
SED 1407 Transcript

EPISODE 1407

[INTRODUCTION]

[00:00:00] KP: If you're working on a proof of concept which you hope will help you eventually 
raise funding, it's fine to take a few shortcuts. Use the tech stack you know the best. Don't fall in 
love with your code. And when you start to experience growing pains, hopefully, you'll have the 
time to thoughtfully and carefully identify the bottlenecks and limits of your tech stack applied to 
the specific industry problem you are solving. 

Another great strategy is to simply copy the tech stack of a larger company with the confidence 
that what works for a bigger company will likely work for you. But if you're a company like Uber, 
there's no larger company to copy. Worst still, in comparison to most businesses, even a few 
minutes of downtime is pretty damaging for Uber. To successfully deliver a solution like theirs, 
one must identify bottlenecks and growing pains in advance, find solutions, and deliver the plan 
in a way that's invisible to customers.

In this episode, I speak with Uday Kiran Medissetty, Principal Engineer at Uber, about steps 
taken in their core state machine design. 

[INTERVIEW]

[00:01:06] KP: Uday, welcome to Software Engineering Daily.

[00:01:10] UKM: Hey, Kyle, good morning. Thank you.

[00:01:13] KP: To kick things off, can you tell listeners about how you got your start in software?

[00:01:19] UKM: So I got started in software maybe like 15 years ago. I think software is one of 
the few things that can have a broad impact around the world, and it's scalable, right? Like 
when you build something, you can immediately see the impact of that in any part of the world. 
And there's only a few things in the world that has this kind of broad impact. And the reason why 
I’m at Uber is also the same thing, because it's one of those things where through software you 

© 2022 Software Engineering Daily 1



SED 1407 Transcript

can fundamentally change one of the basic human needs with respect to transportation, with 
respect to getting access to transportation, access to the things that you need wherever you 
are. And I think that kind of magic can be delivered through software.

[00:02:06] KP: Absolutely. Well, it makes sense then that you'd be attracted to Uber. What in 
particular though made you want to go work at Uber?

[00:02:13] UKM: So when I was first trying to figure out where – I think, five years ago, when 
I'm trying to figure out where do I go next, I was trying to figure out what are some fundamental 
human needs where the opportunity size is so big? And I was also particularly interested in 
solving climate change. And transportation is one of the huge contributor to climate change. And 
what I felt was by accelerating the transition to shared mobility to a fleet of vehicles who can 
transport people by using things like Uber Pool where you can transport more number of people 
with fewer number of trips. And by transitioning this fleet quickly to electric. Then we can 
completely change how people commute around the world. And over time we also went into 
different kind of verticals like Eats and other things. 

But when I joined, we didn't have Uber Eats. So all we had was Uber, the rides part of the 
business. And I think the total opportunity size of transforming this segment around the world 
was so massive. So that fascinated me a lot. And after I joined, yeah, it was a roller coaster ride 
since then.

[00:03:28] KP: Yeah, there's something about uber that's interesting and how deceiving the 
product is. Anyone with a smartphone can install it and very quickly set it up and very quickly 
have a product brought to their home or a driver come to get them to take them somewhere. 
And it all feels very seamless. But it has to be the case that Uber's facing unique scaling 
challenges behind the scenes. Broadly speaking, what's the technology stack look like? 

[00:03:54] UKM: Yeah, absolutely. I think the point that you mentioned like for a regular 
consumer, it might seem very deceiving, right? You just click a button, a car is coming. And in 
fact, when I was I was joining Uber at that point, like one of my relatives said, "Oh, the app is 
working fine. Why do they need you? Why do they need to solve for?" But only once you get like 
the simplicity, the complexity is all about creating a simple interface and hiding all the complexity 

© 2022 Software Engineering Daily 2



SED 1407 Transcript

of making things happen in the real world. And Uber is one of those tricky scenarios where we 
are trying to make things happen in real world with users who we don't have full control over, 
and we are trying to make things happen, right? And that's where the tricky part comes. And like 
the riders might not show up on time. There might be traffic. There might be rain. And all sorts of 
things we need to account for to deliver that seamless experience every single time. 

And with respect to the code technologies that we live in under tech stack, when I started six 
years ago, primarily most of our backend was in Python and Node. As and over time we 
transitioned to Go and Java-based services. Most of our data stores is key value-based. We 
were using Cassandra. And now we have an in-house storage system called [inaudible 
00:05:16], which kind of provides similar guarantees for. So that's kind of our main language 
and storage choices that we have so far. And we can go into more details through the interview.

