:18:15] JM: So when you're building a Retool app, there's a lot going on in the editor. And I’d 
love to know if there's any learnings you have from making that editor or that code builder 
performant.

[00:18:34] SK: Yeah, it's a really good question. I mean, to be honest, React has been very 
good to us. And today, I worry more about sort of the performance of how we evaluate or how 
we resolve our dependency graph, or where we have very large applications and you sort of see 
this sort of everything's reliant on one query, and that query happens to be huge. Like, I think 
there is basically a hierarchy of sorts of where we can go to extract performance. And as far as 
evaluating JavaScript, there's certainly intelligence that we apply today. There are certain 
opportunities to basically have effective guesstimation of what JavaScript is doing and decide 
whether we want to evaluate that in a sandbox, or they could just evaluate that in line, which is 

© 2022 Software Engineering Daily 9



SED 1434 Transcript

obviously a lot cheaper. We have to share a lot less state and share a lot of scope in order to do 
that. 

There's also just basic intuitive heuristical optimizations, like don't try and decode or encode 
everything and see what you can sort of infer without doing additional parsing logic. So I would 
say that, again, at a high level, we care a lot about sandboxing. Sandboxing is very important 
mostly from sort of like running untrusted code in sort of a secure environment. So that's an 
important precursor to us evaluating any templates and any code that's written. But other than 
that, I mean, I think we're at a stage right now where we are sort of working down the list of sort 
of most critical sort of performance problems that we're having. And candidly, a lot of those are 
in the application space, right? How we debounce queries? Or how we think about sharing state 
with the sandbox. And less about sort of a low-level evaluation, if that makes sense.

[00:20:19] JM: And are there any other areas where performance is has been an acute issue or 
has created interesting problems to solve? 

[00:20:31] SK: Yeah. I mean, performance is an incredibly – I think you are hitting the right note 
here. Like, it's sort of an evergreen topic for us. And especially because as more and more folks 
use Retool, we see candidly applications that we could have never sort of envisioned. And 
again, unfortunately, no liberty to share the internals of those. But needless to say, we get some 
incredibly complex apps that are built that almost sort of stretch the envelope of what retool was 
conceived of initially for. 

And so whether that's, again, separation of state and taking large, effectively, monolithic 
application and breaking them into multi-page apps so that we can intelligently load, right? 
Which is something we do today, right? If you're saying like a tabbed view and you're on tab 
one, we're not going and making requests on tab two in a blocking capacity, because we don't 
want to slow you down. And you can imagine that same paradigm applying to multi-page apps 
where we load intelligently and load lazily. But there's certainly like that dimension of it. 

We also see – What's interesting that we see today is like a lot of different hardware is ultimately 
used to run retail. And as we've talked about, a lot of the compute happens on the client. So if 
you're on M1 MacBook, life is good. But if you're sort of on a – If you're long-tailed, you just 

© 2022 Software Engineering Daily 10



SED 1434 Transcript

happen to be on a Chromebook, we really want to be thoughtful about how we are optimizing or 
rendering our compute so that you have sort of a high-quality experience. 

And so in the future, I can easily – And again, I think this is why it's a really exciting space, 
whether it's sort of WebAssembly, or server-side rendering, or whatever other sort of channels 
that we want to explore, today, we're just getting started talking about those. That just sort of 
connotes how sort of excited we are for the journey ahead and how much more opportunity we 
have. But for the time being, again, I think our performance problems are very manageable to 
sort of our customer needs. And again, React has been very good to us. 

[00:22:22] JM: Have you had to do any tweaking of React? Any kind of low-level work on some 
of the open source components? 

[00:22:32] SK: Yeah. Not notably to be, again, totally transparent and honest. So I’d love to 
share some cool stories. But I don't actually have anything on that particular dimension.

[00:22:44] JM: Are you using kind of the latest, like, data manipulation tools? Like, I don't know, 
React Hooks, and kind of that stuff? 

