
SED 1408 Transcript

EPISODE 1408

[INTRODUCTION]

[00:00:00] KP: When businesses share a common need, such as payroll, commercial offerings
can compete for market share with software solutions that easily adapt to a variety of
businesses. Not all tasks can be easily commoditized or standardized. Take content moderation
as an example, every site that accepts user generated content is likely to have a unique and
nuanced process to match their internal definitions of allowable content, and procedures for
what to do with non-allowed content.

Many organizations create custom software solutions for their unique tasks. When they're
central to the core mission, that's probably the right choice. When they're not, such projects are
often a distraction for an engineering team that is already stretched too thin. That's where
solutions like Flowdash come in. Flowdash is a low code, no code offering that enables
businesses to rapidly develop custom solutions for tasks such as content moderation, and
others. In this episode, I interview Nick Gervasi, co-founder and CTO of Flowdash.

[INTERVIEW]

[00:01:05] KP: Nick, welcome to Software Engineering Daily.

[00:01:08] NG: Thanks for having me.

[00:01:09] KP: Before we get into Flowdash, can you tell me a little bit about your history in
software engineering?

[00:01:14] NG: Absolutely. So, I think I first started my journey into software when I was in
elementary school and my father showed me a basic interpreter, was Quick Basic at the time.
And he wrote a couple of digits on the screen and added them together. And I was just in
shocked by how quickly the computer gave me the answer. I said, “Well, what if we use bigger
numbers? What if we use bigger numbers?” And I was just like, amazed by what the computer
could do. And I think that just like jump started my journey into software.

© 2022 Software Engineering Daily 1

SED 1408 Transcript

So, I've always been a self-taught programmer. I started with Quick Basic and MS DOS, moved
on to Visual Basic, I loved video games. So, I taught myself C, C++, Direct X, OpenGL. I got into
web programming a little later in my career. And yeah, have used several frameworks in
production like ASP dotnet, most recently, Ruby on Rails for the past eight years.

[00:02:03] KP: Let's get straightaway into Flowdash. For listeners who don't know about the
product, can you tell us what it is?

[00:02:08] NG: Absolutely. So, Flowdash is an ultra-customizable task management platform
that's built specifically for repetitive manual tasks. In our experience working at startups and
talking to a lot of startup founders and employees, we all know that engineering resources are
often tight. And the engineering resources you do have, you want to spend on external facing
product. That being said, there's always a lot of internal processes, internal tools, manual work
that your ops team, your support team, your customer success team works through. It's either
things you haven't automated yet, it's things that can't be automated, it's things that you want
user intuition, or human intuition as part of the the loop.

So, we built Flowdash to help engineering teams build those kinds of tools faster for everything
from doing KYC and AML, of New FinTech accounts to things like claims processing and
education for health insurance companies. Just helping make it easier to build those manual
workflows with less code.

[00:03:07] KP: So, is Flowdash a no code or a low code? Where do you see it amongst the
popular buzzwords of the time?

[00:03:13] NG: That's a great question. I put it somewhere between no code and low code. I
think it's a bit of a spectrum. And the reason I say that is, I think a lot of the tools in the market
are either targeting helping making developers faster at their jobs, which are more of the low
code variety, or enabling people who otherwise would not have been able to build applications
to do so. And that’s kind of the no code bucket. The reason I put us a little bit in both is we're
actually acknowledged that for a lot of these tools, there's two parties involved, both equally
important. There are engineers that have to develop and maintain these tools and connect them

© 2022 Software Engineering Daily 2

SED 1408 Transcript

with upstream, downstream systems, databases, API's, et cetera. But also, the ops teams that
use them every day and the ops managers that manage those teams.

What we wanted to enable with Flowdash was to allow it and make it easy for engineers to
connect these workflows with their systems. But to also enable ops teams to tweak those
workflows, add things like approval processes, or add escalations or SLAs, or I want to be
alerted on Slack if something's been stuck in a particular stage for two days. Those are the
kinds of changes that we enable ops teams to make with no code in our platform, while a lot of
the integration with downstream systems and API's are more developer focused and as a result
are a bit more of the low code variety.