[00:05:28] KP: Absolutely. One of the key aspects of that technology stack is the core state 
machine. I know what a state machine is from broadly in software engineering. Can you 
describe what Uber's core state machine is?

[00:05:43] UKM: Yeah, absolutely. So Uber's core state machine and the platform that handles 
the orchestration for all of the ongoing orders, jobs, and active user sessions, we call it inside 
uber the fulfillment stack. And what that means at the high level, when a consumer clicks, get a 
ride, or get food, we capture that user's intent and then we fulfill it by matching it with the right 
set of providers. And for this end-to-end lifecycle to happen, we have a set of entities, whether it 
is orders, jobs, job offers, user sessions. Each and every entity is modeled as a state machine. 
And in a state machine in a regular sense, like we have a trigger. And then the state machine is 
in a particular state. It will react to that trigger and figure out which are the possible transitions. 
And in our case, we have – Let's say when a driver begins a trip, we need to make sure the 
entities corresponding to the job. And for that particular session, go to the right state 
appropriately. 

And if you think about the basic example, like an UberX. In that case, we have a transportation 
job entity that can comprise of two waypoints. And a waypoint represents a location and a set of 
tasks that can be performed at that location. And in a transportation job entity, imagine there's a 

© 2022 Software Engineering Daily 3



SED 1407 Transcript

pickup waypoint and a drop off waypoint. And imagine if you had multiple destinations. At that 
point, along with pick up and drop off, we might have certain via waypoints in between. 

And on the similar side, for a provider or for a driver or delivery person who is on active session, 
they are doing more than one trip at the same time, right? And for them, they have to see all of 
the waypoints that they have to perform in a chronological order. And all of this orchestration is 
handled by the fulfillment stack. Making sure, "Okay, when you request an order, creating the 
right kind of jobs, right kind of waypoints. Assigning it to the right kind of providers. Making sure 
we generate the plan for that provider with the right kind of waypoints and order them in a 
chronological way. Adding the right set of tasks in those waypoints." If you have alcohol delivery, 
at that point, for that drop of waypoint, we might also need to add a signature collection task. 
We might need to add a proof of ID task. And those are the things that needs to be orchestrated 
in these state machines.

[00:08:13] KP: We've bumped into a similar problem. You've described it in an elegantly simple 
way. But there's so much to it. Even just to say, "Oh, there's some waypoints along the way." 
There must be mapping services that are keeping updated about detours. And just so many 
services to kind of fit together. Do you work with like a microservice architecture from that point 
of view? or is it some monolith? What's Uber's general way of looking at how you connect all 
these services together?

[00:08:39] UKM: Yeah. So Uber is completely into microservice architecture. And we have a ton 
of microservices across the company each handling a unique logical functionality. And for the 
fulfillment stack itself, we have the microservices that handle these core state machines. 
Previously we used to have just two microservices. One for handling all the jobs and one for 
handling all the supply state machines. And in the new architecture we have for every entity, we 
have a state machine. And we can deploy that in a modular fashion, whether it's in a single 
service or multiple services. And along with this, we have a bunch of uh services that consume 
the events from these state machines and expose geospatial indexing and expose some rules 
engine and expose some metrics, expose some search interface. So these are inside the 
fulfillment stack. Outside of this we interface with microservices, from fares, pricing, matching, 
maps, which handle their part of the whole puzzle. And ensure, we fit together all of these things 
to deliver the end-to-end experience.

© 2022 Software Engineering Daily 4



SED 1407 Transcript

[00:09:55] KP: So the state of all of those entities, I’m sure there are some interesting 
challenges about how you store and persist that that we'll get into. There's also the logic of it. 
Like a driver who already has two or three passengers can't possibly have more if the vehicle 
doesn't have seats, that kind of thing. Is that part of the state machine service? Or is the service 
a little bit lower level than that logic?

[00:10:19] UKM: So how we try to organize our functionality within Uber is we think of a layered 
architecture. The functionality – The business logic that is purely around transforming the 
particular presentation layer, like even for a rider app. We have API interfaces. We have mobile 
interfaces. We have web interfaces. And each of them have their own presentation surface, 
which tries to take the data from all the platforms. Transform it to that particular user flow. And 
then we go get into the product layer. In that layer, the functionality is how do we orchestrate 
across various platforms? For example, if I want to do a pickup trip. I need to orchestrate across 
the risk. Do some risk checks. I need to go to payment. Do some payment checks. Need to go 
to some other platform. Do some other checks. And then we create the trip required. 