[00:22:54] SK: For sure. Yeah. I’d say, again, our application of React is very modern. But we're 
not – I was specifically commenting on sort of the low-level optimization and sort of going into 
sort of like the deep framework stack and sort of forking from there. We're not doing any of that. 

[00:23:10] JM: Tell me about the management of the code base. How do you keep Retool itself 
manageable? 

[00:23:15] SK: Yeah. Retool is, again, a really interesting company. I think we have about 35 
engineers or so, which is pretty remarkable from where we are sort of as a company and as a 
product. I think about where I was in the past with sort of Lyft, for example, at 35, and sort of a 
different picture. And so, too, is sort of the code management. 

I think for Retool, we're entirely in sort of mono repo land. We sort of manage those with Yarn 
workspaces. We look to share sort of – And that has advantages, right? We can share a lot of 

© 2022 Software Engineering Daily 11



SED 1434 Transcript

code between our frontend, our backend, which is obviously simpler to do in a monorepo. And 
then the way we sort of create some separation of responsibility, so to speak, is just as you 
might expect with just the directory structure helping us separate different products and different 
product lines and different parts of our stack. 

For us, I think it's really beneficial. And we've been able to sort of bring down the build times by 
sort of optimizations there. We recently sort of adopted Buildkite actually, which brought down 
our build times. But given sort of the size of the team, it's really nice to have everybody in all 
parts of the code base, I think, operationally that really helps in terms of on-call, that helps in 
terms of standardizing languages, right? You don't see sort of like language sprawl at Retool 
where there's sort of natural modes between services as you have to discover completely new 
technologies and languages. There's sort of a lot of interoperability both from the tech 
perspective, but also from the people side, which is really important to us. So yeah, hopefully 
that gives a little bit of insight into how we sort of manage and maintain the code base. 

[00:24:45] JM: So does the code base have any mapping to how different teams are managed? 
Or is that kind of a disjoint question? 

[00:24:55] SK: No. I think that was sort of the slight comment that I made nested in there about 
different directory structures. So you will see, for example, our sort of native mobile investment 
has its own sort of subdirectory. And again, we look to share as much code as possible so that 
we can be as productive as possible. But there are some clear departures in terms of what 
those products look like. So you see deviations as you traverse different directors. And and 
teams, for the most part – For the most part, right? Deal with sort of their directory and sort of 
the common shared code, but don't really descend into other teams. The file system basically 
creates separation that maps somewhat to our teams. That's, I guess, the TLDR of what I’m 
saying. 

[00:25:34] JM: You mentioned mobile there. Can you tell me a little bit more about your 
approach to mobile? 

[00:25:38] SK: Yeah. So I think we sort of have sort of two approaches, right? The first is we 
want to make apps that are built in Retool responsive. And there's actually a way to do that 

© 2022 Software Engineering Daily 12



SED 1434 Transcript

today where you can effectively opt into responsive view. So that's wonderful from the 
perspective of if you're building an admin console and you want people to have access to it on 
the go, or on sort of unconventional devices like docked iPads, etc. You sort of have that 
solution out the gates. 

We also think that mobile is one of those areas that there could be sort of mobile-first or mobile 
only teams out there that are looking to build internal tools for those efforts. So we have a sort of 
dedicated React native investment for that class of problems that is just jointly different, right? 

What we want to avoid is people feeling like they need to rebuild the same application across 
different distribution mechanisms. So that's where that responsive, that first half plays in, where 
we have the dedicated responsive view. But then if you want sort of that that mobile-first and 
you want, I don't know, things like offline mode, you want native notifications, things like that, 
there's sort of that other pathway. But the intention is not to ever have you build the same app 
twice, right? That would be sort of, again, violating that constraint. And we suspect that if you 
were to build that app twice, you would go the responsive route. 

[00:26:56] JM: And have you found any issues in making the form factor for – I think of Retool 
apps as potentially quite expansive. And they could take up a lot of real estate on a desktop. Are 
there any issues with making those kind of expansive apps amenable to mobile? 