[00:04:29] KP: So, how are users typically interacting with Flowdash?

[00:04:35] NG: Well, I'd say even the word user is a bit nuanced. We typically have two primary
users in the product. We have developers who will be the ones generally to make the
purchasing decision for Flowdash at their organization. Generally, it's replacing the need for
them to build something bespoke from the ground up. So, the value there is that they can spend
a ton less time implementing Flowdash then building something brand new.

The way they'll interface with it is setting it up, connecting it with their database and other
systems, potentially building a few workflows as proof of concept. And then generally, they won't
use it day to day. They now freed up a tons of dev resources to focus on the core product.
Operations team is the one that would use it every day, say it's a FinTech company, and they're
using the product to flag suspicious transactions that require additional review, an ops person
would be alerted that one of these transactions came in would jump into Flowdash, see kind of
some of the parameters of the transaction information about the customer, maybe past
purchases, and ultimately make a decision whether to approve, reject the transaction, or maybe
reach out to the customer for more information.

[00:05:40] KP: And is this handled transactionally? Or how do things fit together from like, an
operational perspective? I guess, in terms of like workflows, so what is that unit of work? How
does it get assigned? And does it have status and get complete? What’s just the general flow of
one of these tasks?

© 2022 Software Engineering Daily 3

SED 1408 Transcript

[00:05:56] NG: Yeah, that's a great question. So, I mean, the unit of work really depends on the
specific use case and specific company and industry. And that's what's really powerful about the
platform is its its general purpose, and you can use it for everything from healthcare to FinTech
to insurance use cases. We even have a video production company using it to manage their
production pipeline. So, unit of work typically gets into one of our queues. You can either push
via API, we can pull from a database, you can connect to Zapier and create tasks on various
triggers. And then once it's in the workflow, then someone in Flowdash will jump on, they'll either
self-assign, or we have some auto assignment features. We have some round robin assignment
features kind of depending on the scale of the team, but it's all customizable. And then from
there, they can jump into a particular task, review some of the information. There's commenting
and notifications, so they can collaborate with other folks on the team. And ultimately, they're
moving it towards resolution. Resolution just means something different depending on each use
case.

[00:06:58] KP: So, in putting something like this together, we've talked about engineers building
the flows, but I'm also hearing a lot of business requirements, or maybe specific things to my
company that I need to consider in building one. What's the typical collaboration like for a team
putting a flow together?

[00:07:14] NG: Yeah, so maybe a concrete example would help. Say, for example, we took that
that suspicious transaction example, I gave earlier for, we're building a FinTech product, we're
allowing payments to be made between various parties. Occasionally, a payment comes up that
just is above what we're used to seeing. Maybe it's over a certain threshold. So, what we might
do as a developer is flag it as blocked in our core system. We actually won't make that payment.
But we can also simultaneously post task over to Flowdash to have someone from the risk team
manually review that payment before it goes through.

Now, at that point, it's kind of in the ops world. The way that the risk team wants to structure
their process, the way they want to assign things across people, the way they want to escalate
things, maybe even escalate to a higher level of risk person, if it's over a certain threshold, or
looks riskier than other things. All of that can be conditionally defined in Flowdash without any
code, which is what makes it really powerful. But ultimately, kind of the point where that loop

© 2022 Software Engineering Daily 4

SED 1408 Transcript

gets closed is when they decide, yes, I want to let this payment through or, no, I want to block
that payment. That is where the developer would configure, say, a webhook URL back to their
core app that finally flags the payment as, yes, let it through, or no, block it, which might trigger
other things downstream from there.

[00:08:31] KP: And do companies need to consider change management? It sounds like it's
pretty easy to update something in your system. That's not always the case in a typical
enterprise software stack.

[00:08:41] NG: Yeah, change management is one of those challenging things, especially I think,
in a lot of low code and no code tools. I'd say right now, it isn't really easy for anyone with the
appropriate permissions in the system to make those changes. We've built a very robust
permissioning system so that you can have that level of granularity of who's allowed to modify
things and what parts they can change. We do have a lot more on the roadmap around being
able to have proper version control around the workflows, having a paper trail of who changed
those things in the configuration, as well as being able to support multiple environments, like for
example, a staging environment and a production environment so you can test things before
they get rolled out for everyone.