And once we get into the business platform layer, that's where we have the state machines. And 
we try to minimize that logic inside the state machines to the fundamental things that are 
needed for the shape machine to function. Like let's say if I have a constraint that a rider cannot 
be on two trips at the same time. This functionality, like that is essential part of that shape 
machine. The rider should not become active until – If they're only on a trip, we cannot accept 
one more trip. So that check should be in the place where you have the state machine logic. But 
a lot of other functionality that does cross platform orchestration, that does presentation 
orchestration, those are in layers above. So that way we try to make sure that you know we 
have a good reason behind any logic that goes into each layer.

[00:12:05] KP: When updating the state, especially in like an Uber Pool situation, where you 
have a driver with a device, and I presume you're still in communication with all of the riders' 
devices as well. And they're all probably on a shaky connection depending on where you live. 
They might report differences. Do you face any consensus style problems in building the state 
machine?

© 2022 Software Engineering Daily 5



SED 1407 Transcript

[00:12:27] UKM: Yeah. Ultimately, the state, especially – That's a really good point, right? Most 
of Uber's users are using mobile devices. And sometimes they might be in choppy networks 
where they might not have the up-to-date state. But ultimately, the source of truth is the 
backend. And if they might – A single participant in the system, they might have a stale view. But 
the moment they have a good – Like their network becomes active again, they will fetch the 
latest state from the server and then they show the right information. In fact, maybe a driver has 
started the trip. But a rider's phone is currently inactive. And the moment they get the network, 
they see that, oh, the trip is active again. Like the rider is on trip. So that's when the riders' 
device will get updated. 

And at a particular instant, given client interface might be stale. But the moment the network 
becomes active, they fetch the latest state from the server. And the state machine and the 
storage backed by that is this ultimate source of truth of what is the state for a given user. And in 
case if one of the users who's on a stale state performs any action, that action will be invalid, 
right? Because maybe the server has already progressed to a different state and then that 
request will error out. And then by that time, their interface will be updated and they'll know, 
"Okay, this is why this request could not be performed." 

[00:13:56] KP: So all of this service has to be provided in real time. You don't have any other 
choice really. How does that decision impact the way you build the system?

[00:14:04] UKM: Yeah. So that is a unique asset, because like we have millions of concurrent 
users who are interacting with our system, doing various kinds of operations, whether it's going 
online, going offline. The backend generating offers for particular trips. The drivers accepting 
offers, completing trips. The riders requesting and cancelling trips. All of these are real-time 
operations. We don't have the flexibility of taking this transaction and then letting you know later 
about what was the result of that. It's a real time operation. The user is waiting on the response 
from the server. And we need to return the response to them whether it is valid or invalid within 
a reasonable period of time, because the user is waiting on that particular action to complete. 

So that means the systems that we built, they need to handle high concurrency. They need to 
be real time. Their latency has to be acceptable. The user should not – At least the person 
perceived latency from the user point of view, they should not have a laggy experience. And that 

© 2022 Software Engineering Daily 6



SED 1407 Transcript

makes it really tricky. And the system has to be transactionally correct, right? If I begin a trip, we 
have to be very accurate with respect to at what point the trip has started and what was the 
timestamp, what was the location? And let's say if we did not record this transaction correctly, 
then the entire fairs will get messed up. The rider experience will be messed up. So there's a lot 
of implications if we mess it up. And that means once a transaction has happened, we need to 
make sure that it is consistent from then onwards. 

[00:15:46] KP: In my career, I’ve been in a couple of situations where I had to recommend a 
technology to adopt, like a database or something like that. And I get healthy pushback where 
people will say, "How do you know this is going to scale for our business?" And a trick I’ve like to 
use is what I call the big fish strategy. Find a company much larger like Uber or Netflix and say, 
"They're using the technology. They're 10 times bigger than you. Surely, if there's a bug in it, 
they're going to find it first." But there aren't any companies ten times bigger than Uber. Do you 
have to collaborate with partners to get on to new technology or to do bug prioritization, things 
like that? I guess are there any challenges being a leader or at the forefront of pushing the limits 
on technology?

[00:16:31] UKM: Yeah. I mean, absolutely. I think that's also an advantage, right? Like if we are 
at the forefront of adopting new things and taking new things, we also will get that level of 
support from the partners or from those teams. And like, I think, at least in the last six years, no 
matter which technology choice that we chose, we would collaborate very closely with that open 
source team, or whether the third-party provider, or whether the company. And they would give 
us the right kind of support because they would also know that if we can solve their use case, 
that would be a good proof point for their system as well. So I know we have many instances 
like that where we collaborated super closely with that particular platform team even from other 
companies, and then made sure that we can customize their software to scale to our 
requirements. 