[00:27:23] SK: Yeah, it's a good question. And I guess you're asking specifically – Like, just to 
rephrase and make sure I understand, you're saying, "Hey, you mentioned earlier, if you've got 
these really big sort of like mega applications, how do you make those sort of viable for 
mobiles? Is that sort of the gist of the question?

[00:27:37] JM: Basically, yeah. 

[00:27:38] SK: Yeah. Yeah, I mean, I think the honest answer is it's case by case. And again, 
this is where we try and stay somewhat unopinionated. Although we do want to help bridge that 
gap, that's where features like multi-page will really help. I think that the short answer is we want 
to put the decision in the hands of our customers, right? If our customers ultimately believe that 
their – I find it hard to envision this. But if their very large expansive app should be on mobile, it 

© 2022 Software Engineering Daily 13



SED 1434 Transcript

should be viable on mobile. And maybe they choose to break it up into multiple applications 
today in order to make sort of the end user experience really, really delightful so that you're not 
scrolling through like 30 effective pages of content in order to get to the table that you were 
looking for. Or maybe they introduced sort of more elegant navigation to jump between the 
different parts of the application and they sort of use modules as a result. 

Basically, what I’m saying is there's a path toward fragmentation if you really want to take one of 
those large apps and make it available for mobile. But yeah, I don't think that applying the 
responsive bit to some mega app is going to set your application for success. But I think that's 
exactly some degree the journey that the engineer building the application should be somewhat 
thoughtful about, right? And our position is that whoever is the builder for this application should 
have a general understanding of who the end users are. And if, indeed, mobile, it's sort of meant 
to be cross-platform and have multiple distribution strategies, the app might want to be 
structured in a way where you have modules and sort of sub-components and you break those 
out into sort of multiple apps that are stitched together through a unifying navbar equivalent. So 
that's sort of more, I guess, of a product solution to a technical challenge to some degree. 

But I also think that's the right one. Because even if we perfectly optimized and everything was 
incredibly responsive and fast, you still are dealing with like limited real estate, right? You're 
visually constrained to a four-inch screen as opposed to a 15-inch one. And so there's only so 
much cognitive load you can push into that smaller form factor. That's what our builders need to 
be somewhat thoughtful about.

But like just to give you the counterpoint. Something like a form, right? If you're building a form 
within Retool, like, why would you need to spend any time having that – Spending any time 
making that work really well in mobile and making that delightful? And that's where sort of that 
responsive engagement makes a big difference. 

[00:29:50] JM: Harkening back to the Lyft conversation from earlier, I think the mobile 
experience on a Lyft app is so informationally demanding. There's such a high flow of 
information between the client the server. And I can imagine internal applications where that 
would potentially be something that users would want. Like, I don't know, maybe a warehouse 
application, something like that. But I imagine most apps are not that data-intensive. Do you 

© 2022 Software Engineering Daily 14



SED 1434 Transcript

have customers who have incredibly data-intensive apps? Like maybe even on par with 
something like Lyft? 

[00:30:30] SK: Yeah. I mean, we actually do have some data warehouses and inventory 
applications that are being built. I think with Lyft, you sort of have – Locations is a really good 
example of just a massive stream of information that's consistently flowing. That might be sort of 
one discrete difference where we don't see sort of data streaming, to the best of my knowledge, 
at volume. But we do have incredibly high payloads. And we have folks pulling in information 
from data warehouse and sort of data warehouse scale. We also have the warehousing case, 
like inventory management for a physical warehouse. So I think you'd actually be somewhat 
surprised maybe and just if you looked at like average payload. Unfortunately, I didn't think to 
pull that data before I came on. So I don't have that sort of broken down by different application 
or customer segments and sizes. But it's an interesting thing to look at. I may actually do that 
after our call today. 

[00:31:22] JM: Yeah. Can you use location services with Retool apps? Is that an application? 