[00:09:24] KP: And when you go to do environments and rollouts like that, are there any best
practices people are following in terms of like, do you fit into the typical release cycles? Or is
this something done in like a non-sprint fashion that we're entering with a new low code tools
available?

[00:09:39] NG: Sorry, just for that question, are you referring to our own change management,
like a product features within Flowdash? Or do you mean that the rollout of new workflow
changes that our customers are making for their teams?

[00:09:50] KP: Oh, both are interesting, but I meant the second about how your customers are
using it.

[00:09:55] NG: Yeah, that's a great question. I mean, right now, a lot of the changes are
immediate. I think I think what I meant by adding version control environments are things that

© 2022 Software Engineering Daily 5

SED 1408 Transcript

we have on the roadmap to support. I don't think we'd be mandating any specific best practices.
I think it is helpful to have, especially when there's integrations with downstream systems, it's
helpful to have effectively like an entire clone of your production stack in a staging environment.
This is just independent of Flowdash or anything, really. It's just helpful to have a replica of what
would be happening in production, to really just test things end to end. There are only so much
that I found in my experience, you can do in a local environment, or even with containers. It's
just always best to kind of have as closest simulation to production before rolling out major
changes.

[00:10:43] KP: And I guess, as a consumer, I shouldn't really care what your internal tech stack
is like. But since we touched on it, I'm curious to know a little bit about how you guys do
engineering on the inside?

[00:10:53] NG: Yeah, absolutely. So, the main technology we use on the backend is Ruby on
Rails. My co-founder and I have used Ruby and Rails for over eight years. So, I think one of the
primary kind of decision factors when we're trying to choose our technology would be building
Flowdash on top of early on was just familiarity of the founders with the technology. I think that's
a really strong argument for an early stage startup, because you want to focus so much of your
energy as much as possible on like, what makes your particular business or product unique. We
didn't spend a whole lot of time evaluating what back end technology would be best suited for
what we were building, as long as what we were choosing would fit the bill and rails absolutely
does. That allowed us to move really, really quickly upfront because we weren't, you know,
fighting the framework and trying to learn it, we were actually focusing all of our attention on our
customers and, and building things that they need. On the front end, we're React. We use
Apollo for state management, and our API layer across the back end. And front end is, as a
result, Graph QL.

[00:11:56] KP: I'd love to zoom in a little bit more on some of the product features. If we think of
an analogy of like a painter who's got a palette with colors on it, what are my colors when it
comes to working on Flowdash?

[00:12:08] NG: Yeah, so I think there's a few core primitives when building something in
Flowdash. The core app or unit of workflow is called a workflow. Within a workflow, things move

© 2022 Software Engineering Daily 6

SED 1408 Transcript

across different stages, those are kind of like the statuses or since it's an engineering podcast,
you could think of it like a state machine. So, they are the states that a particular unit of work
might be in. We have another concept called actions. And action is something that a human
performs in the product that is analogous to a transition if you're talking in the finite state
machine nomenclature. So, you define in our Flow Builder, the various stages, those stages
might be, it's under review, it's been escalated, it's late, it's been approved, it's on hold, it's
rejected. And then you define the actions which are maybe escalate to a manager or approve,
and those are using our Flow Builder, you can visually string those together.

It's an entirely graphical editor and that helps you not only define what the users are allowed to
perform at various stages, but also helps you and give you a visual representation of what the
process is end to end, which acts as the documentation for it going forward within an action. So,
there's obviously being able to transition it across stages. But what really makes Flowdash
powerful is being able to connect that with other systems and those pieces of automation we
call steps. So, a step might be send a Slack message, or call this API, or email a form to the
customer to fill out. And so, you can kind of string, those are kind of some of the core primitives
in Flowdash stages actions, we have automations, which are kind of like what if this, then that
style, similar to something like Zapier and forms is another as well. So, there's a whole lot that
goes into building these products, these internal tools and workflows. And yeah, we just love
hearing more feedback from our customers and continuing to iterate and add new features to
the platform.