[00:17:25] KP: And can we do a deep dive on some of the requirements? We've talked about it 
being real time. But there's always going to have to be tradeoffs. We have the CAP theorem to 
face and things like that. Maybe you want some sort of transactions, or maybe that's not 
important. What are some of the core features you're looking for when seeking technology?

© 2022 Software Engineering Daily 7



SED 1407 Transcript

[00:17:42] UKM: Yeah. See, for our core, state machine stack, and for the core storage system. 
I think some of the requirements that we want to make sure is, one, with that, is availability, 
whether single zone or single region. Even if there's intermittent infrastructure failure, it has 
minimal impact on availability. Because, ultimately, this is one of this core tenant that has to be 
from Uber stack, because users are in the real world doing operations. Like, in fact, let's say if 
you're on the street trying to go somewhere, and if the system is down, like then you are 
standing there. So we need to guarantee at least four nines of availability. We need to have 
strong consistency. And we have operations on a single row, multi-row, multi-row, multi-table, 
and we need to make sure we provide strong consistency within a region and across regions, so 
that even if there's an application failover from one region to other region, we don't have any 
user perceived inconsistencies. Given we are in – And we are not providing one single vertical, 
right? Like we are building the world's largest super app. And that means we are doing 
transportation delivery and all sorts of use cases. And for every country, that means our 
programming model has to be – To have clean abstractions and simple programming models so 
that we can have good product velocity. We need to make sure we don't have any data loss 
whenever there's any infrastructure failures. We need to have support for secondary indices, 
change data capture. We need to have good latency across. We need to have good latency 
SLOs. We need to make sure our infrastructure is very efficient, because as we scale our 
system 10x, every cent that we save is really important, because we are in low-margin 
business. We need to make sure our system is elastic. 

If you think about Uber's workload, it's not steady throughout the day throughout the week. It 
goes up and down at various points in time of the day and week of the day, and also month of 
the year. And sometimes December is probably busier than some other part of the year and so 
on, right? And from our maintenance point of view, we need to make sure that we have low 
operational overhead, because we are constantly adding new products, new features, new 
cities. So we need to make sure that we can operate the entire system in with low overhead.

[00:20:08] KP: And I know you've gone through a recent rebuild. Can you talk a little bit about 
the motivation to kick off a rebuild? Were there ceilings you were hitting? Or was there some 
other motivation?

© 2022 Software Engineering Daily 8



SED 1407 Transcript

[00:20:17] UKM: Yeah, absolutely. So this is one of those things which we invested more than 
two years in this. And even before we started creating the platform, we spent close to six 
months trying to understand what should be the architecture that we should invest for the next 
decade and what are the pain points that we have seen so far? So if you have to summarize 
some of the limitations that we were facing before. So one is around consistency. And when the 
previous system was built back in 2014, the entire architecture was built by trading of 
consistency for availability and latency. And then consistency we would achieve as a best-effort 
mechanism. 

So for example, since we're using Cassandra as a storage, now, which is a NoSQL system, 
which doesn't guarantee consistency, which is more tailored for availability and horizontal 
scalability. Now, if let's say – But in our system we have multiple concurrent operations, right? A 
rider can cancel and a driver can begin trip at the same time. And at that point, how do you 
make sure you can handle these two transactions that are coming into the system, which are 
operating on the same set of objects? So to deal with concurrency, we used a framework called 
Ringpop, which allowed application level serialization. 

So what would happen is, for a single job entity, for example, all of the update operations for 
that entity would be serialized to a single worker. And at that point, in that worker, because it 
was a Node.js application, it was a single-threaded execution environment, and we had a 
queue, a serial queue, and an in-memory lock on the object. So then that would make sure that 
at any point in time, we only have one update operation in flight for a given object. That way we 
avoided the concurrency issues by eliminating concurrency by having this queue. But this is a 
best-effort mechanism. Like, Ringpop, if you're doing an application deploy. At that point, we 
might have a split brain where two different workers might say that I own the same entity. At that 
point, we might end up doing updates from two different workers at the same time. And then that 
would end up with consistency issues. Or it could also happen if you're doing region failovers 
from one data center to other data center. At that point in time, since we are using asynchronous 
replication from Cassandra, then the other data center might not be the state that is not 
accurate. And then we might be overwriting to a wrong state. And that would lead into many 
complex issues. That would be super hard to debug.