[00:31:29] SK: That's a good question. I don't know off hand is the honest answer. I’ll be honest 
when I don't know things. I think, like, objectively, there's no reason why we wouldn't be able to. 
I mean, I think the challenge with location data is more about how that gets stored and 
managed. And again, that's sort of on the other side of the interface of the Retool boundary 
today insofar as we really just do what you tell us to do, right? If you want us to send something 
over any arbitrary wire, we're happy to do that. And then how you go and manage that, whether 
you drop it into Redis or put it in in disk, which seems like a mistake, and how you sort of 
manage sort of eviction and everything else. Sort of up to you, right? That's sort of out of the 
Retool contract, so to speak. 

And so I think can we have the browser enable locations and emit locations and send it back? I 
mean, certainly. Why not? Whether we do today, I actually don't offhand, again. But I think that 
the complexity of streamed information is, again, outside of where Retool operates today. It's 
more in sort of the customer's backend, so to speak.

© 2022 Software Engineering Daily 15



SED 1434 Transcript

[00:32:29] JM: So you mentioned data warehousing applications. I guess are you saying that 
people are building a lot of like frontends for data warehouses, like a Snowflake application or a 
Spark application? 

[00:32:46] SK: Yeah. I mean, we're seeing, first of all, a good amount. Again, this is – What's 
most impressed me about Retool in the relatively short time that I’ve been here is just, I guess, 
the cardinality of types of apps that are being built, right? And you see BI tools being built. You 
see Retool being used as sort of an incident manage visualization and sort of console of sorts, 
where it's backed by Snowflake, and they're running sort of models on top of Snowflake and 
displaying those in Retool. 

Again, it sort of blows my mind sometimes the sort of types of applications that people build. But 
this is the elegance of the application today, which is that it's fundamentally stateless, right? 
Other than application state and what we store in terms of dependency graph. But in terms of 
customer data, we're not touching that. And I think that was covered in sort of the last podcast 
as well. And that just flows over the wire in a stateless way. And so, yeah, people build all sorts 
of stuff including on top of data warehouses. Bi tools, incident consoles, being just two sort of 
examples that lead to mind. 

[00:33:44] JM: So there's this feature of Retool where you can basically have JavaScript 
running in most of the places in the app. You can just have arbitrary JavaScript. Tell me about 
the build path for getting that JavaScript parsed, and compiled, and running and just how you do 
that in a streamlined way. 

[00:34:07] SK: Yeah. This is a little bit of our secret sauce. I’ll keep some of the details to myself 
here. But I think that what I’ll say – And this goes back to sort of, I guess, I didn't connect the 
dots as explicitly earlier. But for us, all templates and all templatized JavaScript is run in a sort of 
on-browser sandbox. And again, that's our mechanism of sort of running it securely. And so we 
sort of instantiate a fully evaluative environment. We actually share global state so a lot of the 
state from the app is mapped over to that sandbox so that you can traverse our graph and 
reference the other parts. 

© 2022 Software Engineering Daily 16



SED 1434 Transcript

Again, what's cool about Retool is that, in that JavaScript, you can reference. Component one 
can reference component two, or can reference the sub-results of a query and really traverse 
the entire object model that's being generated from that query. So we share all of that state and 
then effectively hydrate run it within that sandbox. That's probably all I can say about it, 
unfortunately. 

[00:35:08] JM: Do you use any GRPC handing data back and forth? 

[00:35:14] SK: So we do support GRPC in terms of customers, but not within sort of the Retool 
app context. So again, if you have a GRPC endpoint, that is how you're serving data that you 
want to load into Retool. Full support there. But in terms of within the confines of Retool, we 
don't. 

[00:35:32] JM: Gotcha. So you don't have any – I guess there wouldn't be any need for that just 
within the core application architecture itself. 

[00:35:40] SK: Right. Right. 

[00:35:41] JM: Is there a kind of a limit to a size of a Retool application? Are there places where 
it hits a threshold and gets unwieldy? 