[00:14:01] KP: So, it sounds like you own the management of the state then and if I want to
query, what's the current state of this particular flow, I can get that through your API. Is there
anything else you're persisting or does all the data and ancillary metadata gets stored
somewhere else?

[00:14:16] NG: So, we're persisting the state, as you mentioned, as well as any ancillary
metadata about that state. If you have customer data or transaction data, whatnot, if there's
comments that are being made by the team on it, all that information is persisted. If there's
assignments across individuals effectively, there's also an audit log of everything that's been
done to every task or unit of work in the system. All of that is being persisted on our side. For
many use cases, though, wanting to know, have a single source of truth of your data is

© 2022 Software Engineering Daily 7

SED 1408 Transcript

important. So, I think for some of our customers, Flowdash acts as that single source of truth for
ops workflows. In other cases, they might connect directly to their Postgres or MySQL database,
which is something that Flowdash supports, in which case that would act as the source of truth
and we're kind of a layer on top of it.

[00:15:05] KP: So, we've got Postgres and MySQL, can you go through some of the other
popular integrations?

[00:15:10] NG: Yeah, sure. I mean, we've got a ton that are being requested all the time. We've
only built a few so far and we've kind of leaned on our Zapier integration for a lot of the others.
But so far, some of the first party integrations include front, we have Slack, we have Twilio for
sending SMS, we have SendGrid, coming this month as well, and Gmail shortly after that. Slack
is a big one. I don't know if I mentioned that. But yeah, there's there's about a handful, and for
everything else, a lot of our customers have been using our Zapier integration to trigger other
actions and other products.

[00:15:46] KP: And what type of professional is typically bringing your product into the
organization?

[00:15:50] NG: Yeah, so we kind of see a different kind of depends on the company. In some
cases, it is a technical leader that discovers the product. And for them, they see it as a means to
spend less engineering time building internal tools. And that's really helpful because, again, I
mentioned tons of engineering teams, engineering resources are always limited, you want to
focus those on your core product. And so, they see it as a means to spend less engineering
time on these tools and enable the ops team to add features on their own without having to kind
of make those requests engineering and wait months and months.

Other times, it might be the operations team who will discover the tool, recognize that, “Hey, this
will finally help me stop getting waiting months and months and months for my feature request
to get serviced by the answer. I can start doing a lot of these on my own.” So, they'll build a
case internally and try to get by. And generally, since it does touch the technology stack, since
it's usually integrated with other core systems and databases, we've seen that the final

© 2022 Software Engineering Daily 8

SED 1408 Transcript

purchasing decision is often within engineering or product. But really kind of the case, we've
seen the case being built from different people within the organization.

[00:17:01] KP: Well, this is almost an unfair question on an audio podcast. But since we are
talking about a WYSIWYG sort of GUI, can you describe a little bit about the experience?
Maybe by analogy, what's it like to actually build one of these with my mouse?

[00:17:15] NG: Yeah, for sure. I mean, what when you start in a new workflow, we kind of kick
you off in a very linear workflow that moves something from like not started to in progress to
done. Three stages, two transitions between them, it's a straight line. So, if you were to log in,
you would see a list of tasks. We start you off with three, and more just to illustrate kind of like
what the interface is like. If you click the Flow Builder tab that's in our user interface, that's
where you would see the graphical representation of the flow. And what you would see visually
is five boxes drawn vertically on the screen, the first being not started, the second being moved
to in progress, the third being the in progress stage, and the fourth being moved to done. And
then the fifth being done.

What happens is, you can click any one of those, and that'll open a Properties panel where you
can rename the stage, you can add a checklist that you want people to work through in order to
move past that stage. If the thing you clicked was an action, then that's where you can add
some of those steps that we talked about, like sending a Slack message calling an API, et
cetera. And you can also drag additional stages and actions onto the canvas. Say we wanted to
add a reject action, and then I want to be able to call that from in progress. Well, I would add the
reject action onto the canvas and simply click my mouse under review or in progress, rather
stage, and dragging that line is what tells the platform, when a task is in progress, you are
allowed to reject it. That is one of the valid transitions from this point. So, you can visually string
these things together and configure them in that interface. I hope that was my best attempt at
describing a user interface on an audio podcast.