© 2022 Software Engineering Daily 9



SED 1407 Transcript

The other thing is around multi-entity rights. Like when we started, the number of multi-entity 
rights, we didn't have that much back in 2014, 2015. Like Uber Pool also was a new thing at that 
point. But if you think about some of the use cases that we have now where we have like a 
batch offer, a driver has to accept three trips, four trips at the same time. That is an operation on 
four different trips and a single supply entity, which is like five entities at the same time. And then 
we started exploring a pattern called saga pattern, which was doing application level transaction 
orchestration, which will make sure, "Okay, I do propose on all of these entities." And then once 
all of them accept, then I commit all of them.

Basically what we were doing at the time was we were doing a lot of what we used to think of 
like typical database level functionality at the application layer and trying to overcome the 
shortcomings of not having a storage system that would that would support both horizontal 
scalability and consistency. And because we had this layers of logic, we also were hitting with 
scalability concerns. How Ringpop used to function was it was basically Gaussi protocol. And it 
needs to understand who, and it was peer-to-peer [inaudible 00:24:09] protocol. And then if 
you had a number of – If you increase the number of workers in your application cluster, then 
the amount of work needed to make sure all of the workers are in sync with respect to the 
ownership information. That itself was taking a good amount of CPU. So then we are getting 
scalability limits with their architecture. 

So these were some of the things. Beyond this, like essentially, at that point during Node.js. 
Now we're in Java and Go. The language itself, like almost all the platforms since then had 
moved to Go and Java. And this was one of the last platforms that was still in Node.js. And that 
was also causing issues for engineers, for other teams, because it's a tax not just on us but also 
every team, because now they need to support Node.js environment. And that also made it 
super complex.

[00:24:58] KP: So you have a service then that a lot of people rely on. How do you orchestrate 
the roll out of a new system and coordinate with all your different consumers?

[00:25:07] UKM: Yeah. So I think some – In software, it's sometimes more than coming up with 
the new architecture, coming up with the migration architecture is harder. If it's a green field 
system, it's always super easy. Like you don't have any constraints. You can come up with like 

© 2022 Software Engineering Daily 10



SED 1407 Transcript

the cool architecture that you want. But the complexity is always about like we are supporting 
these 100 different products. They have these nuances. And they were built like this over the 
last few years. How do we – Without any user having any impact, how do we migrate to the new 
stack? 

So we spent a lot of time trying to understand all of the product flows that were supported by the 
existing stack. What were the nuances in them? And what is the best rollout strategy? So we 
picked a city-by-city rollout strategy. Like we created a – So we had a roster of around 150, 200 
features that were live that dependent on our platform. And then we did an intersection of that 
with all of the Uber operational cities. Then we kind of went from the cities with the least number 
of features and then cities with the – Two cities with the most number of features. 

And even in that, we first picked one or two cities in each of those buckets so then we can get 
guarantees. Then before even we would roll out, we had set up complex shadowing mechanism 
so that we can shadow every request response from the primary stack and shadow stack and 
compare the differences. And that also is complex here, because if the requirements and 
guarantees provided by one stack and other stack are different, and since each – And the 
output of one operation affects the output of the next operation because the state machine on 
both sides. If one operation on the shadow stack fails, the second operation and every other 
subsequent operation will not catch up. So then it will affect how your shadow also. So all of 
those kind of nuances and how we try to set up the shadowing. But ultimately, we go to a point 
where we had a good shadowing system that would give us good insights. Then we went from 
least complexities to most complexities. Rolled out feature by feature. Verified that in shadow 
environment. And then rolled out few cities with those features. Verified that in production. And 
then it took close to a year plus for us to roll out all the cities. 

[00:27:27] KP: So I believe you said the original system was Cassandra-based with the node 
kind of a cube system. What's the new technology based on? 

[00:27:37] UKM: So I kind of went through the requirements, right? And when we were thinking 
about what should be the system for the next few years, we were exploring multiple options, 
whether we kind of move, do some update. Like still use NoSQL, but use some other 
technologies and maybe like not using pop and use something else. Or use sharded MySQL. Or 

© 2022 Software Engineering Daily 11



SED 1407 Transcript

then the other option that you're exploring was NewSQL, and some kind of NewSQL way to 
reach this. Because this is one of those patterns that provides us both horizontal scalability and 
also ACID guarantees provided by SQL-kind of databases. 