[00:35:53] SK: I mean, I think the short answer is no. The practical answer is somewhat, right? I 
mean, I think we've seen apps with upwards of 600 components just to give you sort of a 
general scale. We've seen apps with upwards of 20 queries, right? 

I think the complexity is devil is in the details, right? If all those queries are select stars over 
tables with bad indices, which is, again, things that we don't necessarily control, you're sort of 
compounding performance implications to the point of the app not being super useful. 

So I think this is, again, one of the really interesting things about building in the context of Retool 
is that there's a lot that we can do on our side to make our house, so to speak, as performant as 
possible. But at the end of the day, the end user runtime load time engagement is somewhat 
dependent on what's happening on the customer side. And actually, a poorly constructed Retool 

© 2022 Software Engineering Daily 17



SED 1434 Transcript

– For example, you can imagine a world where every keystroke, you rerun some query. Is it 
conceivable to do that in Retool? Yeah. I mean, somebody could cue up the event handler and 
launch a massive sort of sequence of queries per keystroke. That would make the application 
grind to a halt. And it doesn't even have to be all that complex. 

But what I would say is within the sort of range of reasonable use, we see some really beefy 
applications. We see ones where you've got dynamically nested tables, right? So you've got like 
a list view with a bunch of tables, each of which are custom written to support sort of embedded 
components that today we don't necessarily support out of the box. And those apps run. And 
they run relatively performantly. 

So I think that there isn't sort of like that asymptote so long as it's within sort of the reasonable 
engineering principles. And again, I think this is what makes Retool really compelling and very 
powerful as an engineering tool, which is much like any language. Like you can mess it up, 
right? There aren't guardrails protecting you from yourself. And we ultimately love empowering 
our builders with sort of the full suite of tools in terms of language primitives that they can use. 

The downside of that is there is the possibility that it's not a bad actor. It's just someone who 
might not have the same sort of fundamentals. And they could slow down the end user 
experience on their side. It has nothing to do with Retool per se. But it cuts across both, right? 
And that's the interesting part about performance. We want to do the best job we can. And we're 
always pushing on sort of how our world operates. And then you know we may even want – And 
the we talk about this, right? We want to give people observability tools. We want to run basic 
timings, right? And we want to expose all that to the builder and the end user to be able to say, 
"You know, this query is really long. Like, have you sort of looked at the underlying data model? 
Or, hey why don't you set up your own timers for different parts of the stack and then we will, 
through open telemetry, let you land those wherever you want to build sort of observability 
dashboards for Retool apps?" So all that is very top of mind. But again, I think that the short-
abridged answer to your question is we see some really, really big apps, and they don't have 
problems. And that's exciting. 

[00:38:53] JM: Tell me about the engineering management and, I guess, how the priorities are 
set and how decoupled it is. Like, if I think about something like Lyft, Lyft is kind of a pretty 

© 2022 Software Engineering Daily 18



SED 1434 Transcript

effectively decoupled organization. You got pricing. You got mapping. You got routing. You got 
support, that kind of stuff. It's all pretty well-partitioned. Retool, again, I have a harder time 
envisioning what the kind of responsibilities, division of responsibilities is.

[00:39:33] SK: Yeah. I mean, for starters, Lyft lived quite well good. Great job researching and 
props. Yeah, I think for Retool, we have some obviously separation of responsibility. You can 
imagine that we have one part of our team that is really thoughtful about what is onboarding 
look like, right? So we believe that Retool is like learning a new language on some dimension. 
And regardless of whether you're learning it because you are sort of the zero-index person to 
discover it and want to learn more about it, or whether you're inheriting an application and you 
need to work in that context, right? That's no different than being joining a company and working 
on a Go service. If you've never been in Go, you've got to sort of learn on the fly. 

So there's one part of our team that is very much tuned to that new user experience and sort of 
education and taking an app and breaking down its components and basically building dynamic 
walkthroughs and tutorials. Pretty cool stuff. We have one part of our team that is really focused 
on the different aspect. And I guess, that more accuracy is an org, with multiple teams about the 
different parts of building. So I think if you look at building within Retool, there's one part which 
is just sort of the UI. That's the layout engine, the component library, right? So that's one parcel. 