[00:18:58] KP: No well done, and I think there's a great video on the site, people can go check
out to learn more and get the visual of it. Well, I'm wondering if next we could zoom in on one of
the use cases that caught my eye in particular. And that's the human in the loop image labeling

© 2022 Software Engineering Daily 9

SED 1408 Transcript

for machine learning. When you see companies deploy this, can you give some examples of the
types of labels they'd like to know?

[00:19:18] NG: Yeah, so I can think of one case where we ran, we built a proof of concept for a
labeling company was where there were photos being taken within the companies trying to build
a Amazon Go style checkout experience where you pick things up off of the shelf, and then kind
of just like walking out the door. And then the AI automatically knows what you picked up and
sends you a bill afterwards. They're trying to build that for not Amazon. Part of their labeling
workflow is around identifying different objects of the shoppers as they're walking through the
store. What is their right hand? What's their left hand? Where are their shoulders? Where's their
head? Where's the product et cetera?

So, they were using – the proof of concept was around using Flowdash as a means for their
labeling team to ingest photographs of shoppers and flag kind of where all these different key
points in the image work. So, with Flowdash, that was generally just, again, wiring up the API,
being able to like push images as they come in. And then we were able to build a block, block is
kind of our word for like component or widget or things that you drag and drop into the user
interface when you're working on a particular task. So, we had a block specifically for key point
labeling that they were able to leverage to do all this, like labeling. And ultimately, that data got,
they were able to query that data via our API to ingest into their machine learning models
downstream from there.

[00:20:50] KP: Where are the humans in this human in the loop? Does your client provide the
labelers? Or is that part of your service?

[00:20:56] NG: That's a good question. Yeah. So, at this time, we don't provide any of the
human in the loop, like the actual human labor. Our clients have been providing them. We do
partner with a company that provides the labor aspect. So, if you have one of these use cases,
you want to use Flowdash as the software solution, but you still need to kind of augment your
workforce to add just more bandwidth, more throughput, we can recommend some firms that we
work with that would be able to provide that.

© 2022 Software Engineering Daily 10

SED 1408 Transcript

[00:21:25] KP: So, I've seen this done effectively in a batch format sort of offline to train a
machine learning model. Can you help someone do this in real time?

[00:21:35] NG: Yeah, so I mean, there's nothing limiting the fact that whether it's done in batch.
In the example, I gave for the shopping scenario that was done in batches, again, to just
generate training data, but there's no reason you wouldn't be able to do real time, human in the
loop with the platform. You'd basically post things to the endpoint, you could kind of think of it
again, to do a software analogy. It's kind of a human powered background job, if you're using
something like Rails developer, sidekick is kind of the ubiquitous background job processor
these days. Kicking something off to there, except, rather than code running, it's an actual
human looking at the inputs, doing some processing and making a decision on the output.
That's sort of like the example I gave for flagging a transaction that's too large. Ultimately, like it
is a human in the loop. The human is deciding whether to let the payment through or not and
then that kind of resumes the execution from there.

[00:22:29] KP: And so that label, I'm going to bring my own fleet of labelers, to the table who
I've trained, and they're going to use your software, maybe I staff in 24 hours, if that's the
service I need. But I'm curious about the flow of their data. So, I guess, their app, or the store's
technology needs to post the image to your system. Once I finally get the label, what are my
options for sending that back into the rest of my tech stack?

[00:22:54] NG: Yeah, so the label itself, we store the labels as, it's kind of like a nested JSON
structure of the various labels and the coordinates at which they were placed. You can fetch that
via our API, or we can push that via our API call steps. So, kind of whichever you want. We can
also even – if you're doing things in batches, you can export that whole thing kind of manually
as a CSV file and do whatever processing you want to do to that offline. Now, if that format
doesn't match what you need downstream, you'd have to write some transformation code to
kind of ingest that into your downstream models and whatnot.