So we experimented with a bunch of NewSQL-based storage systems, CockroachDB, 
FoundationDB, Cloud Spanner. And ultimately we used Google Cloud Spanner, which was a 
new SQL kind of storage system, because it was a managed solution and it would give us a 
faster way to move to NewSQL. At least move the application to a NewSQL-based storage 
pattern. And we had [inaudible 00:28:38] layer so that the application developers don't have to 
worry about the nuance of storage system. But the application developers build in a NewSQL-
kind of storage environment application built on top of that. And we used Cloud Spanner as the 
NewSQL backing device. 

[00:28:57] KP: And do you have a good definition or just a working definition for the difference 
between NoSQL and NewSQL? 

[00:29:04] UKM: Yeah, absolutely. So at least how we think about that is if you think about 
traditional SQL-based databases, their main USP was that you get ACID properties. And most 
of the e-commerce-based system, e-commerce systems, use that, right? Because if you're 
using any natural applications, you need to guarantee ACID compliance for any transaction that 
happens. So then SQL -based systems relied on relational tables. You would have strict data 
schema, and for storing all of your transactional data. 

But they were hard to scale out if you have millions of users and then you would have to think 
about your own shard. Like then you have to go over to shard MySQL. You'll have to manage 
your sharding starting strategy. And like there's a bunch of raw issues with that, right? And then 
NoSQL-based databases emerged to solve this kind of scalability issue. But they confirmation 
on consistency, right? So you would focus on availabilities of consistency. And then a lot of key 
value stores like Cassandra, DynamoDB [inaudible 00:30:04] like MongoDB, columnar issues 
HBase. All of these systems kind of emerged that primarily focused on building internet scale 
applications that handle millions of users workload with good end-to-end latency. And that was 
the prime reason why it was the natural choice for even fulfillment style back in 2014. And in the 
last a few years or so, now we see a new trend with a NewSQL-kind of storages. 

© 2022 Software Engineering Daily 12



SED 1407 Transcript

And what NewSQL-based systems provide is they provide both the ACID guarantees that SQL-
based data stores used to provide and horizontal scalability that NoSQL storage systems 
provide. So that was a good – That was kind of what we needed in a new stack. So that's why 
we took the plunge to NewSQL-based storage. 

[00:30:55] KP: And what made Spanner the ideal choice? There's a lot of options out there. 

[00:30:59] UKM: Yeah, absolutely. So as I said, like after we went through all the requirements, 
we evaluated various options. We created benchmarks. And we benchmarked a bunch of 
solutions. during at that point in time, I think Spanner was the most scaled managed solution, 
because we didn't have any precedent within the company at that point in time of any system 
using NewSQL-based storage. So if we had to take any open source and if we have to 
protectionize within our environment, it would have delayed the overall migration effort. So we 
had to choose some managed solution. Because along with this, we also have to change our – 
We have to move from Node.js application stack. We have to move to a new programming 
model. We need to change our data model to support a bunch of new features that we needed 
to unlock in this year and in the upcoming years. So we have to decouple. Like we have to 
accelerate the application migration. So we needed something that provides a managed 
solution for NewSQL. And that's why spanner was – Like we ultimately settled on Spanner. 

And within Spanner, they provide both a single region and multi-region. So we chose a multi-
region configuration that guarantees five nines of availability and strong consistency. They also 
provide external consistency, which is strictest concurrency control guarantee for transactions. 
They also had other features like a point-in-time rates and bondage stillness rates. They did 
detection for deadlocks automatically and a bunch of other features that we felt were okay. We 
could build an application architecture around this. And that's why we went with Spanner. But 
one is, unlike most common scenarios in our case, we had our application stack running in 
Uber's operational regions and it would connect to Spanner that is deployed in JCP.

[00:32:58] KP: Are there any challenges around data center lag or anything like that? 

© 2022 Software Engineering Daily 13



SED 1407 Transcript

[00:33:03] UKM: Yeah. So any cross data center request obviously it will add some additional 
latency. So we try to optimize at multiple layers at the networking layer. We work with the 
networking team from uber and Google networking teams to set up the identity connects, to set 
up the right redundancy. To make sure that we can have strong foundation there. And at the 
application layer, what we try to do was to reduce the number of round trips for a given user 
request. Let's say a driver accepts an offer. If that requires – If without optimizations, if that 
required a read of three different entities and an update to three different entities and begin 
transaction and in-transaction. So if we did a bunch of optimizations, we had sessions prepared 
ahead of time. So that when a request comes, we didn't have to prepare a session. So that 
would save one round trip. 