We've got another, which is working with code, right? Everything that we've talked about, but 
take it even further. How do you debug? How do you introspect a model? How do you get auto 
complete working well, right? And so there's sort of one part that. 

There's a whole other part of the team that is what we call our development tool chain. I actually 
kind of love this part, right? If you think about coding natively in your language of choice, you 
have all these surrounding systems that help you as an engineer be more productive. You have 
CI tooling, CD tooling. You have your IDE, right? You have sort of source control versioning, 
code review, peer reviews, right? You have source searching, source graph, for example. All of 
these products are really meant to make you more effective. 

And if you think about it, the Retool abstraction prevents you from getting a lot of those. So a lot 
of those need to be sort of brought over from first principles into Retool. How do you test the 

© 2022 Software Engineering Daily 19



SED 1434 Transcript

Retool app, right? And so we're building that. How do you version a Retool app to prevent just 
incidental changes from going out and source control it, right, so that you can roll back? You can 
move forward, right? You can have sort of different versions that you can pin to safely. 

If you're – Again, pick any one of our large customers, and you're building a support tool that 
applies to a multi-thousand-person support org, you don't want to ship a bug every time you 
accidentally make a mistake. So there's real sort of complexity in what that development 
environment is. So we have a whole team dedicated for that. We have a team dedicated to all of 
our resources, resource support, resource quality, resource connectivity. 

So I actually think, like, on the one hand, I completely hear you, right? You go into Retool and 
you just see this big canvas and all these components and all these features, and it's like it 
looks very tightly coupled. But I actually think you can split across the different dimensions of 
how somebody interacts. And to some degree, I think it's correlated with user segment or user 
expertise. Whereas maybe a more a more basic Retool user might not get exposure to all those 
teams that we talked about. I don't know if that sort of helps. 

[00:42:33] JM: No, no, no. That makes a lot of sense. Given that you've laid that scaffolding, 
can you give a sense of the product direction of the company and what you're focused on 
today? 

[00:42:42] SK: Sure, yeah. I would say it's sort of two dimensions. I mean, one is we're 
exceptionally proud of where Retool is today. We absolutely think we've solved a very clear user 
need. I think the sort of market is speaking loud and clear in that dimension. But we also think 
that there's a lot of improvement, a lot of opportunity for improvement. 

I mean, I use the app, and I just see, right? The other day, I was playing with it, and model 
introspection just wasn't working. And so I felt almost like I was blind in terms of what do I de-
reference? What is sort of my nested object called? How do I sort of extract that and pull it in? 
So there's sort of the long tail of improvements there. 

I also think that every one of our products today has the opportunity for elevation. So on the one 
hand, we clearly know that there's collaboration happening in Retool as evidenced by our 

© 2022 Software Engineering Daily 20



SED 1434 Transcript

investment in protected applications, and versioning, and branching, which gives you sort of, 
again, control over incidental changes or other people mucking with your app. 

On the other hand, we don't have a very good story around multiplayer. And that's a very clear 
sort of opportunity and area of investment for us. So there's just a ton of opportunity to upscale 
the product as it is today. 

I think we have probably the best and drag-and-drop engine that I’ve ever seen. But even, still, it 
has opportunity for improvement when you're playing with sort of nested components and 
moving things around between containers. And so I think that, again, there's just sort of like a 
water level improvement. 

I also think that the other dimension is today – And we've sort of been talking about it a little bit, 
right? Retool is a great way to build incredibly powerful frontends that are massively 
accelerating and really allow orgs to become more agile and allow engineers to be more 
productive, or technical builders to be more productive, more generally. But I think we're really 
constrained in some dimension to the frontend. And like we were talking about with that 
database provisioning, we've got a couple more tricks up our sleeve where we basically expand 
our application surface area, so to speak. And we become – You can think about the other parts 
of the application stack, data layer, service layer, validation layer, everything that we sort of 
talked about, being part of what we exposed in Retool in sort of a low-code way. And so that's 
sort of the other dimension of our product roadmap.