[00:23:30] KP: And then, I guess the process you described is a little bit more sophisticated
than just a simple labeling. It's not like, hot dog, not hot dog. You're getting all that pose
information. What's the interface like for my labelers, to be able to provide that?

© 2022 Software Engineering Daily 11

SED 1408 Transcript

[00:23:45] NG: Yeah, so in that case, we built the ability to define a set of labels, and they're
associated, just colors, just to visually distinguish them. So, in that case, when configuring the
workflow, the developers were able to define the labels, in which case, left shoulder, right
shoulder, et cetera. And then when the operators or labelers, were using the tool, they would
see the image and then on the right panel, kind of the various labels that they can drag onto the
image and position.

[00:24:13] KP: And when you think about, I guess, best practices for building flows, obviously,
this is a component, the flow is going to integrate with some other system. It doesn't sound like I
ever would build a standalone business just on your platform, although maybe that's possible.
But with that in mind, I guess my question is, around the integrations, like what's the typical
lifecycle where someone says, “We've got to build this. It's going to take us two weeks or maybe
two hours to get it done. Then this team has to integrate.” End to end, what's it usually take a
team to get up and running?

[00:24:46] NG: Yeah, I think it generally depends on the complexity of the use case. To answer
your previous question, can you build like entire things on Flowdash, we actually have seen
folks do that, especially with our – we have an external facing formula that you can build similar
to something like Type Form or Jot Form or Google Forms, building these forms, that's kind of
like the ingest for data from your end users. And then, doing some processing on the back end.
It’s an order form of some kind. We're also able to send additional forms to gather more
information from the end user. It's not the typical use case.

I'll say, the main use cases, human in the loop, as you've already described, but it is possible to
do something more end to end on the product as well. Now, the typical time to delivery I mean,
we've often seen something that an engineering team had slated as two to three engineering
months of work being reduced two days by building on top of our platform. I think, with a lot of
these basically, like more like process driven internal tools, where there's a team, like items of
work that arrive, people need to assign it to themselves. You need to coordinate it, you have to
bring it to resolution. It's very easy to overlook a lot of the complexity that goes into building
something like that. Just something simple, like assigning things and deciding when to assign
things to particular people and load balancing them, and being notified when you've been

© 2022 Software Engineering Daily 12

SED 1408 Transcript

assigned something or being able to comment on something and have someone else be notified
that you've commented and need their attention.

Once you do actually start putting something in production, the next question is like, “Well, how
are we doing? Where are the bottlenecks in this process? Where's the room for improvements?
What can we tweak?” And so, you start to look towards analytics and reporting. The advantage
with Flowdash is all of that is built from the ground up. We've built the building blocks that are
really catered for these like high volume, repetitive manual tasks, so that you don't have to build
a lot of these primitives, and you can focus on the things that are more unique to your business.

[00:26:44] KP: Well, I'm considering now what a rollout might look like at a large social network,
in particular, with the content management use case that I think we touched on and is covered
on the site. Imagine I'm like the regional manager. So, I've got grandchildren, employees all over
the place. I can't necessarily manage every person, but I need to know something about the
operations. What sort of visibility can I get into things like number of open issues?

[00:27:09] NG: Yeah. We have built-in analytics feature where you can get an idea of within a
given time period, how many issues were opened? How many moved to various stages? How
many were resolved? And what were their resolutions? What is the average time for an
individual unit of work to get from point A to B? What's the average time for something to get
through the entire workflow? And how did that time change this month compared to last month
compared to the month prior? So, a lot of this is kind of, we surface that in our analytics
dashboard. But if you want to do any additional analytics on it, it's also all downloadable. We
can get the raw data, and then you can bring that into a BI tool into Google Sheets or Excel and
do whatever additional analysis you want to do to extract those insights.

[00:27:58] KP: And when you think a few years out, obviously, I think the market size for this
sort of tools are growing, are we going to be writing less software in general? Or is there just
more software altogether and a bigger market share going to tools like yours, or what's the
future of software development?