For a given user request, we looked at the data dependencies and we used to coalesce the 
transaction. So we would not do a round trip to Spanner until we needed to store that state even 
within a transaction. So that way we reduced the number of round trips back and forth. And 
ultimately our benchmark was the final user level – Application level latency should be better 
than what we had before. And that way we were getting more transactional guarantees that the 
previous system was not able to handle without sacrificing the latency. And we were able to 
achieve that with all of the optimizations and [inaudible 00:34:39] even payload compression 
and all sorts of things to reduce even further.

[00:34:47] KP: At the point when you got it rolled out in the shadow state alongside your 
existing infrastructure, before you got into some of the performance results, did you have any 
expectation about what KPIs were going to be important or maybe what improvements you 
expected to see? 

[00:35:03] UKM: At the application layer, one of the main things that we're monitoring was 
obviously the availability. Not just at Spanner server level, but from the application layer, which 
is creating and completing transactions. Because we have multiple hops from the application 
layer. We have to go through networking stack and through Google frontend, Google Spanner 
frontend, Spanner backend. We're looking at the application level availability from the client side 
that we monitor. We're looking at latency not just from – And latency from both of the Uber 
regions, because the networking paths from Uber west coast region and east region to Spanner 

© 2022 Software Engineering Daily 14



SED 1407 Transcript

leader region is different, right? And the latency that we get from both of these regions is slightly 
different. So then we need to monitor the performance from both of the agents.

Obviously, we're looking at the – Let's say we begin trip operations. What was the error rate and 
latency at that layer, like, from the API that the mobile app used to call? Because, ultimately, that 
is the final API that we would look at. So all of the mobile APIs, we would look at the error rate 
availability before and after and also the error rate at the Spanner client layer from our 
application side and also the Spanner server level. And we would not roll out if we were not 
getting these – If our latency is worse than the previous one, or if the availability is worse than 
the previous one. 

And I also mentioned the shadow stack. So they will also monitor at the property level for both 
for responses from both primary and shadow stack. What were the number of divergences? And 
then we would look at we would only roll out if we are confident that all the property divergences 
that need to take care of are covered and we had a high bar for that.

[00:36:55] KP: And as you've gotten past that kind of proof-of-concept phase and rolled this out 
more extensively, how's that process gone? 

[00:37:02] UKM: Yeah. So I think that was probably the most challenging part of the whole 
project. And especially if you think about our stack – So let's say a user, a driver went online. 
And they are online for multiple – Like they could be online for multiple hours. And if they went 
online in the old stack, their state is stored in Cassandra. And if they went online in new stack, 
their state is stored in Spanner. And these are storage systems with different guarantees and 
different things, right? And we cannot have a storage sync across these two systems. So we 
needed to create a migration strategy where we can gradually roll out users and ongoing trips 
from one stack to the other stack. So we built an interceptor that would pin a user session or a 
trip to a particular stack. And then until the trip is completed or until their session is done, their 
request would be pinned to that stack. And once they went offline and they came back online, 
then their request would go to the new stack. So that way, in fact, like for some period of time for 
a given city, both the stacks would be operational and then you would see users and trips go 
down from one stack to the other stack over the next few minutes and hour. And this was kind of 
the migration setup that we did. 

© 2022 Software Engineering Daily 15



SED 1407 Transcript

And then as I said before, then we tried to go from least complexities to most complexities. We 
did in fact even on the ground testing, we pinned some test riders and test drivers. Like when 
they were taking trips in the real world, we monitored each and every operation. That was like 
before we did the first city. Then we did the most simple one simple UberX city. We just had few 
features. Looked at all the metrics, all the error rates, all the end-to-end operations, all the bugs, 
all the contact rates from the from that city. Then we kind of progressed from that to from one 
city to cities with just UberX plus simple Uber Eats cities with UberX, plus airports. It is with 
UberX with airports and some other kind of features. So that we kind of gradually expanded the 
feature set. And once we covered a good bunch of small cities and big cities with different 
feature set, then we had a scale out phase where, okay, now we need to scale out 100 cities at 
once. And then we had to build a lot of custom tooling to measure the absorbability of each and 
every city at both application metrics and business metrics in the old stack and the new stack 
like an hour before the migration and hour after the migration and compared. And if we see any 
differences, then we would either decide if we need to roll the city back. Maybe we didn't fix 
some flow, and we missed some flow. And because of that, it's causing rider cancellations to go 
up. So we needed to roll that city back to the old stack. Debug that scenario and then roll it 
forward in the next batch. So we had – Essentially, every two weeks, we were rolling out some 
cities and going through this operational process until we finalized the final set of cities. 