[00:44:48] JM: As far as multiplayer, how important is that to have multiple people being able to 
edit an app at the same time? 

[00:44:57] SK: Yeah, it's a really good question. I mean, what we're seeing today is that there 
are actually many cases where people are concurrently editing an application. Now, admittedly, I 
haven't done sort of the next level analysis to make sure that are they even touching the same 
components? Are they collaborating changes? Sort of what does that look like? 

But I think if you draw a parallel to code, you have a very clear structure for how you rebase 
code against conflicting changes. And in general, any application, including an internal tool, has 

© 2022 Software Engineering Daily 21



SED 1434 Transcript

multiple engineers. I think back to sort of the central tool at Lyft, which is an internal tool, I think 
had upwards of folks working on it. So the same way that you have sort of concurrency of edits 
in the repo. 

At the end of the day, you sort of want to support that. And you could do that exclusively through 
branching. But again, that's another place we have opportunity, because our branching structure 
doesn't really help you do a great job in resolving conflicts, because it's a visual editor, and yet 
it's a textual dif. 

But I do think that there is the potential for – And we see it today multiple people in an app, in an 
editor capacity at the same time. So displaying that, allowing you to sort of engage with that, I 
think is powerful. 

To some dimension, I think like imagine if you were in a given repo or a folder within a repo and 
you say, "Hey, three other people are actively making edits right on either the exact file you're in 
or three adjacent files." If you didn't know that, you might want to, right? You might want to 
collaborate with them and be like, "Hey, I'm curious on what you're working on." So that we can 
sort of better design. And even serving that top level of you can see other players in the 
sandbox and other people in your editor I think can be really powerful. So I think we have early 
indication in the data that suggests that it is important. But we also sort of to some dimension 
won't know until we build it. 

[00:46:42] JM: Just to wrap up, can you give me a sense of what would be the most ambitious 
place where Retool could go? Like if you imagine the platform in 10 years, what's a kind of 
crazy internal application that somebody could build? 

[00:46:59] SK: I mean, if you want to go really crazy, you could argue that that internal 
constraint is what you should relax, right? And like, can we really get to sort of a pixel perfect, 
highly performant application that you can be proud of shipping to your entire user base and not 
just sort of for internal consumption? 

So I think if you want to go 10 years out, I think that's sort of one thing. I think five years out, I 
would say that it really is, to some dimension, what I was saying about. If all the fundamentals 

© 2022 Software Engineering Daily 22



SED 1434 Transcript

can be sort of dramatically elevated – And firstly, I don't think we need to be that crazy, because 
I think even just the product that we have today is incredible, truly. And I think its opportunity is 
our largest. 

But if we could expand to the overall application stack and start to see these really 
compounding effects where people are building full stack applications within Retool, I think that 
would be wild, right? I sort of gave my example of taking some shortcuts. Again, I didn't have 
any sort of validation, rate limiting, access control, anything like that, queries, which is not the 
best way to build an app at scale. But if I could have built – If the moment you start to realize 
that, "Hey, I could actually build a full stack app in Retool in 45 minutes," which is sort of what I 
did. That's sort of a mind-blowing sort of moment. 

And today, we definitely do that for frontend development. But I think there are other parts of the 
stack where you still have to bring your own, so to speak. But we could apply Retool principles 
and primitives to there to make schema, migrations and updates really easy. We can make sort 
of the repetitious parts of server-side development, and com platform, or payroll on top of Stripe 
that much simpler, and really allow you to sort of have that full stack functionality. 

[00:48:36] JM: Well, Snir, thank you so much for coming on the show. It's been a pleasure 
talking to you.

[00:48:40] SK: Yeah, likewise. Thank you, and all the best.

[END]

© 2022 Software Engineering Daily 23