[00:28:13] NG: Yeah, I think we'll continue to write more and more software. What I predict is
that people that generally were not able to write software in the past are now being empowered

© 2022 Software Engineering Daily 13

SED 1408 Transcript

by a lot of these tools to build things that they otherwise would not have been able to build, we
go back 10, 20, 30 years ago. A lot of people will categorize low code and no code as these
newer entrants, these new buckets. For me, I kind of think of things like, I mentioned earlier, I
got started on on Visual Basic when I was learning how to program originally. Lately, I've been
using Ruby on Rails. I kind of think of Ruby on Rails and these frameworks as ways to get us
from like absolutely nothing to working web app in much, much less time. It's kind of providing
us a lot of the common building blocks so that we don't have to spend our energy on that. And
then we can instead, spend our energy on what makes our product or service unique. I just think
of low code and no code as an extension of that. And kind of widening the universe of who can
be a developer, who can build apps by no longer requiring you to write as much or any code at
all.

[00:29:20] KP: Yeah, I think there's a lot of enthusiasm for that and we're seeing a lot of
entrants to the market, very popular, a lot of VC money flowing in. What differentiates your
solution?

[00:29:30] NG: I think our solution, what's unique about it is I think a lot of these products that
I've seen, are either focused entirely on developer persona, and you know, really having a high
ceiling for the product. You can effectively build anything, but you need to write code, and
there's a lot of complexity in doing that. Or on the other end of the spectrum, it's very cater to a
non-developer, and again, it's providing you the tools to do something that you otherwise would
not have been able to do. I've rarely seen a product that tries to address both personas, albeit in
different ways. That's kind of where I see Flowdash fitting in is where a lot of these human in the
loop processes have upstream and downstream systems that you have to integrate with in order
to have those human decision decisions make their way back into your core system and that's
where the developers come in, and that's where things like our API, like our web hooks, et
cetera, our database integrations. Those are the side of the product that developers interface
with, whereas a lot of the process management, a lot of the auto assignment SLAs, the alerting
notifications, reporting and analytics are very ops or non-developer focused. So, I see Flowdash
as being unique in that we cater to both of these audiences in different ways.

[00:30:48] KP: I'm curious if there's anything coming down the release pipeline you want to
tease, or maybe any recent releases you're excited about?

© 2022 Software Engineering Daily 14

SED 1408 Transcript

[00:30:55] NG: Yeah, I mean, one in particular that we just released this week is, it might sound
subtle or minor. But a lot of products have a form builder of some kind, like be it Air Table, or
Google Sheets with Google Forms, Jot Form, Type Form, et cetera. What we've seen though, is
a lot of these forms are typically for getting new data into a table. Aa lot of the customers we've
talked to, a lot of the prospects were like, “Well, I already have a record for this customer. But I
need them to provide me additional data. I want to send them a form that will just provide more
information about themselves, whether it's a bank account number or an address, update an
address, whatnot, and have that feed into the same row from where I'm already storing their
customer information.” What we found is there wasn't a very good turnkey solution for that. Of
course, you could accomplish it with like Zapier and stringing together these things, but we
didn't see any of these products kind of have like a form that can update an existing record as
like kind of a first party concept. So, we built it, and we just launched it this week, we're already
seeing some great feedback from it. We're excited to see what folks build with it.

[00:32:09] KP: When you look across current adoption, I think there's a wide spectrum from
enterprise development, medium, small business to indie, rogue weekend hacker, where have
you seen the most interest coming in?

[00:32:21] NG: Yeah, we've seen the most interest as far as company size, generally, between
series A and series C companies, and generally those that are have an operational component
to them. So, that's generally companies in the FinTech space, companies in healthcare, where
they're dealing with sensitive data, and there's kind of a human element to a lot of their
processes. And the reason I say series A to C, generally, at the seed stage or early a, you're still
kind of figuring things out, like shooting things over email is working, doing things that don't
scale, you're not quite thinking about, how do I build out a team? How do I build out a process
that's repeatable? Kind of not at that stage yet. Whereas post C and beyond, you've probably
already established some tools and maybe bitten the bullet and built something custom. So,
we've generally just had a little bit more trouble selling into those organizations for now. And our
sweet spot has been kind of that transitionary phase between early stage and growth stage. I
imagine it'll continue to expand from there, but that's at least our starting point.