[00:40:22] KP: And is the project – Do you consider it fully rolled out at this point? Las the old 
service been decommissioned?

[00:40:28] UKM: Yeah. And right now it is fully rolled out. The old service is fully 
decommissioned. And now we are 100% on the new stack. And now we are in the process of – 
Now that this first leg for us was to, "Okay, how do we move all of the existing products that was 
supported in the old one?" And as we were rolling out, we already had encountered some new 
features that only the new stack could support. So we had a period where if for any new 
features, they would only go in the new stack. And we would prioritize rolling out the cities in 
which we would need to experiment those new features. So that way we don't – Not every team 
plays a dual platform tags and like they don't need to implement in two stacks. They only 
implement in the new stack. A lot of new features that we could not build in the old one, now we 
are able to unlock. And over time uh the goal is we want to support many different verticals, not 

© 2022 Software Engineering Daily 16



SED 1407 Transcript

just for transportation, both in transition mobility. Different fulfillment types, different verticals, as 
we go into grocery, alcohol and all kinds of retail. Like there's some new fulfillment flows there. 
And even on the mobility side, like you have seen Uber reserve. It's a completely new product 
that we launched last year that was fully built on the new stack. And a bunch of new features 
that were already built on the new stack that we could not have built in the old stack where we 
had to do all signs of crazy hacks to even build in the old one.

[00:41:56] KP: What is it about the new stack that makes it possible to build these features with 
greater ease? 

[00:42:01] UKM: So I think along with all the things at the storage layer, we spent a lot of time 
at the application layer trying to create a modular programming model that will give us the 
flexibility to build different kinds of building blocks that can be used in different features. For 
example, in the previous one, we didn't have a good way to create new kind of tasks for a 
particular waypoint. Now we completely platformize that component. So then now, for a 
waypoint, we can attach different kinds of tasks and we can create different kind of task flows 
inside that waypoint. What that allowed is if you want to add pin verification task before you 
begin the trip, you can easily add that new task. And then once one featurity match that task as 
a component, now maybe risk team wants to add pin verification for some other scenario. So 
they can leverage the same building block in their particular feature. So we try to build as many 
building blocks as possible that can be leveraged across multiple different products. So then we 
have that leverage aspect. And then programming model helps us build these kinds of building 
blocks more and more. So then we create a repository of these building blocks that can be used 
in different mix and match scenarios and create different product experiences on top.

[00:43:22] KP: Well, with the platform delivered and the benefit of hindsight, do you have any 
closing thoughts on what the major advancements were? Is it obviously unlocking new 
features? Are there scalability and consistency wins as well? What are some of the main 
takeaways? 

[00:43:37] UKM: So I think one is around consistency and like at the end infrastructure layer, 
the consistency and scalability. Now we have a platform that is horizontally scalable. In fact, it's 
a living, breathing thing. For throughout the day and throughout the week, the number of 

© 2022 Software Engineering Daily 17



SED 1407 Transcript

storage instances we keep increasing and reducing. And it is completely auto scaled system, 
which is horizontally scalable to whatever scale that we need. And because we have strong 
consistency, it makes it really easy to reason about the system. And when some things go 
wrong, you know if something has happened. That fact is done. Like you don't have to guess, 
"Oh, did the system record this fact or not? Maybe there was some inconsistency because of 
which this operation did not happen." Now you can look at the system logs and you know for a 
fact that, okay, if this event is emitted, we know that the system will never be an inconsistent 
state. And at the application layer, we duplicated Node.js. We have Java. Now we use – We can 
leverage all of the new libraries and frameworks that Uber platforms build for Java services. 
That will also reduce the amount of operational overhead that we had in operating a Node.js 
service. Now we can leverage a breadth of knowledge across Uber in operating the service. And 
at the application layer, we completely revamped the data model. That helped us build a lot of 
new features. And a lot more are in the pipeline. So that's also a huge benefit. I think one more 
side effect that we got out of all of this was reduced infrastructure in spend, that at least at the 
application layer we reduced the number of application workers needed by a lot by significant 
percentage compared to the previous stack.

[00:45:33] KP: Very cool. Well, Uday, thank you so much for coming on Software Engineering 
Daily and sharing your work.

[00:45:38] UKM: Thank you so much. It was nice talking to you, Kyle. Have a good day.

[END]

© 2022 Software Engineering Daily 18