© 2022 Software Engineering Daily 15

SED 1408 Transcript

[00:33:23] KP: What's the typical first step someone of that organization will take? Is it some of
the lower end who hears about the product and wants to try it out and show the boss? Or do
you see executive mandates coming down?

[00:33:35] NG: Usually, the former. So, someone will hear about us. It's often a developer,
sometimes an ops person, but they'll hear about the tool, they'll poke around, they can sign up
for a free trial work through the tutorial, we have a bunch of videos on our YouTube channel
about how to do particular things, different examples. We have a template library they can start
with, and generally, there'll be a moment where like, “Wow, I think we could use this for
something.” We're always available jumping on on demo calls and in app chat with questions.
But there is a point where they're like, “Hey, I think I have a use case and I want to build up a
case internally for us to adopt this.” So generally, we seen kind of the purchase decision come
from a little higher up, but rebuilding up of the case has happened more bottoms up than it's
been tops down so far.

[00:34:20] KP: Is there a typical hello world? Or what's the first sort of test or integration that I
can get up with really fast that shows the value of the platform?

[00:34:29] NG: That's a great question. I think, when you start out, there's our tutorial and our
tutorial walks you through – five-minute introduction to the product that walks you through an
example where you're a brand new startup, you have a waitlist for your product, so you're not
even fully live yet. Or maybe it's like a request early access form. And those kind of enter into
Flowdash and you ultimately are deciding which of those users you'd like to invite to the
platform, versus which of those you want to maybe put on a waitlist for general release.

So, we kind of like walk you through building up that whole workflow over the course of a few
minutes in our tutorials. I'd say that's probably one of the better introductions to just how to use
the product. And then there's a few videos kind of on our channel about typical use cases. We
have one around content moderation. We have another around KYC, and one around like
reviewing transactions. I think those are all kind of typical examples that showcase, what's
possible in the platform, or what kind of use cases it's particularly well suited to solve.

© 2022 Software Engineering Daily 16

SED 1408 Transcript

[00:35:31] KP: And when you think about scale and growth, obviously, it's more customers,
more use cases. But from a technology point of view, are there any things you're chasing after?

[00:35:41] NG: Yeah. I think one surprise we had was just the volume of units of work that we're
seeing our customers push through the product. I think we were expecting things to be on the
order of hundreds and thousands of tasks. What we're starting to see more and more of his very
high-volume workflows of tens of thousands, hundreds of thousands of tasks. So, from a
technology standpoint, ask ourselves, how do we continue to scale our infrastructure, our
performance? How do we leverage caching in various ways? How do we paginate particular
user interface elements? And just, how do we keep the product snappy and productive, even as
the number of records in these workflows continues to increase?

A number of our clients are actually running our product on premise. So, that's one thing I hadn’t
mentioned earlier. But apart from our cloud product, we also offer Flowdash to be deployed on
premise with a dockerized deployment solution. And that's particularly well suited for companies
that have really stringent data security requirements or data privacy requirements, those in
industries like finance, like banking, like insurance and healthcare, where there might be you
know, HIPAA requirements. Running Flowdash on premise would have been a nonstarter if it's
not something we allowed. So, in those cases, how do we continue to make be able to support
both our cloud customers and those that are on premise? And how do we make the on-premise
deployment and upgrade process as easy and seamless as possible including things like
migrating data and so on?

[00:37:12] KP: Well Nick, remind listeners where's the best place to learn more?

[00:37:17] NG: So, if you want to learn more about Flowdash, you can go to flowdash.com. You
can watch a demo video there. You can also check out our YouTube channel, which you can
just go on YouTube search Flowdash, I'm sure you'll find us. But those are probably two of the
best places to learn a little bit more about the product and the company.

[00:37:34] KP: Sounds good. Well, thanks so much for taking the time to come on Software
Engineering Daily.

© 2022 Software Engineering Daily 17

SED 1408 Transcript

[00:37:37] NG: Thanks for having me, Kyle.

[END]

© 2022 Software Engineering Daily 18

